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Abstract. Processing of multidimensional image data which were acquired by a linear imaging system of unknown
point-spread function (PSF) is an important problem whose solution usually requires image restoration based on
blind deconvolution (BD). Since BD is an ill-posed and often impossible task, we propose an alternative approach
that enables to skip the restoration. We introduce a new class of image descriptors which are invariant to convolution
of the original image with arbitrary centrosymmetric PSF. The invariants are based on image moments and can be
defined in the spectral domain as well as in the spatial domain. The paper presents theoretical results as well as
numerical examples and practical applications.
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I. Introduction

Restoration of multidimensional image data which
were acquired by a real imaging system is the key prob-
lem in many application areas such as remote sensing,
astronomy and medicine, among others. Most cameras,
scanners and other sensors can be modeled as alin-
ear space-invariantsystem, where the relationship be-
tween the inputf (x) and the acquired imageg(x) is
described as

g(x) = ( f ∗ h)(x). (1)

In the above model,f (x) can be explained as an ideal
image of the observed scene,h(x) is the point-spread
function (PSF) of the system and∗ denotes multidi-
mensional convolution.

In many application areas, the PSF is unknown or
partially unknown. Nevertheless, it is desirable to find
a description of the original object that does not depend
on the imaging system. This task has been traditionally
solved viablind deconvolution(BD) that removes or
suppresses the blurring introduced by the PSF of the

system. Regardless of the particular method used, BD
is an ill-posed problem whose computing complexity
can be extremely high and which often does not yield
satisfactory results [4–6, 9, 10].

In this paper, we propose an alternative approach.
We introduce a new class of image descriptors (fea-
tures) which are not affected by the PSF. The only as-
sumptions are the central symmetry of the PSF (i.e.
h(x) = h(−x)) and the energy-preserving property of
the imaging system, i.e.∫

RN

h(x) dx = 1.

In this way we avoid the difficult inversion of Eq. (1).
We do not obtain the complete restoration of the im-
age f , but we are still able to describe its content in
a way that is sufficient in most cases (in object recog-
nition and matching, for instance). In other words, we
present a set of functionals whose domain is a space of
multidimensional functions and that fulfill the invari-
ance constraint, i.e.I ( f ) = I ( f ∗ h) for any admis-
sible f andh. Such functionals are called theblur in-
variants.
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The rest of the paper is organized as follows. In
Section II, basic definitions and propositions are given
to build up the necessary mathematical background.
Invariants to convolution defined in the Fourier and the
spatial domains are introduced in Sections III and IV,
respectively. Close relationship between both classes
of invariants is shown in Section V. In Section VI, it
is shown how to make the blur invariants independent
of image contrast, scale and rotation. Robustness to
random noise is investigated experimentally in Section
VII. Section VIII demonstrates a practical application
of the blur invariants to the satellite image-to-image
registration. The concluding Section contains a discus-
sion about possible practical applications.

II. Notation and Mathematical Preliminaries

In this Section, we introduce basic terms and relations
which will be used later in the paper.

Notation. ForN ≥ 1,xi ∈R, pi ∈N0,ki ∈N0 (Rand
N0 denote the sets of real numbers and non-negative
integers, respectively) we introduce theN-dimensional
vector of coordinates

x ≡ (x1, . . . , xN),

the N-dimensional vector of parameters

p ≡ (p1, . . . , pN)

and the following notation:

dx ≡ dx1, . . . ,dxN,

|p| ≡
N∑

i=1

pi ,

p! ≡
N∏

i=1

(pi !),

xp ≡
N∏

i=1

xpi

i ,(
p

k

)
≡

N∏
i=1

(
pi

ki

)
.

We also recall theN-dimensional binomial formula

(x+ y)p =
∑

0≤k≤p

(
p

k

)
xp−kyk .

Definition 1. By N-dimensional image function
(or image) we understand any real functionf (x)∈
L1(RN) having a bounded support and nonzero
integral.

Definition 2. Ordinary geometric momentm( f )
p of

order|p| of the imagef (x) is defined by the integral

m( f )
p =

∫
RN

xp f (x) dx. (2)

Definition 3. Central momentµ( f )
p of order|p| of the

image f (x) is defined as

µ( f )
p =

∫
RN

(x− xt)
p f (x) dx, (3)

where

xt = 1

m0...0
(m10...0,m01...0, . . . ,m0...01)

denotes the centroid off (x).

Definition 4. Fourier transform (or spectrum)F(u)
of the imagef (x) is defined as

F(u) =
∫

RN

f (x) · e−2π i u·x dx,

wherei is the imaginary unit.
Note that the Fourier transform as well as the mo-

ments of all orders exist for any image function.

Lemma 1. Let f(x) and h(x) be two image functions
and let g(x) = ( f ∗ h)(x). Then g(x) is also an image
function and we have, for its moments,

m(g)
p =

∑
0≤k≤p

(
p

k

)
m(h)

k m( f )
p−k

and

µ(g)p =
∑

0≤k≤p

(
p

k

)
µ
(h)
k µ

( f )
p−k

for anyp.

Proof: Sinceg(x) has a bounded support and∫
RN

g(x) dx =
∫

RN

f (x) dx ·
∫

RN

h(x) dx,
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g(x) is an image function. Now we prove the first equa-
lity only, the proof of the second one is similar.

m(g)
p =

∫
RN

xpg(x) dx =
∫

RN

xp( f ∗ h)(x) dx

=
∫

RN

xp

(∫
RN

h(y) f (x− y) dy

)
dx

=
∫

RN

h(y)

(∫
RN

xp f (x− y) dx

)
dy

=
∫

RN

h(y)

(∫
RN

(x+ y)p f (x) dx

)
dy

=
∫

RN

h(y)

(∫
RN

∑
0≤k≤p

(
p

k

)
xp−kyk f (x) dx

)
dy

=
∑

0≤k≤p

(
p

k

)
m(h)

k m( f )
p−k 2

Lemma 2. Let h(x) be a centrally symmetric image
function, i.e. h(x) = h(−x). Then

• µ(h)p = m(h)
p for everyp;

• If |p| is odd, thenµ(h)p = 0.

Lemma 3. The relationship between the Fourier
transform of an image and the geometric moments is
expressed by the following equation:

F(u) =
∑
0≤k

(−2π i )|k|

k!
m( f )

k · uk .

The assertions of Lemmas 2 and 3 can be easily proven
just using the definitions of moments and of the Fourier
transform.

III. Invariants in the Spectral Domain

In this Section, the blur invariants in the Fourier spec-
tral domain are investigated. Theorem 1 shows that
the tangent of the Fourier transform phase is a blur
invariant.

Theorem 1. Let f(x) and g(x) be two image func-
tions and let h(x) be a centrosymmetric image function
such that

g(x) = ( f ∗ h)(x).

Then

tan(phG(u)) = tan(phF(u)).

Proof: Due to the well-known convolution theorem,
the corresponding relation to Eq. (1) in the spectral
domain has the form

G(u) = F(u) · H(u), (4)

whereG(u), F(u) andH(u) are the Fourier transforms
of the functionsg(x), f (x) andh(x), respectively. Con-
sidering the amplitude and phase separately, we get

|G(u)| = |F(u)| · |H(u)| (5)

and

phG(u) = phF(u)+ phH(u). (6)

(Note that the last equation is correct only for those
points whereG(u) 6= 0; phG(u) is not defined other-
wise. The sign “+” means here addition modulo 2π .)

Due to the central symmetry ofh(x), its Fourier
transformH(u) is real (that means the phase ofH(u)
is only a two-valued function):

phH(u) ∈ {0;π}.

It follows immediately from the periodicity of the tan-
gent that

tan(phG(u)) = tan(phF(u)+ phH(u))

= tan(phF(u)). (7)

Thus, tan(phG(u)) is invariant under convolution of
the original image with any centrally symmetric PSF.

2

IV. Invariants in the Space Domain

In this Section, blur invariants based on image moments
are introduced.

Theorem 2. Let f(x) be an image function. Let us
define the following function C( f ) :N N

0 → R. If |p| is
even then

C(p)( f ) = 0.
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If |p| is odd then

C(p)( f ) = µ( f )
p −

1

µ
( f )
0

∑
0≤n≤p

0<|n|<|p|

×
(

p

n

)
C(p− n)( f ) ·µ( f )

n . (8)

Then C(p) is invariant to convolution with any cen-
trosymmetric function h(x), i.e.

C(p)( f ) = C(p)( f ∗h)

for anyp. The number r= |p| is called the order of the
invariant.

Proof: The statement of the Theorem is trivial for
any evenr . Let us prove the statement for oddr by
induction.

• r = 1

C(1, 0, . . . ,0)(g) = µ(g)100...0 = 0,

C(1, 0, . . . ,0)( f ) = µ( f )
100···0 = 0,

. . .

regardless off andg, because the central moments
of order one are zero by definition.
• r = 3

The invariants of the 3rd order areC(3, 0, . . . ,0),
C(2, 1, 0, . . . ,0),C(1, 1, 1, 0, . . . ,0) and others
with permuted indices. Evaluating from the recur-
sive definition (8) we get explicitly:

C(3, 0, . . . ,0) = µ30···0,

C(2, 1, 0, . . . ,0) = µ210···0,

C(1, 1, 1, 0, . . . ,0) = µ1110···0,

. . .

Let us show the evaluation forC(2, 1, 0, . . . ,0); the
proofs for the other invariants are similar. Applying
Lemma 1 we get

C(2, 1, 0, . . . ,0)(g)

= µ
(g)
210···0

=
2∑

k1=0

1∑
k2=0

(
2

k1

)(
1

k2

)
µ
(h)
k1k20···0µ

( f )
2−k1,1−k2,0,...,0

= µ( f )
210···0µ

(h)
00···0 = µ( f )

210...0

= C(2, 1, 0, . . . ,0)( f ).

• Let us assume the Theorem valid for all invariants of
orders 1, 3, . . . , r − 2. Using Lemma 1 we get

C(p)(g) = µ(g)p −
1

µ
(g)
0

∑
0≤n≤p

0<|n|<|p|

(
p

n

)

×C(p− n)(g) · µ(g)n

=
∑

0≤k≤p

(
p

k

)
µ
(h)
k µ

( f )
p−k −

1

µ
( f )
0

×
∑

0≤n≤p
0<|n|<|p|

(
p

n

)
C(p− n)( f )

×
∑

0≤k≤n

(
n

k

)
µ
(h)
k µ

( f )
n−k .

Grouping the terms with the vector indexk= 0 to-
gether to produce the termC(p)( f ) we get

C(p)(g) = C(p)( f ) +
∑

0≤k≤p
0<|k|

(
p

k

)
µ
(h)
k µ

( f )
p−k

− 1

µ
( f )
0

∑
0≤n≤p

0<|n|<|p|

∑
0≤k≤n
0<|k|

(
p

n

)(
n

k

)

×C(p− n)( f )µ
(h)
k µ

( f )
n−k

Using the identity of binomial coefficients

(
a

b

)(
b

c

)
=
(

a

c

)(
a− c

b− c

)
,

we get by rearranging the order of the summation

C(p)(g) = C(p)( f ) +
∑

0≤k≤p
0<|k|

(
p

k

)
µ
(h)
k µ

( f )
p−k

− 1

µ
( f )
0

∑
0≤n≤p

0<|n|<|p|

∑
0≤k≤n
0<|k|

(
p

k

)(
p− k

n− k

)

×C(p− n)( f )µ
(h)
k µ

( f )
n−k
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= C(p)( f ) +
∑

0≤k≤p
0<|k|

(
p

k

)
µ
(h)
k µ

( f )
p−k

− 1

µ
( f )
0

∑
0≤k≤p
0<|k|

∑
k≤n≤p
|n|<|p|

(
p

k

)(
p− k

n− k

)

×C(p− n)( f )µ
(h)
k µ

( f )
n−k

= C(p)( f ) +
∑

0≤k≤p
0<|k|

(
p

k

)
µ
(h)
k

×

µ( f )
p−k −

1

µ
( f )
0

∑
k≤n≤p
|n|<|p|

×
(

p− k

n− k

)
C(p− n)( f )µ

( f )
n−k


= C(p)( f ) +

∑
0≤k≤p
0<|k|

(
p

k

)
µ
(h)
k

×

µ( f )
p−k −

1

µ
( f )
0

∑
0≤n≤p− k
|n|<|p−k|

×
(

p− k

n

)
C(p− n− k)( f )µ

( f )
n

,

which we can rewrite as

C(p)(g) = C(p)( f ) +
∑

0≤k≤p
0<|k|

(
p

k

)
µ
(h)
k · Dk (9)

where

Dk = µ( f )
p−k −

1

µ
( f )
0

∑
0≤n≤p−k
|n|<|p−k|

(
p− k

n

)

×C(p− n− k)( f )µ( f )
n .

If |k| is odd then Lemma 2 impliesµ(h)k = 0. If |k|
is even then it follows from the definition (8)

C(p− k) = µp−k − 1

µ0

∑
0≤n≤p− k

0<|n|<|p−k|

(
p− k

n

)

×C(p− k − n) · µn.

Consequently,

Dk = C(p− k)( f ) − 1

µ
( f )
0

C(p− k)( f )µ
( f )
0 = 0.

Thus, (9) impliesC(p)(g) = C(p)( f ) for everyp.

2

Applying the recursive formula (8), we can construct
the invariants of any order and express them in explicit
form. By permutations of indices in formulas listed
below, it is possible to obtain the set of all invariants of
the 3rd and 5th orders:

• 3rd order:

C(3, 0, . . . ,0) = µ30···0,

C(2, 1, 0, . . . ,0) = µ210···0,

C(1, 1, 1, 0, . . . ,0) = µ1110···0.

• 5th order:

C(5, 0, . . . ,0)

= µ50···0− 10µ30···0µ20···0
µ0···0

,

C(4, 1, 0, . . . ,0)

= µ410···0− 2

µ0···0
(3µ210···0µ20···0

+ 2µ30···0µ110···0),

C(3, 2, 0, . . . ,0)

= µ320···0− 1

µ0···0
(3µ120···0µ20···0+µ30···0µ020···0

+ 6µ210···0µ110···0),

C(3, 1, 1, 0, . . . ,0)

= µ3110···0− 1

µ0···0
(µ30···0µ0110···0

+ 3µ210···0µ1010···0
+ 3µ2010···0µ110···0
+ 3µ1110···0µ20···0),
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C(2, 2, 1, 0, . . . ,0)

= µ2210···0− 1

µ0···0
(µ0210···0µ20···0

+ 4µ1110···0µ110···0
+µ2010···0µ020···0
+ 2µ120···0µ1010···0
+ 2µ210···0µ0110···0),

C(1, 1, 1, 1, 1, 0, . . . ,0)

= µ111110···0− 1

µ0···0
(µ001110···0µ110···0

+µ010110···0µ1010···0
+µ011010···0µ10010···0
+µ01110···0µ100010···0
+µ100110···0µ0110···0
+µ101010···0µ01010···0
+µ10110···0µ010010···0
+µ110010···0µ00110···0
+µ11010···0µ001010···0
+µ1110···0µ000110···0).

If we use ordinary geometric moments instead of the
central ones in definition (8), we get another set of blur
invariants (let us denote themM(p)). Unlike C(p)’s,
M(p)’s depend on the shift of the coordinate origin.

V. Relationship Between Fourier Domain
Invariants and Spatial Domain Invariants

In this Section, a close relationship between the Fourier
transform phase and the moment-based blur invariants
is presented.

Theorem 5. Tangent of the Fourier transform phase
of any image f(x) can be expanded into power series
(except at the points in which F(u) = 0 or phF(u) =
±π/2)

tan(phF(u)) =
∑
0≤k

ckuk, (10)

where

ck = (−1)(|k|−1)/2 · (−2π)|k|

k! ·m0
M(k). (11)

Proof: Lemma 3 implies that

ReF(u) =
∑
0≤n
|n|even

(−2π i )|n|

n!
mn · un

=
∑
0≤n
|n|even

(−1)|n|/2(−2π)|n|

n!
mn · un

and

Im F(u) = 1

i

∑
0≤n
|n|odd

(−2π i )|n|

n!
mn · un

=
∑
0≤n
|n|odd

(−1)(|n|−1)/2(−2π)|n|

n!
mn · un.

Thus, tan(phF(u)) is a ratio of two absolutely conver-
gent power series and therefore it can be also expressed
as a power series

tan(phF(u)) = Im F(u)
ReF(u)

=
∑
0≤k

ckuk

where the coefficientsck satisfy∑
0≤n
|n|odd

(−1)(|n|−1)/2(−2π)|n|

n!
mn · un

=
∑
0≤n
|n|even

(−1)|n|/2(−2π)|n|

n!
mn · un ·

∑
0≤k

ckuk . (12)

As follows immediately from (12), if|k| is even then
ck = 0. Let’s prove by induction thatck has the form
(11), if |k| is odd.

• |k| = 1
As follows from (12),

c10···0 = −2πm10···0
m0···0

.

On the other hand, evaluation of the right-hand side
of Eq. (11) fork = (1, 0, . . . ,0) yields

(−2π)(−1)0

1! · 0! · · ·0! ·m0
M(1, 0, . . . ,0) = −2πm10···0

m0···0= c10···0.
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• Let’s suppose the assertion has been proven for allk,
|k| ≤ r , wherer is an odd integer and let|p| = r +2.
It follows from (12) that

(−1)(|p|−1)/2(−2π)|p|

p!
mp

= m0cp +
∑

0≤n≤p
0<|n|

(−1)|n|/2(−2π)|n|

n!
mncp−n.

Introducing (11) into the right-hand side we get

(−1)(|p|−1)/2(−2π)|p|

p!
mp = m0cp

+
∑

0≤n≤p
0<|n|<|p|

(−1)(|p|−1)/2(−2π)|p|

n! · (p− n)! ·m0
M(p− n) ·mn

and, consequently,

cp = (−1)(|p|−1)/2(−2π)|p|

p! ·m0
·

·

mp − 1

m0

∑
0≤n≤p

0<|n|<|p|

(
p

n

)
M(p− n) ·mn

 .
Using theM-analogy of Eq. (8) we finally get

cp = (−1)(|p|−1)/2(−2π)|p|

p! ·m0
M(p). 2

VI. Additional Invariance

In this Section, we propose how to make the blur in-
variantsC(p) invariant also to contrast changes, scaling
and rotation, that is desirable in many applications.

The global change of contrast can be modeled as a
multiplication of the image and a positive constant, i.e.

f ′(x) = α · f (x).

Let us define the normalized blur invariantsCn(p) as

Cn(p) = C(p)
µ0

.

Cn(p) is still invariant to blurring and, moreover, it is
invariant to the change of contrast too. It should be
noted thatCn(p) remains invariant to convolution even
if µ(h)0 6= 1.

The isotropic scaling can be described as the coor-
dinate transform

x′ = s · x,

where the scaling factors is a positive constant. Scaling
invariance can be reached using the normalized central
moments

νp = µp

µ
|p|
N +1

0

in Eq. (8). The invariance to convolution is still
preserved.

Finding rotation invariants is much more compli-
cated task. We present here a solution in two dimen-
sions only.

The rotation around the origin by angleθ can be
described as the coordinate transform

x′1 = x1 cosθ + x2 sinθ,

x′2 = −x1 sinθ + x2 cosθ.

Let us define thecomplex momentγ ( f )
pq as

γ ( f )
pq =

∫ ∞
−∞

∫ ∞
−∞
(x1+ i x2)

p(x1− i x2)
q

× f (x1, x2) dx1 dx2. (13)

Its transformation under rotation is

γ ′pq = e−i (p−q)θ · γpq. (14)

Now we modify the definition of the blur invariants (8)
by substituting the complex moments for the regular
ones. We denote the new functionals asK (p,q). It
was proven in [2] that theK (p,q)’s are invariant to
convolution and that they behave under rotation in the
same way as the complex moments themselves, i.e.

K ′pq = e−i (p−q)θ · K pq. (15)

Thus, any product

n∏
j=1

K (pj ,qj )
kj (16)
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where n≥ 1 and kj , pj , qj ; j = 1, . . . ,n, are non-
negative integers such that

n∑
j=1

kj (pj − qj ) = 0

is invariant both to convolution and rotation.
The blur and rotation invariants in 2D are discussed

comprehensively in our recent paper [2]. Unfortu-
nately, the approach based on the complex moments
cannot be easily generalized forN> 2.

VII. Testing the Numerical Properties

The above presented theory has dealt with a continu-
ous representation of the images. In discrete domain,
the invariance properties might be disturbed due to dis-
cretization and quantization effects and also due to the
round-off errors of the calculations. The aim of the ac-
complished experiment is to investigate the behavior of
the blur invariants under discrete convolution and also
to evaluate their robustness to additive random noise.

We have done numerous experiments in 1D, 2D and
3D using various images and employing the blur in-
variants up to the 7th order. We present here selected
results achieved in 2D, the behavior of the invariants in
all other cases is analogous.

In this experiment, we took a part of Lena image
sized 101×101 pixels with zero border 30 pixels wide
(see Fig. 1(a)). Square masks with constant weights
of different sizes (3× 3, 5× 5, 7× 7, 9× 9, 11× 11,
13× 13 and 15× 15) were employed as the blurring
filters and the original image was convolved with all
of them. Each blurred image was corrupted by zero-
mean Gaussian noise to get various signal to noise ra-
tios (SNR) from 62 dB to 2 dB. On each level of SNR,

Figure 1. Examples of the test images: (a) original image, (b) blurred image, (c) blurred image with additive noise.

twenty realizations of noise were generated and the
mean values of the particular invariants were used for
robustness evaluation. Figure 1(b) and (c) show two
examples of the degraded images.

The invariantsC(2, 1) andC(7, 0) as well as their
relative errors were computed on all 168 test images.
Figure 2 shows how the relative errors of the invariants
depend on the image blur and the SNR. The influence
of the image blur is negligible as can be expected from
theoretical considerations. The maximum relative er-
ror of C(2, 1) caused by the noise is 1.6%, the same
of C(7, 0) is a bit higher but still very low –4%. Such
low errors do not decrease the discriminative power of
the invariants for object recognition purposes. More-
over, in most practical applications we usually assume
SNR higher than 10 dB. Under such circumstances, the
relative errors are below 2%.

The noise impact is more significant in the case of the
invariants of higher orders. This is in accordance with
the well-known fact that the higher-order moments are
more vulnerable to noise.

VIII. Application to Satellite Image Registration

In this Section, we present an application of 2D blur-
rotation invariants (16) to the registration of satellite
images.

Image registration in general is the process of over-
laying two or more images of the same scene ac-
quired from different viewpoints, by different sen-
sors and/or at different times so that the pixels of the
same coordinates in the images correspond to the same
part of the scene. Image registration is required as a
pre-processing stage in analysis of remotely sensed
data, medical image analysis, image fusion, in auto-
matic change detection and scene monitoring, among
others.
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Figure 2. The relative errors of the invariantsC(2, 1) andC(7, 0) of blurred and noisy images. The size of the blurring filters is from 1× 1
(no blur) to 15× 15, the SNR is from 2 dB to 62 dB.

Regardless of the image data involved and of the par-
ticular application, image registration usually consists
of the four major steps.

First, control points (CPs) are detected both in ref-
erence and sensed images. Edge intersections, objects
centroids or significant contour points can be consid-
ered for this purpose. The correspondence between the
CP sets in the reference and sensed images is then estab-
lished. Matching methods are based on the image con-
tent (cross-correlation, mutual information) or on sym-
bolic description of the CP sets (parameter clustering,
graph matching, relaxation). Matching is usually the
most difficult part of the registration. After the CP sets
have been matched, the type and parameters of spatial
transform between the reference and sensed images are
estimated. The mapping function can be global or local,
depending on the type of the image distortions. Finally,
the sensed image is resampled, transformed and over-
layed over the reference one.

The invariants enter the process of image registration
in the second step, CP matching. They are calculated
over a circular neighborhood of each CP candidate de-
tected earlier. After that, the correspondence is estab-
lished by minimum distance rule with thresholding in
the Euclidean space of the invariants. Herein described
application uses the blur-rotation invariants for regis-
tration of satellite images, that are rotated and shifted
one another and differently blurred. In practice, the
blurring function is often an unknown composite func-
tion describing the degradation effects of the sensor
and the atmosphere.

The experiment was performed on real satellite data
with simulated blurring and rotation. The reference im-
age of the size 400× 400 pixels was extracted from the
SPOT subscene, band 2, Czech Republic (see Fig. 3).
The sensed image of the size 325× 325 pixels was
extracted from the different SPOT subscene, band 2,
from the same flight covering approximately the same
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Figure 3. Reference image—SPOT subscene of the size 400× 400 pixels—with the detected control point candidates. Numbered CPCs have
their counterparts in the sensed image.

ground. It was then rotated by 15 degrees and the non-
ideal acquisition was simulated by blurring with the
7× 7 averaging mask (see Fig. 4).

To find CP candidates (CPCs) in the both frames,
a method developed particularly for detection of
corner-like dominant points in blurred images [11]
was employed. Thirty CPCs selected in the reference
and sensed images are depicted in Figs. 3 and 4,
respectively.

The CPC matching is realized by the following
algorithm.

Algorithm Match:

Input: Two sets of CPCs from the sensed and refer-
ence images. These sets may contain also some points
having no counterparts in the other set.

1. Invariant vector computation.A vector of invari-
ants is computed for each CPC over its circular
neighborhood of the radius 60 pixels. The vector

consists of the following nine blur-rotation in-
variants of the type (16):K (2, 1)K (1, 2), K (3, 0)
K (1, 2)3, K (5, 0)K (1, 2)5, K (4, 1)K (1, 2)3, K (3,
2)K (1, 2), K (7, 0)K (1, 2)7, K (6, 1)K (1, 2)5,
K (5, 2)K (1, 2)3 andK (4, 3)K (1, 2).

2. CPC matching.Two CPC pairs with the minimum
distance of their invariant vectors are found as the
most-likely corresponding CPCs. CPCs from the
sensed image are transformed using a rigid-body
transform the coefficients of which are calculated
by means of the two above mentioned CPC pairs.
Correspondence between transformed CPCs from
the sensed image and CPCs in the reference image
is found via the thresholded nearest neighbor rule in
the spatial domain (Figs. 3 and 4). Knowing the cor-
respondence the set of matched control point (CP)
pairs is established.

3. Improvement of the CP localization in the sensed im-
age.For each CP in the sensed image, its improved
position is found in its local neighborhood. For ev-
ery point from the neighborhood its invariant vector
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Figure 4. Sensed image—different SPOT subscene of the size 325× 325 pixels, taken during the same flight and covering approximately the
same ground—with the control point candidates. The image was rotated by 15 degrees, the nonideal acquisition was simulated by blurring with
the 7× 7 uniform square mask. Numbered CPCs have their counterparts in the reference image.

is computed according to Step 1. The point with the
minimum distance between its invariant vector and
the invariant vector of the CP counterpart is found
and set as the improved position of the CP.

The sensed image is transformed using the rigid-
body mapping function whose coefficients were
calculated via least-square technique by means of the
matched CPs. Inter-pixel gray values are estimated
via bilinear interpolation. The co-registered images are
shown in Fig. 5. Intensity values in the overlapped area
are calculated as the mean of the corresponding inten-
sity values of the reference and sensed images.

IX. Conclusion

The paper is devoted to the image features which are
invariant to convolution with a centrally symmetric fil-
ter. The invariants in the spectral domain as well as
in the spatial domain are derived and the relationship
between them is investigated.

The assumption of centrosymmetry is not a signifi-
cant limitation for practical utilisation of the method.
Most real sensors and imaging systems, both optical

and non-optical ones, have the PSF with certain degree
of symmetry. In many cases, they have even higher
symmetries, such as axial or radial symmetry. Thus,
the central symmetry is general enough to describe al-
most all practical situations.

Practical applications of the proposed invariants may
be found in object recognition in blurred environment,
in template matching, feature-based image registration
and in related tasks. IfN= 2, the blur invariants can
be employed in template matching on satellite images.
Satellite images are often blurred according to (1) due
to the composite sensor PSF and atmospheric turbu-
lence [8]. Astronomical images are also degraded by a
low-pass filtering due to nonideal observational condi-
tions [3]. Another possible application is in the area of
video surveillance and person authentification where
face recognition from defocused photographs is often
required.

If N= 3 or N= 4, the proposed method can be
applied to registration of volumetric medical images
degraded by blurring. Although numerous registration
algorithms have been described in the recent years
[7], no one has been designed particularly for blurred
data.
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Figure 5. The registered images. Intensity values in the overlapped area are calculated as the mean of the corresponding intensity values of the
reference and sensed images.

Application of this method in practice would require
the invariants to be at least rotationally independent.
Unfortunatelly, this is not straightforward. Recently
we have proposed a solution in 2-D that is based on
complex moments [2]. General blur-rotation invariants
in dimensions higher than two are, however, still under
investigation.

From the practical point of view, a very impor-
tant issue is robustness of the invariants to random
noise, discretization errors and other factors. Usually
the higher degree of invariance, the less stable they
are. A common approach to increasing robustness is to
use certain proper functions of the invariants that may
be not strictly invariant but are more stable [1]. The

experiments presented in Section VII show it is not
necessary here in the case of additive random noise—
the robustness of our blur invariants is sufficient. This
is mainly due to the fact that the moments are calcu-
lated by integration over the image area and therefore
the zero-mean noise is averaged out.

In practice we often use the invariants of a part of
the image only. In such a case the gray values along the
boundary are influenced by the pixels from the outside
and convolution is not well defined within the region
of interest. The robustness to this so-called “bound-
ary effect” depends on the size of the region of inter-
est and on the size of the PSF support. The robust-
ness can be very low when both sizes are comparable,
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which prevents from using the blur invariants in such
cases.
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11. B. Zitová, J. Kautsk´y, G. Peters, and J. Flusser, “Robust detection
of significant points in multiframe images,”Pattern Recognition
Letters, Vol. 20, pp. 199–206, 1999.

Jan Flusserwas born in Prague, Czech Republic, on April 30, 1962.
He received the M.Sc. degree in mathematical engineering from the

Czech Technical University, Prague, Czech Republic in 1985 and the
Ph.D. degree in computer science from the Czechoslovak Academy
of Sciences in 1990. Since 1985 he has been with the Institute of
Information Theory and Automation, Academy of Sciences of the
Czech Republic, Prague. Since 1995 he has been holding the posi-
tion of a head of Department of Image Processing. Since 1991 he
has been also affiliated with the Faculty of Mathematics and Physics,
Charles University, Prague, where he gives the courses on Digital Im-
age Processing. His current research interests include digital image
processing, pattern recognition and remote sensing. He has authored
and coauthored more than 40 scientific publications in these areas.
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