
Moment Forms Invariant to Rotation and Blur
in Arbitrary Number of Dimensions

Jan Flusser, Member, IEEE, Ji�rrı́ Boldy�ss, and Barbara Zitová, Member, IEEE

Abstract—We present the construction of combined blur and rotation moment invariants in arbitrary number of dimensions. Moment

invariants to convolution with an arbitrary centrosymmetric filter are derived first, and then their rotationally invariant forms are found by

means of group representation theory to achieve the desired combined invariance. Several examples of the invariants are calculated

explicitly to illustrate the proposed procedure. Their invariance, robustness, and capability of using in template matching and in image

registration are demonstrated on 3D MRI data and 2D indoor images.
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1 INTRODUCTION

1.1 Problem Formulation

RECOGNITION of objects and patterns, regardless of their
particular position, orientation, viewing angle, and of

the degradations introduced by the imaging system is a
very important task in computer vision, medical imaging,
remote sensing, and in many other application areas.
Finding a set of invariant descriptors is a key step to
resolve this problem.

In many applications, there is a demand to recognize
3D objects directly rather than from their 2D projections. Since
modern technologies like computer tomography, magnetic
resonance imaging (MRI), and active range finders provide
3D (or even N-D) data, the derivation of the invariants in
higher dimensions than two has become very important.

Invariants to imaging geometry have attracted the
researchers’ attention for many years. On the other hand,
much less attention has been paid to invariants with respect to
changes of the image intensity function (we call them
radiometric invariants) and to combined radiometric-geo-
metric invariants. An important class of radiometric degra-
dations we are faced with, often in practice, is image blurring.
Blurring can be caused by such factors like wrong focus of the
camera, atmospheric turbulence, vibrations, and by sensor
and/or scene motion to name a few. If the scene is flat,
blurring can usually be described by a convolution g ¼ f � h,
where f is an original (ideal) image, g is an acquired image,
and h is a point spread function (PSF) of the imaging system.
Since in most practical tasks the PSF is unknown, having the
invariants to convolution is of prime importance when
recognizing objects in a blurred scene.

The aim of this paper is to propose a new class of
invariants that are invariant to N-D object translation,

rotation, and simultaneously, to convolution of the image
function with an unknown centrosymmetric PSF (which
can, for instance, describe the image blurring). This problem
cannot be resolved just by a straightforward generalization
or combination of previously published results because the
rigid-body transform in N-D is much more complex in
nature than that in 2D and, on the other hand, 3D geometric
invariants published earlier cannot be easily extended to
ensure convolution invariance.

1.2 Literature Survey

Numerous papers have been devoted to the invariants to
rigid-body and affine transforms of spatial coordinates in
2D (see [1], [2] for a survey and other references). Among
them, the methods based on image moments [3], [4], [5], [6],
[7], [8], [9] play a significant role. In comparison with a large
number of papers on 2D invariants, only few papers on 3D
and/or N-D invariants have been published. The first
attempt to extend 2D moment invariants to 3D was done by
Sadjadi and Hall [10]. Probably, the first systematic
approach to derivation of 3D moment invariants to rotation
was published by Lo and Don [11]. It was based on group
representation theory. Their results were later rediscovered
(with some modifications) by Guo [12] and Galvez and
Canton [13]. Guo’s paper derived only three invariants
without any possibility of their further extension. There
have been several papers trying to generalize 3D rotational
moment invariants either in the sense of the transformation
group and/or in the sense of dimension. Reiss [14] used
tensor algebra to derive 3D moment invariants to affine
transform. He showed the invariants published in [10], [11]
are just special cases of his descriptors. Another approach to
deriving 3D affine invariants can be found in [15].

Markandey and deFigueiredo [16] tried to extend moment
invariants to dimensions greater than three. They used the
fundamental theorem from the classical paper [3]. As it was
pointed out by Mamistvalov [17] and later by Reiss [18], this
theorem contained some errors. However, these errors were
incorporated also into [16]. Finally, Mamistvalov [19] pub-
lished the correct version of the fundamental theorem of
moment invariants in arbitrary dimensions and showed how
to use it to deriveN-D affine moment invariants (it should be
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pointed out that a shorter version of this paper was published
by the same author in a local journal 24 years earlier [20]).

Only few papers have been devoted to invariants with
respect to changes of the image intensity function and to
combined radiometric-geometric invariants. Most of them act
in 2D only. Van Gool et al. introduced so-called affine-
photometric invariantsofgray level [21]andcolor[22] images.
These features are invariant to the affine transform and to the
linear change of contrast and brightness of the image
simultaneously. Invariants to a rigid-body transform and
contrast stretching based on normalized complex moments
were proposed in [23]. Another set of combined rotation-
photometric invariants that employ Zernike moments was
described in [24].

A pioneer work on blur invariants was done by Flusser
and Suk [25] who derived moment-based invariants to
convolution with an arbitrary centrosymmetric PSF. From
the geometric point of view, their descriptors were invariant
to translation only. Despite this, these descriptors have
found successful applications in face recognition on
defocused photographs [26], in normalizing blurred images
into the canonical forms [27], [28], in template-to-scene
matching of satellite images [25], in blurred digit recogni-
tion [29], and in focus/defocus quantitative measurement
[30]. A significant improvement motivated by a problem of
registration of blurred images was made by Flusser and
Zitová. They introduced 2D combined blur-rotation invar-
iants [31] and reported their successful usage in satellite
image registration [32]. However, all of the blur and
combined invariants mentioned above are defined in 2D
only. The first set of N-D blur invariants was introduced by
Flusser et al. [33], but these features were just shift
invariant. Thus, their practical utilization was substantially
limited. Because of more complicated nature of rotation in
higher dimensions, the method used for derivation of
2D invariants [31] cannot be generalized.

1.3 Paper Organization

In this paper, we propose a new class of combined blur-
rotation moment invariants defined in arbitrary dimen-
sions. The derivation of these invariants is based on group
representation theory. In Section 2, basic definitions are
given. Invariants to convolution of an N-D image with a
centrosymmetric PSF are introduced in Section 3. In
Section 4, we briefly recall the basic terms of the group
representation theory. This theory is employed in Section 5
to derive the combined invariants to rotation and convolu-
tion. Section 6 demonstrates numerical properties of the
invariants and their practical utilization in 3D and 2D cases.

2 BASIC DEFINITIONS AND NOTATION

In this section, we introduce some basic definitions which
will be used later in the paper.

Notation. For N � 1, given the xi 2 R, pi 2 N 0, ki 2 N 0

(R and N 0 denote the sets of real numbers and nonnegative
integers, respectively). Then,

x � ðx1; � � � ; xNÞT

denotes N-dimensional vector of coordinates and

p � ðp1; � � � ; pNÞT ; k � ðk1; � � � ; kNÞT

denote N-dimensional vectors of parameters. Logical rela-
tions are defined analogically to

p < k () pi < ki i ¼ 1; � � � ; N:

The following notation is further introduced:

dx � dx1 � � � dxN;

jpj �
XN
i¼1

pi;

xp �
YN
i¼1

xpii ;

p! �
YN
i¼1

ðpi!Þ;

p

k

� �
�
YN
i¼1

pi
ki

� �
:

Definition 1. By N-dimensional image function (or image), we
understand any real function fðxÞ having a bounded support
and finite nonzero integral.

Definition 2. Ordinary geometric moment m
ðfÞ
p of order jpj of

the image fðxÞ is defined by the integral

mðfÞp ¼
Z
RN

xpfðxÞdx: ð1Þ

Definition 3. Fourier transform (or spectrum) F ðuÞ of the image
fðxÞ is defined as

F ðuÞ ¼
Z
RN

fðxÞeÿ2�iuTxdx; ð2Þ

where i is the imaginary unit.

Note that the Fourier transform as well as the moments
of all orders exist for any image function.

Lemma 1. The relationship between Fourier transform and
geometric moments of an image is expressed by the following
equation:

F ðuÞ ¼
X
0�k

ðÿ2�iÞjkj

k!
m
ðfÞ
k uk: ð3Þ

The assertions of Lemma 1 can be easily proven just using
the definitions of moments and of the Fourier transform.

3 BLUR INVARIANTS

In this section, a set of moment forms invariant to image
blurring is derived. In the following text, the blur invariance is
understood as invariance to convolution with centrally
symmetric PSF:

hðxÞ ¼ hðÿxÞ: ð4Þ

This is a natural choice because most real degradations such
as out-of-focus blur, atmospheric turbulence blur, etc., fulfill
the constraint of centrosymmetry.

The following two theorems are of fundamental
importance.
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Theorem 1. Tangent of the Fourier transform phase is a blur
invariant.

To prove this theorem, it is sufficient to realize that the
phase of the Fourier transform of hðxÞ, as of centrally
symmetrical function, can equal only 0 or �.

Theorem 2. Tangent of the Fourier transform phase of any image
fðxÞ can be expanded into power series (except of the points in
which F ðuÞ ¼ 0 or ph F ðuÞ ¼ ��=2)

tanðph F ðuÞÞ ¼ Im F ðuÞ
ReF ðuÞ ¼

X
0�k

ckuk; ð5Þ

where the ck’s are also blur invariants.

Proof. The tanðph F ðuÞÞ is the ratio of two absolutely
convergent power series, thus it can be also expressed as
a power series. The invariance of ck’s follows from
comparison of the coefficients of the same monomials uk.tu
The coefficients ck can be straightforwardly derived. It

follows from the substitution of (3) into (5) that

X
0�k
jkjodd

ðÿ1Þðjkjÿ1Þ=2ðÿ2�Þjkj

k!
mkuk

¼
X
0�j
jjjeven

ðÿ1Þjjj=2ðÿ2�Þjjj

j!
mju

j
X
0�n

cnun:

Comparison of the coefficients of the same monomials up

reveals that ck ¼ 0 for jkj even. The same comparison for
one particular odd-order jpj of the monomial up gives

ðÿ1Þðjpjÿ1Þ=2ðÿ2�Þjpj

p!
mp ¼ m0cp

þ
X

0�n�p
0<jnj<jpj

ðÿ1Þjnj=2ðÿ2�Þjnj

n!
mncpÿn :

Definition 1 guarantees that m0 6¼ 0. Therefore, it is possible

to express cp as

cp ¼
ðÿ1Þðjpjÿ1Þ=2ðÿ2�Þjpj

p!

mp

m0

ÿ 1

m0

X
0�n�p

0<jnj<jpj

ðÿ1Þjnj=2ðÿ2�Þjnj

n!
mncpÿn:

Using a simplified notation

Qp �
cpp!

ðÿ1Þðjpjÿ1Þ=2ðÿ2�Þjpj
; ð6Þ

we get the recursive formula

Qp ¼
mp

m0
ÿ 1

m0

X
0�n�p

0<jnj<jpj

p

n

� �
Qpÿnmn for odd jpj;

Qp ¼ 0 for even jpj:

ð7Þ

Equation (7) enables to calculate moment forms Qp (and
also cp with further use of (6)) which are invariant under
convolution with a centrally symmetrical kernel.

4 RECALLING THE BASIC TERMS OF THE GROUP

REPRESENTATION THEORY

The goal of this section is to recall basic terms of the group
representation theory, which are further used when deriving
rotation invariants. A few explanations and remarks are
added to simplify understanding for the readers who are not
familiar with this theory. Due to the space limitations and to
keep the text readable, we stay at the intuitive level only.
However, in case of deeper interest in this field, the readers
are encouraged to consult some standard textbook, e.g., [34].

An essential operation for further consideration is the
rotation of the image. Let RðaÞ be 2D rotation around the
origin where a is the angle of rotation, 0 � a < 2�.
Composition of two consequent rotations is also a rotation

RðaÞ �RðbÞ ¼ Rðaþ bÞ;

where angle addition is considered modulo 2�. Clearly,
rotation by zero degrees plays the role of unit element,
while rotation by ð2�ÿ aÞ is an inverse of RðaÞ.

Analogous characteristics are typical, not only for the
rotations but also for other geometric or algebraic objects.
Such objects can be called elements of a certain group.

Definition 4. Any set � with an operation � (called multi-
plication) is called group if and only if

1. � is closed with respect to multiplication �, i.e.,

Ga;Gb 2 � ) Ga �Gb 2 �;

2. The multiplication is associative, i.e., for any a; b; c

ðGa �GbÞ � Cc ¼ Ga � ðGb � CcÞ;

3. There exists a unit E 2 � such that for any a

E �Ga ¼ Ga; Ga � E ¼ Ga;

4. For every Ga 2 �, there exists an inverse element
Gÿ1
a 2 � such that

Ga �Gÿ1
a ¼ E; Gÿ1

a �Ga ¼ E:

Now, we can refer to the two-dimensional rotations as to a
continuous (because of the parameter a) group, which we
denote SO(2). SO(2) is so-called Abelian group because its
elements commute. An example of a group whose elements
do not commute is the group SO(3) of all rotations in 3D space
around any given point. Its elements are rotationsRkðaÞ of an
angle a around a vector k arising from the central point.

In practice, the rotations act on some objects which are
elements of a vector space L (L may be “traditional”
Euclidean space R2 for instance). Any rotation can be then
represented by a linear operator on L. Now, we can
naturally define the representation of a group.

Definition 5. A set of linear operators T ðGaÞ, Ga 2 � on a vector
space L is called representation of the group � in the space L, if
it corresponds to the group elements such that

T ðGaÞ � T ðGbÞ ¼ T ðGa �GbÞ; T ðEÞ ¼ 1:
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Once we choose a basis e1; e2; . . . ; es in the space L, every
linear operator T ðGaÞ can in this basis be represented by a
matrix TjiðGaÞ, satisfying

T ðGaÞei ¼
X
j

TjiðGaÞej: ð8Þ

Thus, we get matrix representation of the group.
The usual way of simplifying many kinds of algebraic

problems is to find a basis in which the corresponding
matrix will have some simplified form. In this paper, we
want to make the matrix block-diagonal:

T ð1Þ 0 0 . . .
0 T ð2Þ 0 . . .
0 0 T ð3Þ . . .
..
. ..

. ..
. . .

.

0BBB@
1CCCA: ð9Þ

The T ðiÞs are the blocks of the matrix representation T and
they are therefore representations themselves. They operate
on invariant subspaces Li of the space L

L ¼ L1 þ L2 þ L3 þ . . . :

After application of T ðiÞ on an element from Li, we get a
linear combination of elements from Li again.

Thus, the representation T ðGaÞ, Ga 2 �, is said to be
reducible and can be decomposed into its irreducible
components

T ðGaÞ ¼ T ð1ÞðGaÞ � T ð2ÞðGaÞ � T ð3ÞðGaÞ � . . . : ð10Þ

Definition 6. Given the space L invariant under operators
T ðGaÞ of the representation of group �. If any mutually
orthogonal subspaces L1 and L2 of L are both invariant under
T ðGaÞ for all Ga 2 �, then the representation T ðGaÞ, Ga 2 �,
is called reducible, otherwise it is called irreducible.

If one of the blocks in (9) has size 1� 1 and equals 1, then
the corresponding basis function is invariant to the operator
T . The main idea of the presented method has thus been
exposed: to find a function invariant to rotation, a function
which under the rotation operator is transformed according
to a 1� 1 matrix of a single 1.

As an example, we present irreducible representations of
the group SO(2) (every particular m generates a different
representation):

T ðmÞðaÞ ¼ expðÿimaÞ; m ¼ 0;�1;�2; . . . : ð11Þ

Because SO(2) is an Abelian group, the irreducible
representations are one-dimensional.

Given the space of functions  ðr; ’Þ defined on the R2

plane and expressed in polar coordinates r, ’ in 2D. In this
space, the irreducible representations (11) of the group
SO(2) have basis functions

 m ¼ expðim’Þ; m ¼ 0;�1;�2; . . . : ð12Þ

At this point, one remark is worth mentioning: We get
the basis functions with positive (resp. with negative) m, if
we express the functions  m ¼ ðxþ iyÞm (respectively, the
functions  m ¼ ðxÿ iyÞm) in polar coordinates. Popular
complex moments [4] are projections of the image function
on these basis functions of one-dimensional irreducible
representations of SO(2) group. This is the reason why the

complex moments can be used for deriving 2D rotation

invariants in a straightforward way [35].
Irreducible representations of the group SO(3) are

more complicated. They are usually denoted as DðjÞ,

j ¼ 0; 1; 2; . . . . The dimension of DðjÞ is 2jþ 1. Thus, for

j ¼ 0; 1; 2; . . . we get dimensions 1; 3; 5; . . . . The possible

dimensions determine how a representation of the group

SO(3) is decomposed, see (10).

The DðjÞ’s could be also used as representations for the

group SO(2) elements, but then they are already reducible:

Dð‘Þ ¼
Xm¼‘
m¼ÿ‘

T ðmÞ:

At this point, this fact may not be important itself, but it

determines indexing of so-called spherical harmonics

Y ‘
mð#; ’Þ; m ¼ ÿ‘;ÿ‘þ 1; . . . ; ‘ÿ 1; ‘: ð13Þ

Given the space of functions  ðr; #; ’Þ defined on R3 space

and expressed in spherical coordinates r, #, ’. Then, the set

of spherical harmonics (13) for one particular ‘ is basis of

the irreducible representation Dð‘Þ.
What to do, if our particular representation does not

contain in its decomposition T ð0Þ for SO(2), respectively,

Dð0Þ for SO(3)? Basis functions of other irreducible

representations are not invariants. Fortunately, we can also

investigate transformational properties of products of the

currently used basis functions. Moreover, there is a

deterministic way of multiplying them so that we can be

sure we get the desired result.

Given a set of s� basis functions ’
ð�Þ
k of irreducible

representation T ð�Þ. That means that ’
ð�Þ
k ’s are under the

operation of T ð�Þ transformed in accordance with (8).

Given then, a set of s� basis functions  
ð�Þ
‘ of irreducible

representation T ð�Þ. Then, according to (8), the set of s�s�

functions f’ð�Þk  
ð�Þ
‘ g is transformed as

T ’
ð�Þ
k  

ð�Þ
‘

n o
¼
X
i

X
j

T
ð�Þ
ik T

ð�Þ
j‘ ’

ð�Þ
i  

ð�Þ
j

n o
�
X
ij

T
ð���Þ
ij;k‘ ’

ð�Þ
i  

ð�Þ
j

n o
:

It can be verified that

T
ð���Þ
ij;k‘ � T

ð�Þ
ik T

ð�Þ
j‘

is also a matrix representation. The multiplication operation
between the two representations is called tensor product
and operator-like it is denoted as

T ð�Þ 
 T ð�Þ � T ð���Þ:

Generally, the tensor product of two irreducible repre-

sentations T ð�Þ and T ð�Þ can be reducible:

T ð���Þ ¼
X

T ðÞ: ð14Þ

Then, it is desirable to find such linear combination of

functions f’ð�Þi  
ð�Þ
j g (we denote them as 	

ðÞ
k ) which are

transformed according to the irreducible representation T ðÞ:
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ðÞ
k ¼

X
ij

Cð��; ijkÞ ’ð�Þi  
ð�Þ
j

n o
: ð15Þ

The Cð��; ijkÞ’s are called Clebsch-Gordan coefficients
and they can be found in the group theory related literature.
They are also implemented, together with spherical
harmonics, in advanced symbolic manipulation software
systems like MATHEMATICA.

In this paper, we need to know what is the decomposi-
tion of the tensor products of two irreducible representa-
tions of SO(2), respectively, SO(3). We can then use these
relations to get among others, irreducible representation
T ð0Þ, respectively, Dð0Þ, in the decomposition, and conse-
quently, the invariant basis function. The following equality
holds for SO(2):

T ðm1Þ 
 T ðm2Þ ¼ T ðm1þm2Þ: ð16Þ

Tensor product of two irreducible representations of SO(3)
equals

Dðj1Þ 
Dðj2Þ ¼
XJ¼j1þj2

J¼jj1ÿj2j
DðJÞ: ð17Þ

Thus, we can combine, e.g., Dð2Þ and Dð2Þ to get Dð0Þ

Dð2Þ 
Dð2Þ ¼ Dð0Þ �Dð1Þ �Dð2Þ �Dð3Þ �Dð4Þ

and, by means of (15), find invariant

	
ð0Þ
0 ¼

X2

i;j¼ÿ2

Cð220; ij0Þf’ð2Þi  
ð2Þ
j g:

5 COMBINED INVARIANTS TO ROTATION AND

CONVOLUTION

In Section 3, the way to calculate the pure invariants to
image blurring in arbitrary dimensions was explained. In
Section 4, the theoretical background to deriving rotation
invariants was given. In this section, we employ the group
representation theory to derive combined invariants to
rotation and convolution. They represent qualitatively new
classes of invariants that have not been reported yet.

Equation (5), which generates the blur invariants ck, is a
natural starting point for investigation of the rotation
invariance. The comparison of (3) and (5) reveals paralle-
lism between the expansions into the power series of the
Fourier transform and of the tangent of its phase. The first
expansion generates image moments and the second
expansion, which is itself blur invariant, generates moment
blur invariants. Further investigation also shows analogous
rotational properties of (3) and (5). The rotational properties
of the Fourier transform were used in [11] to calculate forms
of moments invariant under the rotation in 3D case. The
mentioned analogy offers to use the same technique,
generalized to N-D, to calculate forms of blur invariants
which are then invariant also under the rotation.

The method mentioned above takes advantage of the
transformational properties of tanðphF ðuÞÞ. If we rotate in
(2), both spatial and spectral coordinates by the same
rotation operator R,

u0 ¼ Ru; x0 ¼ Rx;

we get again the Fourier transform of the rotated image,
expressed in the rotated spectral coordinates. It reflects the
fact that, if the image is rotated, the same is true for its Fourier
transform. Calculating the phase (and, consequently, the
phase tangent) does not change this relation. Thus, from (5)
we get X

0�k

ckuk ¼
X
0�k

c0ku0k; ð18Þ

where the c0k’s are functions of the rotated image fðx0Þ.
Equation (18) is a kind of invariance relation. The left-

hand side reflects the state before rotation, the right-hand
side after rotation. If the monomial uk of certain order jkj is
rotated, we get a linear combination of monomials of the
same order (we never get cubic monomial from a quadratic
one, for instance). The monomials of the same order are
transformed among themselves. Therefore, we can decom-
pose (18) so that each order jkj ¼ p corresponds to one
individual equation:X

0�k
jkj¼p

ckuk ¼
X
0�k
jkj¼p

c0ku0k: ð19Þ

For example, (19) for p ¼ 2 contains only quadratic mono-
mials. From (19), it is now obvious that the blur invariants ck
of the same order are also transformed among themselves.

It is advantageous to introduce the following vector
notation: X

0�n
jnj¼p

cnun � CT
p Up; ð20Þ

where proper order of elements of the column vectors

Cp ¼ fcngjnj¼p; Up ¼ fungjnj¼p;

has to be maintained to fulfill (20). Equation (19) can be now
rewritten to

CT
p Up ¼ C0Tp U0p: ð21Þ

Elements of Up form a basis of a space invariant under
rotation. There is a matrix relation between the left-side Up

and the right-side U0p for an arbitrary rotation. But this matrix
is generally complicated. To simplify it, we must use the
results of the preceding section. We must use a better basis of
this space—a basis of irreducible representations of a group
of rotations. We denote it bp. Relation between the old and
new bases is described by means of transition matrix Ap:

Up ¼ Apbp: ð22Þ

If we introduce the following vectors f p of forms of cn’s

fp ¼ Aþp Cp; ð23Þ

then the shape of (20) is preserved

CT
p Up ¼ fþp bp

and we get a new relation

fþp bp ¼ f 0þp b0p:

The relation between bp and b0p is now described by block-
diagonal matrix. Considering unitarity of the rotation
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operator, the same is true for fp and f 0p. Each block

corresponds to a particular irreducible representation of the

rotation group. Moreover, we know which elements of fp are

transformed according to which particular irreducible

representations. Therefore, in light of Section 4, we can find

forms of ck’s invariant to rotation. Because ck’s are already

invariant to blur, we automatically obtain the desired

combined invariance.

For completeness, one more point should be mentioned.

The decomposition of (18) into the sums of monomials of

the same order is not necessary. It just significantly

simplifies further analysis. However, we must be aware

that if looking for invariants, it is possible to perform tensor

product of irreducible representations operating on differ-

ent spaces. It provides the possibility to construct invariants

containing elements of forms f p of different orders (conse-

quently, moments of different orders).

In the two following sections, the examples of calculating

invariants are presented both in 2D and 3D case (the

invariants in dimensions greater than three can be calculated

analogously). The order p ¼ 3 was chosen because it is the

first practically important order and its description is still

simple enough (cp ¼ 0 for jpj ¼ 0 and jpj ¼ 2, see (7); cp ¼ 0

for jpj ¼ 1 because, in the following examples, we use central

moments instead of ordinary moments to ensure shift

invariance). The derivation of some invariants in 2D is

presented just for illustration of the used method. Being a

particular case, 2D combined invariants can be derived

without knowledge of the group representation theory [31].

5.1 Examples of Calculating 2D Invariants

1. Specification of vectors Cp and Up from (20).

U3 ¼ ðu3
1; u

2
1u2; u1u

2
2; u

3
2Þ
T ;

C3 ¼ ðc30; c21; c12; c03ÞT :

2. Specification of the basis bp from (22). As it was
already explained, the functions (12)

bm ¼ expðim’Þ; m ¼ 0;�1;�2; . . .

are bases of one-dimensional irreducible representa-

tions T ðmÞ of group SO(2). After substitution of polar

coordinates into U3, it is obvious that elements of

new basis b3 are

b3 ¼ ðb3; b1; bÿ1; bÿ3ÞT ;

i.e., they are the bases of irreducible representations

T ð3Þ, T ð1Þ, T ðÿ1Þ, and T ðÿ3Þ. Relationship between

Cartesian and polar coordinates is

u1 ¼ r cos’;

u2 ¼ r sin’:

We put r ¼ 1 because rotational properties are not

dependent on the value of radial component r and

its presence in further calculations rather disturbs.

3. Calculation of the transition matrix Ap according to
(22). As a result of the previous step we get the
transition matrix

A3 ¼
1

8

1 3 3 1
ÿi ÿi i i
ÿ1 1 1 ÿ1
i ÿ3i 3i ÿi

0BB@
1CCA:

4. Calculation of the forms f p according to (23) by
means of (6) and (7). The elements of a new vector of
forms f 3 are

f3
3 ¼

�3 ðÿim03 ÿ 3m12 þ 3 im21 þm30Þ
6m00

;

f1
3 ¼

�3 ðim03 þm12 þ im21 þm30Þ
2m00

;

fÿ1
3 ¼ �

3 ðÿim03 þm12 ÿ im21 þm30Þ
2m00

;

fÿ3
3 ¼ �

3 ðim03 ÿ 3m12 ÿ 3 im21 þm30Þ
6m00

:

They are also transformed according to the irredu-
cible representations T ð3Þ, T ð1Þ, T ðÿ1Þ, and T ðÿ3Þ.

5. Explanation and examples. The invariants are only
such functions which are transformed according to
the irreducible representation T ð0Þ. Otherwise, they
are always multiplied by a factor depending on the
angle of rotation, see (11). The representation T ð0Þ we
can get, for example, as a tensor product

T ð3Þ 
 T ðÿ3Þ ¼ T ð0Þ;

see (16). The form transforming according to this
tensor product is in one-dimensional case just simple
product of the forms f3

3 and fÿ3
3 , which are transform-

ing according to the representations T ð3Þ and T ðÿ3Þ.
As the examples of the results, a set of invariants

containing moments of the third order is presented.
The relevant tensor products of irreducible repre-
sentations are denoted on the left side. Constants
with respect to the rotation are omitted.

T ð3�ÿ3Þ : f3
3f
ÿ3
3 ¼ ðm03

2 þ 9m12
2 ÿ 6m03 m21þ9m21

2

ÿ 6m12 m30 þm30
2Þ=m00

2

T ð1�ÿ1Þ : f1
3f
ÿ1
3 ¼ ðm03

2 þm12
2 þ 2m03 m21 þm21

2

þ 2m12 m30 þm30
2Þ=m00

2

T ð3�ÿ1�ÿ1�ÿ1Þ : f3
3f
ÿ13

3 ¼ðm03 ÿ 3 im12 ÿ 3m21þim30Þ
ðm03 þ im12 þm21 þ im30Þ3=m00

4

The last invariant is complex. For practical
calculations it is suitable to take apart real and
imaginary parts.

Since the blur invariants of even orders do not

exist and since the first-order invariants are mean-

ingless, these invariants are the simplest combined

invariants. It is worth noting that they correspond to

the well-known pure rotation invariants [3]. This is

because the third-order moments themselves are

invariant to convolution. However, this is not true
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for higher orders and the explicit formulae of

combined invariants are much more complicated.

5.2 Examples of Calculating 3D Invariants

1. Specification of vectors Cp and Up from (20).

U3 ¼
ðu3

1; u
3
2; u

3
3; u

2
1u2; u

2
1u3; u1u

2
2; u

2
2u3; u1u

2
3; u2u

2
3; u1u2u3ÞT

C3 ¼ ðc300; c030; c003; c210; c201; c120; c021; c102; c012; c111ÞT

2. Specification of the basis bp from (22). As it was
mentioned above, the spherical harmonics (13) are
for one particular nonnegative integer ‘ basis of
irreducible representation Dð‘Þ of group SO(3). Thus,
the new basis b3 will be formed by some of the
elements:

b‘;m ¼ Y ‘
mð#; ’Þ; ‘ ¼ 0; 1; 2; . . . ;

m ¼ ÿ‘;ÿ‘þ 1; . . . ; ‘ÿ 1; ‘:

The dimension of the representation Dð‘Þ is 2‘þ 1. In
accordance with the dimension of U3, the new basis
b3 must contain 10 elements. Therefore, it is easy to
realize that b3 contains basis elements of irreducible
representations Dð3Þ and Dð1Þ:

b3 ¼ ðb3;3; b3;2; b3;1; b3;0; b3;ÿ1; b3;ÿ2; b3;ÿ3; b1;1; b1;0; b1;ÿ1ÞT :

Relationship between Cartesian and spherical co-
ordinates is

u1 ¼ r cos’ sin#;

u2 ¼ r sin’ sin#;

u3 ¼ r cos#:

As in the 2D case, we put r ¼ 1 in further
calculations.

3. Calculation of the transition matrix Ap according to
(22). As a result of the previous step, we get the
transition matrix

A3¼

ÿ
ffiffiffi
�
35

p
0

ffiffiffi
3 �
7

p
5 0

ÿ
ffiffiffi
3 �
7

p
5 0

ffiffiffi
�
35

p ÿ
ffiffiffi
6 �
p

5 0
ffiffiffi
6 �
p

5

ÿi
ffiffiffi
�
35

p
0 ÿi

5

ffiffiffi
3 �
7

p
0 ÿi

5

ffiffiffi
3 �
7

p
0 ÿi

ffiffiffi
�
35

p
i
5

ffiffiffiffiffi
6�
p

0 i
5

ffiffiffiffiffi
6�
p

0 0 0
4
ffiffi
�
7

p
5 0 0 0 0 2

ffiffiffi
3�
p

5 0

i
ffiffiffi
�
35

p
0 ÿi

5

ffiffiffi
�
21

p
0 ÿi

5

ffiffiffi
�
21

p
0 i

ffiffiffi
�
35

p
i
5

ffiffiffi
2�
3

p
0 i

5

ffiffiffi
2 �
3

p

0
ffiffiffiffi
2 �
105

p
0

ÿ2
ffiffi
�
7

p
5 0

ffiffiffiffi
2 �
105

p
0 0

2
ffiffi
�
3

p
5 0ffiffiffi

�
35

p
0

ffiffiffi
�
21

p
5 0

ÿ
ffiffiffi
�
21

p
5 0 ÿ

ffiffiffi
�
35

p ÿ
ffiffiffi
2 �
3

p
5 0

ffiffiffi
2�
3

p
5

0 ÿ
ffiffiffiffi
2 �
105

p
0

ÿ2
ffiffi
�
7

p
5 0 ÿ

ffiffiffiffi
2 �
105

p
0 0

2
ffiffi
�
3

p
5 0

0 0
ÿ4
ffiffiffi
�
21

p
5 0

4
ffiffiffi
�
21

p
5 0 0

ÿ
ffiffiffi
2 �
3

p
5 0

ffiffiffi
2�
3

p
5

0 0 4 i
5

ffiffiffi
�
21

p
0 4 i

5

ffiffiffi
�
21

p
0 0 i

5

ffiffiffi
2�
3

p
0 i

5

ffiffiffi
2 �
3

p

0 ÿi
ffiffiffiffi
2�
105

p
0 0 0 i

ffiffiffiffi
2 �
105

p
0 0 0 0

0BBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCA

:

4. Calculation of the forms f p according to (23) by
means of (6) and (7). The elements of new vector
of forms f 3 are

f3;3
3 ¼ 4�

7
2 ðim030 þ 3m120 ÿ 3 im210 ÿm300Þ

3
ffiffiffiffiffi
35
p

m000

;

f3;2
3 ¼

4
ffiffiffiffiffiffi
2

105

q
�

7
2 ðÿm021 þ 2 im111 þm201Þ

m000
;

f3;1
3 ¼

4 �
7
2 ðÿ4 im012þim030ÿ4m102þm120þim210þm300Þ

5
ffiffiffiffiffi
21
p

m000

;

f3;0
3 ¼ 8�

7
2 ð2m003 ÿ 3 ðm021 þm201ÞÞ

15
ffiffiffi
7
p

m000

;

f3;ÿ1
3 ¼

4 �
7
2 ðÿ4 im012þim030þ4m102ÿm120þim210 ÿm300Þ

5
ffiffiffiffiffi
21
p

m000

;

f3;ÿ2
3 ¼

ÿ4
ffiffiffiffiffiffi
2

105

q
�

7
2 ðm021 þ 2 im111 ÿm201Þ

m000
;

f3;ÿ3
3 ¼ 4�

7
2 ðim030 ÿ 3m120 ÿ 3 im210 þm300Þ

3
ffiffiffiffiffi
35
p

m000

;

f1;1
3 ¼
ÿ4 i

5

ffiffi
2
3

q
�

7
2 ðm012þm030ÿi ðm102þm120þim210þm300ÞÞ

m000
;

f1;0
3 ¼ 8�

7
2 ðm003 þm021 þm201Þ

5
ffiffiffi
3
p

m000

;

f1;ÿ1
3 ¼

4
ffiffi
2
3

q
�

7
2 ðÿim012ÿim030þm102þm120ÿim210þm300Þ

5m000
:

The forms f3;i
3 for i ¼ 3; 2; 1; 0;ÿ1;ÿ2;ÿ3 are

transformed according to irreducible representation

Dð3Þ and the forms f1;i
3 for i ¼ 1; 0;ÿ1 are

transformed according to Dð1Þ.
5. Explanation and examples. The invariants are again

functions which are transformed according to the

irreducible representation Dð0Þ. According to (17), we

can get Dð0Þ, for example, in decomposition of tensor

product of two irreducible representations Dð3Þ:

Dð3�3Þ ¼ Dð0Þ �Dð1Þ � . . .�Dð6Þ:

The form transforming according to the irreducible

representation Dð0Þ is then given just by substitution

of Clebsch-Gordan coefficients into (15):

ð2f3;3
3 f3;ÿ3

3 ÿ 2f3;2
3 f3;ÿ2

3 þ 2f3;1
3 f3;ÿ1

3 ÿ f3;02

3 Þ=
ffiffiffi
7
p
¼

m003
2 þ 6m012

2 þ 6m021
2 þm030

2 þ 6m102
2

ÿ
þ 15m111

2 ÿ 3m102 m120 þ 6m120
2

ÿ3m021 m201 þ 6m201
2 ÿ 3m003 ðm021 þm201Þ

ÿ 3m030 m210 þ 6m210
2

ÿ 3m012 ðm030 þm210Þ ÿ 3m102 m300

ÿ 3m120 m300 þm300
2Þ=m000

2:

ð24Þ

Note that this invariant belongs to the pure rotation

invariants presented in [11]. Like in the 2D case, this
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correspondence holds only for third-order invariants.
The rotation invariants of higher orders derived by the
method [11] and those containing even-order mo-
ments are not invariant to convolution.

We present just this one example in explicit form,
because most of the other formulae are too compli-
cated. However, the general scheme of deriving
invariants remains the same.

6 EXPERIMENTS

In this section, we study numerical properties of the proposed
invariants, namely their invariance to various PSF’s and
rotations and their robustness to additive noise. Furthermore,
we demonstrate that the proposed invariants can be used as a
powerful tool for registration of blurred images via template
matching.

6.1 Test of Invariance and Discriminability

In this experiment, we demonstrate the invariance to
convolution and rotation and the discrimination power of
the invariants. As a test data, we used a 3D magnetic
resonance image (MRI) of a human head whose size was
256� 256� 256 voxels. Two perpendicular slices are de-
picted in Fig. 1.

This experiment was performed on an object of the size
45� 63� 38 voxels that was segmented from the original
image. In the following text it is denoted as P . Two slices of
P corresponding to the original slices from Fig. 1 are shown
in Fig. 2.

In the experiment we used six 3D invariants of the third
order constructed by the method that was explained in
Section 5.2. Instead of the ordinary moments, we used
central moments which also ensure shift invariance. Since
their explicit formulae are too complicated, we present
them in symbolic form.

Let us denote one particular DðJÞ on the right-hand side
of (17) as

ðDðj1Þ 
Dðj2ÞÞðJÞ:

Then, the combined invariants we used here can be

calculated as the basis of the following representations:

ðDð3Þ 
Dð3ÞÞð0Þ;
ðDð1Þ 
Dð1ÞÞð0Þ;
ððDð3Þ 
Dð3ÞÞð2Þ 
 ðDð3Þ 
Dð3ÞÞð2ÞÞð0Þ;
ððDð3Þ 
Dð1ÞÞð2Þ 
 ðDð3Þ 
Dð1ÞÞð2ÞÞð0Þ;
ððDð3Þ 
Dð3ÞÞð2Þ 
 ðDð3Þ 
Dð1ÞÞð2ÞÞð0Þ;
ððDð3Þ 
Dð1ÞÞð2Þ 
 ðDð1Þ 
Dð1ÞÞð2ÞÞð0Þ:

The image P was rotated in all Euler angles by the same

angle � (where � ¼ 0; 5; 10; 15; � � � ; 90, respectively) and

blurred by Gaussian mask of parameter � (where

� ¼ 0; 1; 2; � � � ; 7, respectively). Then, the distance in the

space of invariants between each both transformed and

blurred version and the original image was calculated. The

sum of relative deviations dr of the invariants was used as a

distance measure. Since the influence of rotation is much

stronger than the influence of blurring, we visualized the

results separately in two graphs (see Figs. 3 and 4). As can be

seen from the graphs, the relative deviations of the invariants

are very small in all cases, which is in accordance with the

theoretical expectation. Higher errors for some values of the

rotation angle are caused by resampling when rotating the

image.
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Fig. 1. Original MRI data of a human head: 157th axial slice (left) and 130th sagittal slice (right).

Fig. 2. The test object P : Axial (left) and sagittal (right) slices.



Finally, we show that the relative errors occurring due to
image rotation and filtering are substantially smaller than the
“distance” between two different images, which means that
the discrimination power of the invariants is not degraded by
the above mentioned image transformations. The values of
relative deviations of the individual invariants for some
illustrative examples are presented in Table 1. The deviations
are calculated as in the previous case between the original P
and P convolved with various masks. The last two columns
show the deviations between P and two randomly chosen
parts of the original image of the same size asP . From the last
row of the table, it is obvious that the proposed invariants are
sufficiently discriminative.

6.2 Test of Robustness

The next experiment investigates the robustness of the
proposed invariants to additive noise (Gaussian white noise
was used in this experiment). To describe the impact of
noise on the image, we used signal to noise ratio

SNR½dB� ¼ 10 log10

variance of the image

variance of the noise
:

We corrupted the image P gradually by noise with various
SNR. For each particular value of SNR, 50 realizations of
noise were generated and the values of the invariants were
calculated. The statistical behavior (mean and standard
deviation) of the relative distance between the original and
noisy images is depicted in Fig. 5.

Two important observations can be done from Fig. 5. First,
the error caused by noise was in all tested cases significantly
higher than that induced by convolution and/or rotation.
This is obvious because the invariants cannot be “strictly
invariant” to noise. Second, the error is still much lower than
the “distance” of two different images (note that usually in
practice the meaningful levels of SNR are higher than 10 dB).

6.3 Template Matching

In this experiment, the template matching test was
performed. A randomly chosen spherical part of the
original MRI image of the diameter 31 pixels was used as
a template. The original image was rotated by 30 degrees in
all Euler angles, blurred by Gaussian masks of various sizes
and corrupted by additive noise. The template was shifted
across the image and in each its position the invariants of
the corresponding part of the image were calculated and
compared with the invariants of the template. Thanks to the
rotation invariance of the features, template rotation need
not be performed. The “matching position” was localized as
that with minimum dr.

The matching accuracy depends on the SNR (which is
obvious) and on the size of the blurring mask. This is
because the voxels near the template boundary are affected
by the voxels from the outside. This boundary effect of
course increases when the blurring becomes larger. The
localization errors for various blurring sizes and SNRs are
depicted in Fig. 6. One may observe that if the size of the
blurring mask is not too large with respect to the size of the
template, the results are very good, even if noise is present.

We conducted a similar experiment in which we studied
the influence of rotation angle and the shape of the blurring
masks on the localization error (note that, from a theoretical
point of view, our invariants are invariant to all blurring
functions having the central symmetry, including aniso-
tropic blurring). The MRI image was rotated in all Euler
angles by the angle � (where � ¼ 0; 5; 10; 15; � � � ; 90, respec-
tively) and blurred by various anisotropic masks. It can be
seen from Fig. 7 that even if the rotation is big and the major
blurring direction changes, the localization error is still kept
reasonably low.
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Fig. 3. Relative distance dr between P and its rotated versions (� ¼ 0).

Fig. 4. Relative distance dr between P and its blurred versions (� ¼ 0).

TABLE 1

Relative deviations of the individual invariants whose indices are in the left column. In the bottom row is the total relative distance from P . Convolution
masks: (a) 5� 5� 5 averaging, (b) 5� 5� 5 of ones with 3D cross of zeros in the middle, (c) 5� 5� 5 of ones with both upper and bottom boundary
negative, (d) 5� 5� 5 Gaussian with parameter � = 1 pixel, (e) and (f) randomly chosen parts of the original image of the same size as P .



Finally, we extended the matching experiment to more
templates. Eight spherical templates of 15-pixel radius were
manually extracted from the original MRI data. The original
image was then rotated around all three axes by 30 degrees
and blurred by anisotropic Gaussian mask with standard
deviations [0.5 0.5 0.2]. We looked for the matching position
of each template by an exhaustive search within the whole
image—no estimation of approximate matching position
was used. The results were really encouraging: the positions
of five templates were found accurately and in the three
other cases the error was one pixel.

The experiments described in this Section proved that
the proposed invariants can be used successfully in
3D template matching regardless of rotation and/or
blurring of the images involved. There are however, some
limitations posed mainly by boundary effect and, of course,
by noise if it is heavy. In all of these experiments we were
using six invariants only. The results can be further
improved by employing more invariants, but the higher
the order the less robustness of the respective moments.

6.4 Image Registration

In the last experiment, a successful utilization of the
combined invariants in registration of out-of-focused
2D images is demonstrated.

The problem to be solved is to estimate the motion
parameters and the current position of the camera in the
real indoor scene. The camera, which takes one frame every
second, moves parallel to the wall and rotates. The system
monitors the scene and looks for alien objects which may
appear in the view of the camera. When such an object
appears in front of the camera, the camera is automatically
focused on it. Thus, the rest of the scene becomes out-of-
focused (see Fig. 8). Position estimation can be resolved via
registration of the initial (reference) frame and the image
acquired at the moment when the object has appeared. The
registration parameters (mutual rotation and shift of the
reference and current frames) then unambiguously deter-
mine the actual camera position.

The registration proceeds as follows: First, control point
candidates (CPC’s) are detected both in the initial and the
current frames. Significant corners and other corner-like
dominant points are considered as the candidates. To detect
them, a method developed particularly for blurred images
[36] is employed. In this experiment we detected 30 CPC’s
in each frame.

Second, the correspondence between the CPC’s sets must
be established and the candidates having no counterparts
should be rejected. To do that, a vector of invariants is
computed for each CPC over its circular neighborhood (here,
three third-order invariants and two fifth-order ones were
employed) and then the CPC’s are matched in the space of the
invariants by minimum-distance rule or by any more
sophisticated technique (in this experiment we applied
robust matching by means of so-called likelihood coefficients
[37]). Once the control point (CP) correspondence is estab-
lished, their positions can be refined by a local search in their
neighborhoods. For every pixel from the neighborhood, its
invariant vector is calculated. The point having the minimum
distance to the invariant vector of the CP counterpart is set as
the refined position of the CP. If the subpixel accuracy is
required, it can be achieved by an appropriate interpolation in
the distance matrix.

Finally, as soon as the control point correspondence is
established and their coordinates refined, we can find an
“optimal” rotational-translational mapping whose para-
meters are calculated via least-square fit. Knowing these
parameters and the initial camera position, the current
position can be easily estimated.

We repeated this experiment six times changing the
camera rotation and the distance of the inserted object (i.e.,
the amount of blurring of the background). The results were
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Fig. 5. Relative distance dr between original image P and its noisy
versions.

Fig. 6. Template matching test: de—localization error (Euclidean distance
from the correct position), �—standard deviation of the Gaussian blurring
mask, �=T—the ratio of the blur and the template size (in %).

Fig. 7. Template matching with anisotropic blurring: de—localization error
(Euclidean distance from the correct position), �—rotation angle,—no
blurring, �—blurring by 1� 1� 3 mask after rotation, þ—blurring by 1�
1� 3 mask before rotation, ut—blurring by 3� 3� 5 mask after rotation,
5—blurring by 3� 3� 5 mask before rotation.



evaluated by the comparison with ground truth. In all cases
the estimates correspond well to the reference values. The
errors are mostly below the discretization error. For
illustration, in the situation depicted in Fig. 8, the ground-
truth registration parameters were rotation 10:92�, vertical
translation 37.7 pixels, and horizontal translation 41.2 pixels,
while the computed parameters were 11:00�, 37.7 pixels,
and 41.0 pixels, respectively. Summarizing the results of all
six experiments, the mean error and standard deviation of
the estimation of rotation angle were 0:06� and 0:05�, the
same for vertical translation were 0.1 and 0.4 pixel, and for
horizontal translation 0.3 and 0.5 pixel.

In a comparative experiment, we used exactly the same
registration algorithm, but invariants only to rotation [3] were
used instead of our combined invariants. None of the six
studied cases was correctly resolved. In all cases, many
CP pairs were matched incorrectly. For instance, in the
experiment in Fig. 8, CP no. 7 was mismatched to the
unlabeled CPC to the left from no. 8. This illustrates the actual
need of blur invariants when attempting to register blurred
images.

It is worth noting a few empiric observations. The above
described registration algorithm has several user-defined
parameters: the choice and the number of the invariants
involved, the radius of the neighborhood the invariants are
calculated from, and the radius of the neighborhood used for
the CP’s positions refinement. The choice of the parameters is
influenced by the type of the scene and an extent of the camera
motion and the blurring degradation, among others. How-
ever, there is no explicit relationship between parameter
values and the type of image deformation, just heuristic
conclusions can be made. The experiments we have per-
formed indicate that from three to nine invariants usually
provide sufficient discriminative power. The more blurred
the image is, the larger neighborhood for calculating the
invariants should be (common values range from 30 to 90
pixels). There is no “optimal” radius, generally the larger
neighborhood provides better discrimination power. For a
particular image, upper limit is set up by the homogeneity
constraint (the amount of blurring can be different for
different neighborhoods but should not vary within each of
them) and by the required complexity. The neighborhoods

for position improvement should be small (2 or 3 pixel radius)
because the corner detection algorithm should not produce
higher deviations of the candidate positions.

It should also be noted that, in this experiment, the degrees
of freedom of the camera motion were limited to along-axis
rotation and movement parallel to the wall of the room. Thus,
rotation and blurring invariance of the proposed descriptors
was sufficient. In case of unrestricted camera motion in
3D space, projective (or at least affine) invariant descriptors
along with a method for invariant neighborhood selection
would be desirable. This is, however, a difficult problem
which has been partially resolved recently for isolated planar
objects in [38], but the general case is still under investigation.

7 CONCLUSION

The paper is devoted to the image features which are invariant
simultaneously to convolution with a centrally symmetric
filter and rotation. There is no demand of a prior knowledge of
the size, shape, and coefficients of the convolution filter (with
exception of the centrosymmetry). There is also no limitation
of the dimensionality—the invariants can be derived for
images of arbitrary dimension. First, we presented recur-
sively defined moment-based features invariant to convolu-
tion. Then, we employed group representation theory to
derive forms of the blur invariants, which are then invariant
also to rotation. In the experimental part, we concentrated our
attention to 3D case. We demonstrated the invariance
properties in case of various convolution filters, the robust-
ness to additive noise, and the discrimination power. We
showed a successful utilization of the invariants when
registering blurred and noisy MRI data and demonstrated
how the invariants can be used for registration of out-of-
focused 2D images of an indoor scene.

The benefit of the paper is twofold. From a theoretical point
of view, this paper as the first one bridges the gap between
pure convolution invariants presented by Flusser et al. [25],
[33]andpurerotation invariantsproposed in [11], [19].Froma
practical point of view, the invariants presented in this paper
are more applicable thanks to their invariance to broader class
of image degradations. We envisage the applications mainly
in registration of images taken by nonideal sensors and in
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Fig. 8. Images of the indoor scene. Camera at the initial position (left); camera at an unknown position, the scene is out-of-focused due to the
inserted object (right). 30 CPC’s are marked by crosses, those which form the corresponding CP pairs are numbered.



object recognition in blurred and noisy environment. There
are many application areas where one has to deal with blurred
images: satellite images are often blurred due to the composite
sensor PSF and atmospheric turbulence [39] and astronomical
images are also degraded by a low-pass filtering due to
nonideal observational conditions [40]. As it was shown in
Section 6, the proposed method can be applied to registration
of volumetric medical images as well as of 2D images
degraded by blurring of an unknown nature. On the other
hand, it was demonstrated that traditional rotation moment
invariants cannot resolve this task successfully. To speed up
the process when registering large images, popular multiscale
techniques [41] along with effective search strategies [42], [43]
can be employed. Another possible application is character/
digit recognition on blurred images and in the area of video
surveillance and person authentication where face recogni-
tion from defocused photographs is often required.

However, our method has certain limitations. In image
registration, the invariants are calculated from parts of the
image only (usually from the neighborhoods of certain
significant points). In such a case, the gray values along the
boundaries of these parts are influenced by the pixels from
the outside and convolution is not well defined within the
region of interest. The robustness to this so-called “bound-
ary effect” depends on the size of the region of interest and
on the size of the blurring filter. The robustness may be low
when both sizes are comparable, which prevents from using
the blur invariants in such cases. In face and character
recognition tasks, the limitation is induced by the fact that
our invariants (as well as all other moment-based invar-
iants) are intrinsically global, i.e., they are calculated from
the whole image including background. Thus, the object
must be segmented from the background prior the calcula-
tion of the invariants (which may be problematical in case
of heavy blur) or, alternatively, the background must be the
same for all objects entering the system.

Another limitation appears when we want to distinguish
among symmetric objects. It has a profound theoretical
reason—any shape descriptor invariant to a certain class of
transformations cannot, in principle, distinguish objects
which differ from each other only by transformations from
this class. Thus, any invariant (even different from those
presented here) to convolution with a centrosymmetric PSF
cannot distinguish different centrosymmetric objects because
it must give a constant response on all centrosymmetric
images. This is because any centrosymmetric image can be
considered as a blurring PSF acting on delta-function.

The forms of the invariants presented in this paper are
not invariant to image scaling. Scaling invariance can be
achieved easily just by proper normalization of the
moments, but another more serious problem appears when
we want to register/match images having a scale difference.
The neighborhoods of the control points must also be scale-
invariant which is difficult to ensure.

The assumption of centrosymmetry of the degradation
filter is not a significant limitation for practical utilization of
the method. Most real sensors and imaging systems, both
optical and nonoptical ones, have the PSF with certain
degree of symmetry. In many cases they have even higher
symmetries, such as axial or radial symmetry. Thus, the
central symmetry is general enough to describe almost all
practical situations. It should be pointed out that although
our primary motivation was to find invariants to low-pass

blurring, the invariants described in this paper are applic-
able to any centrosymmetric PSF having nonzero integral,
even if it has negative values.
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