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Abstract

The problem of the independence and completeness of rotation moment invariants is addressed in this paper. First,
a general method for constructing invariants of arbitrary orders by means of complex moments is described. As a major
contribution of the paper, it is shown that for any set of invariants there exists a relatively small basis by means of which
all other invariants can be generated. The method how to construct such a basis and how to prove its independence
and completeness is presented. Some practical impacts of the new results are mentioned at the end of the paper.
© 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Moment invariants have become a classical tool for
object recognition during the last 30 years. They were
firstly introduced to the pattern recognition community
by Hu [1], who employed the results of the theory of
algebraic invariants [2,3] and derived his seven famous
invariants to the rotation of 2-D objects:

$1 = Hao + Ho2s

b2 = (a0 — po2)* + 4uty,

¢35 = (130 — 312)* + Bpta1 — po3)?,

ba = (130 + 1112)* + (21 + Ho3)?,

s = (30 — 3pt12) (30 + H12)(Hz0 + H12)?

— 3(tt21 + 103)%) + (Bta1 — Ho3)tta1 + fo3)
X (3130 + 112)* — (Ha1 + Ho3)?),

b6 = (120 — po2)(130 + p12)* — (a1 + H03)*)
+ 410 + mi2)H21 + Hos)
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¢7 = Biz1 — o330 + f12)(i30 + H12)°
= 3(t21 + Ho3)?) — (30 — 3p12)(H21 + fos)

X (330 + t12)* — (21 + pos)?), (1)

where

Hpq = J J (x = xJ"(y = yo)*f(x, y) dx dy 2

is the central moment of the object f(x, y) and (x,, y.) are
the coordinates of the object centroid. Hu also showed
how to achieve the invariance to scaling and demon-
strated the discriminative power of these features in the
case of recognition of printed capital characters.

Since then, numerous works have been devoted to the
various improvements and generalizations of Hu’s in-
variants and also to its use in many application areas.
Dudani [4] and Belkasim [5] described their application
to aircraft silhouette recognition, Wong and Hall [6],
Goshtasby [7] and Flusser and Suk [8] employed mo-
ment invariants in template matching and registration of
satellite images, Mukundan [9,10] applied them to esti-
mate the position and the attitude of the object in 3-D
space, Sluzek [11] proposed to use the local moment
invariants in industrial quality inspection and many
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authors used moment invariants for character recogni-
tion [5,12-15]. Maitra [16] and Hupkens [17] made
them invariant also to contrast changes, Wang [18]
proposed illumination invariants particularly suitable for
texture classification, Van Gool [19] achieved photomet-
ric invariance and Flusser et al. [20,21] described mo-
ment invariants to linear filtering. Several papers studied
recognitive and reconstruction aspects, noise tolerance
and other numerical properties of various kinds of mo-
ment invariants and compared their performance experi-
mentally [5,22-27]. Moment invariants were shown to
be also a useful tool for geometric normalization of an
image [28,29]. Large amount of effort has been spent to
find the effective algorithms for moment calculation (see
[30] for a survey). Recently, Flusser and Suk [31] and
Reiss [32] have corrected some mistakes in Hu’s theory
and have derived the invariants to affine transform.

In the contrast to a large number of application-
oriented works, only few attempts to derive invariants
from moments of orders higher than three have been
done. Li [33] and Wong [34] presented the systems of
invariants up to the orders nine and five, respectively.
Unfortunately, none paid attention to the mutual de-
pendence/independence of the invariants. The invariant
sets presented in their papers are algebraicly dependent.

There is also a group of papers [14,35,36] that use
Zernike moments to construct rotation invariants. Their
motivation comes from the fact that Zernike polynomials
are orthogonal on a unit circle. Thus, Zernike moments
do not contain any redundant information and are more
convenient for image reconstruction. However, Teague
[35] showed that Zernike invariants of second and third
orders are equivalent to the Hu’s ones when expressing
them in terms of geometric moments. He presented the
invariants up to eight order in explicit form but no
general rule as to the way to derive them is given. Wallin
[36] described an algorithm for a formation of moment
invariants of any order. Since Teague [35] as well as
Wallin [36] were particularly interested in the recon-
struction abilities of the invariants, they did not pay
much attention to the question of independence. How-
ever, the independence of the features is a fundamental
issue in all the pattern recognition problems, especially in
the case of a high-dimensional feature space.

The benefit of this paper is twofold. First, a general
scheme how to derive moment invariants of any order is
presented. Secondly, we show that there exist relatively
small set (basis) of the invariants by means of which
all other invariants can be expressed and we give an
algorithm for its construction. As a consequence of
this, we show that most of the previously published sets
of rotation moment invariants including Hu’s system
(1) are dependent. This is really a surprising result
giving a new look at Hu’s invariants and possibly yield-
ing a new interpretation of some previous experimental
work.

2. A general scheme for deriving invariants

There are various approaches to the theoretical deriva-
tion of moment-based rotation invariants. Hu [1] em-
ployed the theory of algebraic invariants, Li [33] used
the Fourier-Mellin transform, Teague [35] and Wallin
[36] proposed to use Zernike moments and Wong [34]
used complex monomials which also originate from the
theory of algebraic invariants. In this paper, we present
a new scheme, which is based on the complex moments.
The idea to use the complex moments for deriving invari-
ants was already described by Mostafa and Psaltis [24]
but they concentrated themselves to the evaluation of the
invariants rather than to constructing higher-order sys-
tems. In comparison with the previous approaches, this
one is more transparent and allows to study mutual
dependence/independence of the invariants easily. It
should be noted that all the above approaches differ from
each other formally by the mathematical tools and the
notation used but the general idea behind them is com-
mon and the results are similar or even equivalent.

Complex moment c,, of the order (p + g) of an inte-
grable image funciton f(x, y) is defined as

—o0, —®

Cpg = J | J (x + 1y (x —iy)f (x, y) dx dy, ©)

where i denotes the imaginary unit. Each complex mo-
ment can be expressed in terms of geometric moments
My, as

Pod P\(4q L
= z Z < ><'>(1)q Jjprazk I My ptg—k—j

k=0 j=0 k J
“4)

In polar coordinates, Eq. (3) becomes the form

w [*2n
@FJ J PPt =00, 0) dr do. )

0o Jo

It follows immediately from Eq. (5) that c,, = ¢}, (the
asterix denotes a complex conjugate). The following
lemma describes an important rotation property of the
complex moments.

Lemma 1. Letf"’ be a rotated version (around the origin) of

frie f'(r,0)=f(r, 0 + o) where o is the angle of rotation.

Let us denote the complex moments of f' as c,,. Then

’

Chpqg =€ 0 %, (6)

Using Eq. (5), the proof of Lemma 1 is straightforward.
It can be seen immediately that |c,,| is invariant to
rotation for any p and q. However, the moment magni-
tudes do not generate a complete set of invariants. In the
following theorem, we propose a better approach to the
construction of rotation invariants.
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Theorem 1. Let n > 1 and let k;, p; and qi;i=1,...n, be
non-negative integers such that

Z kip; — q;) = 0.

i=1
Then

n

=11 ¢, )

i=1

is invariant to rotation.

The proof of Theorem 1 follows immediately from
Lemma 1.

According to Theorem 1, some simple examples of
rotation invariants are ¢, C20Co2, C20C+2, €tc. As a rule,
most invariants (7) are complex. If we want to have
real-valued features, we only take the real and imaginary
parts of each of them. To achieve also translation invari-
ance (or, equivalently, invariance to the rotation around
an arbitrary point), we only use the central coordinates in
the definition of the complex moments (3).

It can be seen that the Hu’s invariants (1) are nothing
else than particular representatives of the general form

(7):

$1 =11,

$2 = €20C02,

$3 = C30C03,

$a = C21C12,

¢s = Re(csocty),
b6 = Re(cz0c1),

¢y = Im(c3oc?2). (®)

3. Independence and completeness of the sets of invariants

In this section, our attention will be paid to the con-
struction of a basis of the invariants. Theorem 1 allows us
to construct an infinite number of the invariants for any
order of moments, but only a few of them are mutually
independent. By the term basis we intuitively understand
the smallest set by means of which all other invariants
can be expressed. The knowledge of the basis is a crucial
point in all the pattern recognition problems because it
provides the same discriminative power as the set of all
invariants at minimum computational costs.

To formalize this approach, we introduce the following
definitions first.

Definition 1. Let k > 1, let # = {I,,...,I,} be a set of
rotation invariants of the type (7) and let J be an invari-
ant of the same type. Invariant J is said to be dependent

on # if and only if there exists a function F of k variables
containing only the operations multiplication, involution
with an integer (positive or negative) exponent and com-
plex conjugation, such that

J=F{1,, ..., I,).

Definition 2. Let k > 1 and let .# = {I,, ..., I,} be a set
of rotation invariants of the type (7). The set .# is said to
be dependent if and only if there exists ko < k such that
I, depends on .# — {I,,.}. The set .# is said to be indepen-
dent otherwise.

According to this definition, {c20C02, ¢30¢32}
2 3 2 2
{c31C02, C21C12, C31C02¢12) and {ca0cTs, Coa¢31) are the
examples of the dependent invariant sets.

Definition 3. Let .# be a set of rotation invariants of the
type (7) and let # be its subset. 4 is a basis of .7 if and
only if

e 7 is independent,
e Any element of .# — % depends on 4 (this property is
called completeness).

Now we can formulate the central theorem of this
paper that tells us how to construct an invariant basis
above a given set of moments.

Theorem 2. Let ./ be a set of the complex moments of any
orders (not necessarily of all moments), let M* be a set of
their complex conjugates and let ¢y, € M OM* such that
Po—qo =1 and cpy, # 0. Let S be a set of all rotation
invariants created from the elements of M . HU* according
to (7). Let A be constructed as follows:

(YD, dlp = q A Cpg€ MOMND(P, q) = Cpychopl € B).
Then % is a basis of S .

For the proof of Theorem 2 see Appendix A.

4. Some consequences of Theorem 2

In this section, we highlight some consequences of
Theorem 2 that are of practical importance.

4.1. On the dependence of the previously published
invariants

We show that the previously published systems of
rotation invariants including the famous Hu’s one are
dependent. This fact has not been reported in the litera-
ture yet. Using Eq. (8) and assuming c,; # 0, it is easy to
prove that

C03c31C30¢i2 93 + @7
(c21¢12)° b3

3 = C30C03 =
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Moreover, the Hu’s system is incomplete. There are
two third-order invariants — ¢,oc3, and c3c3, — that are
independent of {1, ..., P}

Li [33] published a set of invariants from moments up
to the ninth order. Unfortunately, his system includes the
Hu’s one as its subset and therefore it also cannot be
a basis.

Wong [34] presented a set of 16 invariants from mo-
ments up to the third order and a set of “more than 49”
invariants from moments up to the fourth order. It fol-
lows immediately from Theorem 2 that a basis of the
third-order invariants has only six elements and a basis
of the fourth-order invariants has 11 elements (these
numbers relate to the real-valued invariants). Thus, most
of Wong’s invariants are dependent.

The systems of invariants published by Teague [35]
and Wallin [36] are also dependent. We can, however,
obtain an independent system just by removing all skew
invariants. The proof of completeness is given in Ref. [36]
but this term is in that paper defined as a possibility to
recover all the moments up to the given order from the
set of invariants.

4.2. An explicit construction of the third-order
and fourth-order bases

In this section, we present the bases of low-order in-
variants that have been constructed according to The-
orem 2 and that we recommend to use for 2-D object
recognition.

e Second and third orders:
Y1 =ci1 =9y
Y2 =ca1C12 = P,
3 = Re(c20¢12) = Pes
¥4 = Im(cz0ct)
= p11((30 + p12)* — (o3 + #21)°)
— (20 — Ho2)(H30 + [12)(Ros + K21),
s = Re(czoctz) = bs,
Ve = Im(cz0cis) = ¢
e Fouth order:
Y7 = caa,
¥s = Re(caicta)
Yo = Im(cs i),
Y10 = Re(caoct),

Vi = Im(c4ocz1tz)-

In the case of third-order and fourth-order invariants,
the bases are determined unambiguously. However, there
are various possibilities as to apply Theorem 2 when
constructing higher-order bases. The difference is in the
choice of the indices po and g,. Although it is not strictly
required, it is highly desirable always to choose p, and
qo as small as possible, because low-order moments are
less sensitive to noise than the higher-order ones.

5. Skew invariants

In this section, we investigate the behavior of the
rotation invariants under reflection. The invariants,
which do not change their values under reflection are
traditionally called the true invariants while the others are
called skew invariants [ 1] or pseudoinvariants [35]. Skew
invariants distinguish between the mirrored images of the
same object that is useful in some applications but may
be undesirable in other cases. In the following text we
show which invariants of those introduced in Theorem
1 are skew and which are the true ones.

Let us consider an invariant of the type (7) and let us
investigate its behavior under the reflection across an
arbitrary line. Due to the rotation and shift invariance,
we can restrict ourselves to the reflection across the
x-axis. Without loss of generality, we consider the invari-
ants from the basis only.

Let f(x,y) be a reflected version of f(x,y), ie.

f(x,y) =f(x, — y). It follows from Eq. (3) that

P
Cpg = Cpg-

Thus, it holds for any basic invariant ®(p, q)

(D(pa q) = cpcho;g = C;:;q(c:;opo)piq = (D(I% q)*

This indicates that the real parts of the basic invariants
are true invariants. On the other hand, the imaginary
parts of them are skew invariants, because they change
their signs under reflection.

6. Summary and conclusion

In this paper, the problem of the independence and
completeness of the rotation moment invariants was dis-
cussed. Although the moment invariants have attracted
a significant attention of pattern recognition community
within the last thirty years, they have not been studied
from this point of view as yet.

A general method how to derive the rotation invari-
ants of any order was described first. Then the theorem
showing what the basis of the invariants looks like was
formulated and proven. This is the major theoretic result
of the paper. Finally, the relationship to the previous
works was demonstrated. As an interesting consequence
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of our results, it was shown that Hu’s system of moment
invariants is dependent and incomplete.
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Appendix A. Proof of Theorem 2

Completeness of %: Let I be an arbitrary element of .7.
Thus

= U Cptv

where ¢, 4 €.#U.4*. The product can be decomposed
into two factors according to the relation between p; and
qi:

n

ni
I= H CI;‘qf H cllc;qu
i=1 i=ni+1
where p; = ¢q; if i <n; and p; < ¢q; if i > ny.
Let us construct another invariant J from the elements
of # only as follows:

ny

J = 1_[ (D(pia i 1_[ (D(Qu z *k'

i=1 i=n+1

Grouping the factors ¢,,,, and c,,,, together we get

n

= comkitp=a) YL, kg~ p) o
J = Copo Iioqo H clhq' H Cpigi

i=1 i=m+1
> ki(pi— qi) Z w1 Kildi *Pi)I
qopo poqn .

Since I is assumed to be an invariant, it must hold

Z‘ ki(pi — ql) + z ki(pi - ql) 0

i=1 i=m+1

and, consequently,

Z kdp; — q;) = Z k{q; — p:) = K.

i=1 i=m+1

Now I can be expressed as a function of the elements of
B

I = ®(po, go) *J.

Thus, I has been proven to be dependent on 4.
Independence of %: Let us assume % is dependent,

ie. there exists ®(p, g)e %, such that it depends on

B — {®O(p, q)}. As follows immediately from the mutual

independence of the moments, it must hold p = p, and
q = qo. That means, according to the above assumption,
there exist invariants ®(py, q4),...,P(p,, q,) and
D(s1, t1), ..., D(Sy, L,y) from B — {(I)(po, o)} such that

D 1_[1_ 1(1)(171; qi kll—l:l n+ 1q)(pi> Qi)*k‘
(Po> o) = ™ 7 i’
(I)(S” tl) i=m + 1(D(Sis ti)

i=1

(A.1)

Substituting into Eq. (9) and grouping the factors
Cpogo AN ¢4,p, together, we get

.Z?': ki(pi— qi) ,Z;':m ki(qi— p)T [

(' > C o H C1“11_[1 n+1 qlh
Z, Li(si—ti) Z, 1 Liti—s)T M i

Coopo Choas" " 1_[ 15511_[1 m1+1(’t.S.

(A2)

D(po, g0) =

Comparing the exponents of c,,, and c,,,, on the both
sides we get the constraints

3

W s —t)=1 (A3)

1

K, = Z kdp

i=1 i

and

Ky= ) kigi—p)— Y [‘lti—s)=1 (A4)
i=m+1 i=m+1

Since the rest of the right-hand side of Eq. (A.2) must be

equal to 1 and since the moments themselves are mu-

tually independent, the following constraints must be

fulfilled for any index i:

ng=my, n=m, p;=s, ==t k={¢

Introducing these constraints into Eqgs. (A.3) and (A.4),
we get K; = K, = 0 that is a contradiction [I.
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