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Abstract

We present a new measure of image focus. It is based on wavelet transform of the image and is defined as a ratio of

high-pass band and low-pass band norms. We show this measure is monotonic with respect to the degree of defocu-

sation and sufficiently robust. We experimentally illustrate its performance on simulated as well as real data and

compare it with existing focus measures (gray-level variance and energy of Laplacian). Finally, an application of the

new measure in astronomical imaging is shown.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of selecting the best-focused image
from a sequence of differently defocused/blurred
images of the same scene often arises in many
application areas. In computer vision, autofocus-
ing algorithms evaluate the degree of defocus of
the images taken with various settings of camera
parameters. The image with minimum value of
defocusation measure defines the parameters for
camera autofocusation. This approach is applied

in industrial visual inspection and in digital mi-
croscopy, among others. In remote sensing and
in astronomy we face similar tasks. However, the
image blurring is caused by atmospheric turbu-
lence rather than by camera defocus. The goal is
to select ‘‘good’’ images for visual interpretation or
further computer analysis. Having a reliable and
robust focus measure (or inversely, blur measure)
is a key point to resolve these problems.

To be as general as possible, we do not restrict
ourselves to any particular model of blurring.
However, we assume the relationship between the
original scene f ðx; yÞ and the acquired set of im-
ages g1ðx; yÞ; . . . ; gnðx; yÞ can be expressed by con-
volution

giðx; yÞ ¼ ðf � hiÞðx; yÞ; i ¼ 1; . . . ; n ð1Þ
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where hiðx; yÞ is the point-spread function (PSF) of
the blur in the ith observation. In the best possible
case (not occurring in practice), hiðx; yÞ ¼ dðx; yÞ
and we get ideal image giðx; yÞ ¼ f ðx; yÞ. In prac-
tice all the hiðx; yÞ have a character of an unknown
low-pass filter.

By the term ‘‘focus measure’’ or ‘‘blur measure’’
we understand any functional defined on the space
of image functions which reflects the amount of
blurring introduced by hiðx; yÞ. Thus, having focus/
blur measure M, we look for the ‘‘best’’ image
gi0ðx; yÞ by maximizing/minimizing MðgiÞ over i ¼
1; . . . ; n. Furthermore, we may also want to order
the images according to their quality, which is
equivalent to ordering the sequence fMðgiÞg, i ¼
1; . . . ; n.

Any reasonable focus measure should satisfy
some basic requirements. First, it should be con-
tent-independent, which means it must not be
based on any particular structures in the image
(e.g., on isolated bright points). Secondly, it should
be monotonic with respect to blur. The more
blurred the image, the less the focus measure
should be. Finally, the measure should be robust
to noise.

Our motivation for this work came from the
area of astronomical imaging, particularly from
the processing of images of solar atmosphere. In
the ground-based observations, the short-exposure
images from the telescope are corrupted by ‘‘see-
ing’’. This degradation leads to image blurring
according to Eq. (1), where the actual PSF is a
composition of the intrinsic PSF of the telescope
(which is constant over the observation period)
and of a random component describing the per-
turbations of the wavefronts in the earth’s atmo-
sphere. Different parts of the solar atmosphere are
observed in different spectral bands. The lower
part called photosphere is usually observed in vis-
ible light of k ¼ 590 nm while the medium part
called chromosphere is best to observe in Ha (k ¼
656:3 nm) wavelength. In visible light the effects
of fluctuations in the refractive index of the air
caused by temperature variations are more signif-
icant than in Ha. Since the atmospheric conditions
may change very quickly, the acquired image se-
quence usually contains images of different quality
from sharp to heavy blurred ones. Such sequence,

which is a result of one observation session, typi-
cally consists of several hundreds of images. Au-
tomatic selection of a few ‘‘good’’ images which
can be used for further investigation of astronom-
ical phenomena is a real challenge.

In this paper, we propose a new focus measure
defined by means of wavelet transform of the
image. In Section 2, we briefly review existing
focus measures. The new focus measure is intro-
duced in Section 3 and its robustness is analysed in
Section 4. In Section 5, its performance on simu-
lated as well as real data is shown.

2. Existing focus measures

Several focus measures have been reported in
the literature (Krotkov, 1987; Nayar and Nakag-
awa, 1994; Subbarao et al., 1993; Subbarao and
Choi, 1995; Subbarao and Tyan, 1998; Zhang and
Wen, 2000). Most of them are based on the idea
to emphasize high frequencies of the image and
measure their quantity. It corresponds with our
intuitive expectation that the blurring suppresses
high frequencies regardless of the particular PSF.

One of the simplest focus measures is variance
of image gray levels (Subbarao et al., 1993, 1998)

M1 ¼
Z Z

ðgiðx; yÞ � miÞ2dxdy;

where mi denotes the mean gray level value of
giðx; yÞ. This measure was proved to be monotonic
(Subbarao et al., 1993) and, for zero-mean images,
equivalent to the image energy in Fourier domainZ Z

jGiðu; vÞj2dudv:

Several focus measures are defined by means of
image derivatives. L1 norm of image gradient

M2 ¼
Z Z

ogiðx; yÞ
ox

���� ����þ ogiðx; yÞ
oy

���� ����dxdy;
L2 norm of image gradient (sometimes called gra-
dient energy)

M3 ¼
Z Z

ogiðx; yÞ
ox

� �2

þ ogiðx; yÞ
oy

� �2

dxdy;
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L1 norm of second derivatives

M4 ¼
Z Z

o2giðx; yÞ
ox2

���� ����þ o2giðx; yÞ
oy2

���� ����dxdy
and energy of image Laplacian

M5 ¼
Z Z

o2giðx; yÞ
ox2

�
þ o2giðx; yÞ

oy2

�2

dxdy;

belong to the most popular ones. Subbarao et al.
(1993) proved the monotonicity of M3 and M5

and showed they can be equivalently evaluated
in Fourier domain as the energy of high-pass
filtered image, where the magnitudes of the cor-
responding filters are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 þ v2Þ

p
and ðu2 þ v2Þ,

respectively. M2 and M4 are nonlinear measures,
thus they cannot be expressed in Fourier domain.
Nevertheless, they have been used successfully in
the literature. Krotkov (1987) described a modifi-
cation of M2 in such a way that only points where
the norm of image gradient exceeds a pre-defined
threshold are used in the integrand. Nayar and
Nakagawa (1994) did the same but used M4 in-
stead of M2.

Subbarao and Tyan (1998) analysed the ro-
bustness of M1, M3 and M5. He concluded his ex-
periments by recommendation to use the energy of
image Laplacian because of its tolerance to addi-
tive noise. However, the differences among indi-
vidual measures were not significant.

The only existing focus measure which is be-
yond the framework of high-pass filters was
proposed by Zhang and Wen (2000). Their focus
measure is based on image moments and employs
the theoretical results achieved by Flusser and Suk
(1998). Flusser and Suk proved that odd-order
moments exhibit certain blur-invariant proper-
ties while even-order moments change under blur.
Using their results, Zhang and Wen (2000) pro-
posed to take second and fourth order moments
as a focus measure and proved the monotonicity
of this measure. However, moment-based focus
measure is very sensitive to boundary effect and
therefore it performs well only on images with zero
background.

3. Wavelet-based focus measure

The new focus measure is based on discrete
wavelet transform (DWT). It decreases with blur-
ring, i.e., the more focused the image the larger is
the measure.

Given an image f of the size Nr 
 Nc pixels, a
DWT using decomposition to depth d with a
wavelet w of multiplicity (dilation factor) m pro-
duces a low-pass band lwðf Þ of size ðNr=dmÞ 

ðNc=dmÞ and several high-pass bands which we
denote collectively by hwðf Þ; the total number of
coefficients in these bands is NrNcð1� 1=ðd2m2ÞÞ.
We propose an absolute wavelet-based measure

W ¼ khwðf Þk
klwðf Þk

;

where k � k denotes the discrete Euclidean norm,
and its relative modification

eWW ¼ Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2m2 � 1

p :

The measure eWW reflects average square values
per pixel in the high-pass and low-pass bands. It is
useful when comparing the performance of two
DWT’s with different values of dm.

We will consider only orthogonal DWT which
preserves the image energy (i.e. kf k2 ¼ khwðf Þk2 þ
klwðf Þk2) so that we have

W 2 ¼ khwðf Þk2

kf k2 � khwðf Þk2
;

which increases monotonously with khwðf Þk. High-
pass bands of DWT are m-decimated convolu-
tions of the image with high-pass filters for which
we have monotonicity with respect to blurring (or
defocusing) by the same argument as given in
Subbarao et al. (1993).

It is easy to understand intuitively why the
DWT should have this property. The short filters
in DWT identify local areas of smoothness in the
image by expressing them almost exactly in the
low-pass band. The high-pass bands contain large
coefficients only where the image is not smooth;
so smoothing will decrease energy in these bands.
Longer filters, based on higher approximation
order wavelets, would do this better but the extend
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of the local area of smoothness must be appro-
priately larger. 1

The form of W makes it invariant to the scaling
(or choice of units) of the image. That is not the
only advantage. Because of the norm preservation,
blurring (or defocusing) the image decreases the
energy in the high-pass bands and simultaneously
increases the energy in the low-pass band; this in-
creases the discrimination power of the measure (if
f and g are two images of the same scene which
differ only slightly in focus, then W ðf Þ � W ðgÞ is
still noticeable which may not be true in case of
other focus measures).

4. Robustness of the wavelet-based measure

In this section we present a deterministic ro-
bustness analysis of our wavelet-based focus mea-
sure W. Following the idea of stability margin,
which is well-known from control theory, we de-
fine an analogous concept.

Let M be a focus measure and g1 and g2 be two
images such that Mðg1Þ < Mðg2Þ. By margin of ro-
bustness .Mðg1; g2Þ for this measure and given
images we understand the maximal relative error
such that for any two images ~gg1 and ~gg2 ‘‘close’’ to
g1 and g2, respectively,

k~ggi � gik
kgik

< .; i ¼ 1; 2;

there is Mð~gg1Þ < Mð~gg2Þ.
If g1 and g2 are differently focused versions of

the same original image then we can relate the
margin of robustness directly to the levels of blur-
ring (and the original image, of course).

If the DWT of the difference between the close
images has the same mean-square value in its low-
pass and high-pass bands, i.e. if

khwð~ggi � giÞk � ðm2d2 � 1Þklwð~ggi � giÞk; i ¼ 1; 2;

holds (true, e.g., for a ‘‘typical’’ realization of white
noise) then we have a simple estimate

.W � 1

C
ðW ðg2Þ � W ðg1ÞÞ;

where

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

m2d2

r 
þ W ðg1Þ

md

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ W 2ðg2Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

m2d2

r 
þ W ðg2Þ

md

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ W 2ðg1Þ

p
� 2:

The estimate follows from triangular inequalities
for the norms

khwðgiÞk � khwð~ggi � giÞk
klwðgiÞk þ klwð~ggi � giÞk

6
khwð~ggiÞk
klwð~ggiÞk

6
khwðgiÞk þ khwð~ggi � giÞk
klwðgiÞk � klwð~ggi � giÞk

by some straightforward algebra. This is a con-
servative estimate in the sense that if

max
k~gg1 � g1k

kg1k
;
k~gg2 � g2k

kg2k

 !
<

1

C
ðW ðg2Þ � W ðg1ÞÞ

then W ð~gg1Þ < W ð~gg2Þ is guaranteed. The true value
of .W may be even larger for the type of changes
we assume but it would be difficult to establish.

Although the exact value of the factor 1=C in
our estimate depends on the measures of the images
and on the type of DWT, approximating it by 1=2
is quite reasonable for practical purposes. Gener-
ally, W ðgiÞ � 1, particularly for images without
many sharp edges, so C ! 2 asW ðgiÞ become small
and md large. On the other hand, C ¼ 2 exactly
also for a variety of non-limiting cases, e.g., for
W ðgiÞ ¼

ffiffiffi
2

p
� 1 and md ¼ 2.

Regardless of the exact value of C, we may
conclude that the measure W is as robust as we
may expect. The information about the relative
blurring of the images g1 and g2 is preserved if the

1 Although one can, for a given wavelet, construct an

artificial example with W ¼ 0 on which blurring would increase

the measure, on real images the properties of DWT are very

close to the undecimated transform for which we have monoto-

nicity. Even with the mentioned anomaly, let us comment, that

shifting such artificial image by j ¼ 1; . . . ; m� 1 pixels and

taking an average of the obtained norms would restore the

desired monotonicity of the measure (recall that DWT is only

m-shift invariant). To use such a theoretically guaranteed to be

monotonous measure would not justify an extra cost (m2 times

increase) to evaluate it.
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magnitude of the change in the images is compa-
rable or less than W ðg2Þ � W ðg1Þ.

5. Numerical experiments

5.1. Artificial data

First, we tested the new focus measure on arti-
ficial data where the level of blurring as well as
the amount of additive noise can be fully con-
trolled. We used the well-known Lena image and
we blurred it gradually by the convolution with
square averaging masks of sizes 3
 3, 5
 5, 7
 7
and 9
 9. Moreover, each of the images was
corrupted by Gaussian white noise with standard
deviations (STD) 5, 15, 30, and 45, respectively. In
this way we got 25 test images (four of them can be
seen in Fig. 1) that were examined by the following
focus measures: gray-level variance M1, energy of

Laplacian M5, and the proposed measure W. M1

and M5 were chosen because M1 is the simplest and
most cited measure andM5 was the best measure in
the comparative study (Subbarao and Tyan, 1998).
To compare the influence of various wavelets and
decomposition depth, we evaluated measure W
using Daubechies wavelets with 2, 4, 6, and 10 taps
(the number of taps denotes the number of coef-
ficients in the wavelet filter, e.g., Haar wavelet has
2 taps) and the left-tree decomposition scheme of
depth 1 and 2 (see Daubechies, 1992 for detailed
description of these wavelets). The major results of
this experiment can be summarized as follows.

• All investigated measures were proved to be
monotonic in the noise-free case; we consider
a measure robust if this property prevails in
the presence of noise.

• Gray-level variance M1 is robust to noise but
has limited discrimination power.

Fig. 1. Four examples of our test images: Lena blurred by 3
 3 averaging mask with slight additive noise of STD ¼ 5 (top left), the

same with heavy noise ðSTD ¼ 30Þ (top right), blurring by 9
 9 mask with slight noise (bottom left), both heavy blurring and noise

(bottom right).
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• Energy of Laplacian M5 performs well in a
noise-free case but it is very sensitive even to
small noise. This is understandable as the sec-
ond-order derivatives cannot distinguish be-
tween sharpness of the image and noise.

• Wavelet-based measure W exhibits both good
robustness (as can be expected from the theoret-
ical consideration in Section 4) and discrimi-
nability. Robustness increases with the depth
of the wavelet decomposition. In our experi-
ments, depth 2 yielded sufficient robustness even
if heavy noise was present. It follows from the
fact that the high-pass bands of level 1 do not
change when going deeper to depth 2 (tradi-
tional left-tree decomposition scheme was ap-
plied in all cases) while the low-pass band is
further smoothed and decomposed, which leads
to noise suppression. It should be noted that the
decomposition from level 1 to level 2 requires
only 25% of extra cost.

• Wavelets with more taps are appropriate for
images without sharp edges and many de-
tails, shorter wavelets perform better on images
with prominent high-frequency information. This
is because longer wavelets, i.e. with higher ap-
proximation order, result in noise-like high-pass
bands when applied to images with many edges,
which thus diminishes their focus discrimination
power. On the other hand, shorter filters are able
to capture more details and can, consequently,
register their fading due to image blurring.
Based on the experiments we carried out, we rec-
ommend 6-taps wavelets as a good compromise
for common images.

Representative results are visualized in detail in
Figs. 2–4. In each graph, one can see the behav-
ior of the particular focus measure under vari-
ous image blurring and noise. An ‘‘ideal’’ focus
measure should decrease with an increasing blur-
ring and this property should not be affected by
noise. (However, the monotonicity requirement
cannot be fulfilled for extremely heavy noise. In
that case, the high-frequency information intro-
duced by noise beats that of the image itself and
W becomes ‘‘noise measure’’ rather than ‘‘focus
measure’’. The same is true for the other focus
measures.) The higher the difference between the

consecutive values, the better discrimination power
of the measure. Thus, for such blurring and noise
level when the graph becomes constant or even
increasing, the focus measure is useless. Consider-
ing these criteria we can clearly see that W of the
10-taps wavelet and decomposition depth 2 (Fig. 4)
is the best measure among those three shown here.
On the other hand, the same measure calculated on
the decomposition depth 1 yields poor results (Fig.
3). The performance of the energy of Laplacian M5

(Fig. 2) is in between them.

Fig. 2. Energy of Laplacian M5 calculated on Lena image for

various amount of blurring and noise.

Fig. 3. Focus measure W calculated on Lena image for various

amount of blurring and noise. Daubechies wavelet of 10 taps

and the decomposition depth 1 was used.
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5.2. Indoor scene

In this experiment, a static indoor scene was
captured four times by digital camera Nikon
Coolpix 950 (see Fig. 5). The first image was taken

Fig. 4. Focus measure W calculated on Lena image for various

amount of blurring and noise. Daubechies wavelet of 10 taps

and the decomposition depth 2 was used.

Table 1

Various focus measures calculated for the indoor images de-

picted in Fig. 5. Proportional values are used, 1 stands for the

best focused image in the sequence

Image Focused Slight

defocus

Medium

defocus

Heavy

defocus

M1 1 0.92 0.88 0.82

M5 1 0.22 0.17 0.14

W (4-taps depth 1) 1 0.34 0.30 0.28

W (4-taps depth 2) 1 0.48 0.39 0.32

W (10-taps depth 2) 1 0.41 0.32 0.29

Fig. 5. Indoor scene: Focused image (top left), slight out-of-focus (top right), medium out-of-focus (bottom left), heavy out-of-focus

(bottom right).
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Fig. 6. Six consecutive sunspot images corrupted by variable blurring caused by atmospheric turbulence.
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using camera autofocus, the others were manually
defocused in such a way that the degree of out-
of-focus was changing gradually from slight to
heavy. Thus, we know exactly the ordering of the
images with respect to the defocus level.

For each image we calculated focus measures
M1 (gray-level variance), M5 (energy of image La-
placian) and our measure W using three different
Daubechies wavelets: 4-taps depth 1, 4-taps depth
2, and 10-taps depth 2. The results are summa-
rized in Table 1. For better insight we present
proportional rather than absolute values of the
focus measures (the measure of the focused image
is taken as 1). This form of presentation allows
better to observe the discrimination power of each
measure.

One can see from the monotonicity of the rows
of Table 1 that each measure ordered the images
correctly. There are, however, some differences in
the discrimination power. All three wavelets pro-
vide very good discrimination because the most
defocused image has low-proportional measures ––
28%, 32%, and 29%, respectively. The same is true
for Laplacian that discriminates even better in this
case. On the other hand, the most defocused image
measured by gray-level variance yields 82%, which
does not provide enough space to distinguish
among the test images reliably.

5.3. Solar images

In this experiment, we illustrate the perfor-
mance of the new focus measure when solving a
real task in astronomical imaging. In Fig. 6,

one can see six images of the spot in the solar
photosphere taken by a telescope with a CCD
camera in visible spectral band (venue: Observa-
tory Ond�rrejov, Czech Republic; wavelength: k ¼
590 nm). Since the time interval between each
two consecutive acquisitions in this sequence was
very short (few seconds), the scene can be con-
sidered still. Nevertheless, atmospheric conditions
were changing during the acquisition period.
Thus, some of the images are blurred considerably
due to the atmospheric turbulence. The task is to
order the images according to their suitability for
visual interpretation, in this case inversely to the
level of blurring. (It should be noted that additive
noise also affects the visual perception of the
images. Fortunately, its impact is not significant
here. Thanks to high quality of the imaging
device, the signal-noise-ratio is higher than 50
dB.)

To order the acquired sequence we applied the
same five focus measures as in the indoor experi-
ment. Moreover, an expert in astronomical imag-
ing was asked to order these images visually. His
opinion can be considered as the ‘‘ground truth’’.
As can be seen from Table 2 (as in the indoor
experiment, the proportional measure values are
used instead of the absolute ones), the wavelet-
based measures ordered the images correctly while
the depth 2 decomposition provided a better dis-
crimination than the decomposition to the depth
1. Gray-level variance gave good results too but
at low discrimination (the proportional measure
of the most defocused image was 86%). The en-
ergy of Laplacian failed and two images were
misordered. The reason of this failure is the poor

Table 2

Various focus measures calculated for the sunspot images in Fig. 6. Proportional values are used, 1 stands for the best image in the

sequence

Image Top left Top right Middle left Middle right Bottom left Bottom right

Human 1st 5th 6th 3rd 2nd 4th

M1 1 0.906 0.864 0.942 0.964 0.909

M5 1 0.970 0.967 0.987 0.991 0.969

W (4-taps depth 1) 1 0.921 0.905 0.937 0.948 0.923

W (4-taps depth 2) 1 0.702 0.619 0.764 0.812 0.718

W (10-taps depth 2) 1 0.807 0.767 0.845 0.870 0.821
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discrimination power of this measure on the given
image set. Even slight noise or other disturbances
can cause wrong ordering.

6. Conclusion

In this paper, we proposed a new measure of the
image focus. It is based on the wavelet transform
of the image and is defined as a ratio of high-pass
band and low-pass band norms. We showed
that this measure fulfils the basic requirements
usually imposed on a focus measure: it is mono-
tonic with respect to the degree of defocusation
and sufficiently robust. We experimentally illus-
trated its good performance on simulated as well
as on real data and compared it with existing focus
measures (gray-level variance and the energy of
the Laplacian). We also discussed the influence of
using various wavelets and decomposition depths.
Since our primary motivation came from the area
of astronomical imaging, we tested this measure
on real example of a sequence of sunspot images,
which were differently blurred by atmospheric
turbulence. The ordering of this sequence achieved
by means of the new focus measure corresponded
to the ordering provided by a human expert, which
is a satisfactory result.
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