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Abstract. The paper deals with learning knowledge about objects, i.e. entities 
of the real environment. This is an important topic, often neglected by machine 
learning. The whole experimental approach is implemented via the integration 
of several areas of AI, namely machine learning, knowledge base management, 
reasoning, especially Prolog-like and analogical. More specifically, the 
approach is based on further generalization of already learned (generalized) 
rules, and on analogy. How to obtain suitable rules and how to organize learned 
knowledge into ontology is analyzed too. The ontology has special properties, 
like rules, interconnection of descriptions (concepts) via interfaces, use of 
views, and modularization.  

1 Introduction 

Look at 

at(WK,g1). 

It is a plain predicate from a chess domain saying “white king WK is at the field g1”. 
Such predicate is a basic building block of many knowledge bases. In machine 
learning (ML), much attention is devoted to the creation of predicates and their 
specification via rules, especially in inductive logic programming (ILP) [20]. It is 
known, how to build them. Much attention is devoted to their organization into 
knowledge bases (ontologies) [23]. However, nearly no attention is devoted to the 
identification of objects, like king and field, and creation of their descriptions. Yet 
still, the use of KB does assume knowledge of such objects. This paper persuades this 
topic, i.e. how to learn descriptions of deterministic objects. 

 “A computer program is said to learn from experience E with respect to some 
class of tasks T and performance measure P, if its performance at tasks in T, as 
measured by P, improves with experience E.” [19]. It is a good and well-accepted 
definition (see e.g. [9], [13], [14], [21]). However, Mitchell [19] found it useful “to 
reduce the problem of improving performance P at task T to the problem of learning 
some particular target function”. Most of the contemporary ML systems correspond to 
this reduced definition. Corresponding consequences reveal when we try to apply 
resulting knowledge: It is necessary to add other steps, e.g. 1) formulate problem, 2) 
determine representation, 3) collect training data, 4) evaluate the learned knowledge, 
and 5) field the knowledge base [13]. Especially steps 1) and 2) are practically not 
automated at all. 



 

In contemporary ML, stochastic approaches prevail. However, the environment 
has sometimes a deterministic character too and corresponding deterministic 
approaches to ML can be simpler and more efficient. This can be illustrated on the 
task of parity recognition. The reported accuracy of this task solved by neural network 
increased with number of hidden neurons. For ten neurons it was 99.3% [26]. 
However, inductive logic programming can reach directly just 100% [32]. 

Kaelbling et al [11] in their study say: “We are interested in building systems that 
learn to interact with complex real world environments, by representing the dynamics 
of the world with models that allow strong generalization through representation in 
terms of objects. Humans speak (and apparently think) of the world as being made up 
of objects. There are chairs and apples and clouds and meetings … it is hard to 
imagine a truly intelligent agent that does not conceive of the world in terms of 
objects and their properties and relations to other objects.” [11] paper, which is an 
introductory study to the problematic, and Kaelbling course [10], show how fresh the 
problem of learning objects is. Besides the [11] paper there is only one concrete 
approach (as far as I know) directly oriented on discovering objects [12] [22]. 

I’m trying to responds to this situation. My general goal is to test and further 
precise the previously developed framework [6]. The framework is designed for 
complex learning in complex environments. This learning corresponds to the original 
not reduced definition of ML. Learning is done in the context of problem solver (PS). 
PS, in turn, works in the context of its environment. Our environment is chess and the 
task is to learn legal chess moves. It has an advantage that this is a moderately 
complex environment and that we (designers) know some rules governing the 
behavior of this environment and we know some objects in this environment. We can 
use this knowledge to influence the incremental design of PS. I have chosen this task 
even though Mitchell [19, p. 286] referring to [24] claims FOIL system 
“demonstrated to learn … to discriminate legal from illegal chess positions”. More 
precise description, motivating my choice, would be that FOIL correctly classified 
better then 95% of unseen cases in the chess endgame White King and Rook versus 
Black King [24, pp. 257-8]. Moreover, FOIL had knowledge about objects like White 
King, Rook, Black King, fields, and their relations. This is that kind of knowledge, 
which PS should try to discover. 

To achieve our goal, learning must be integrated with other cognitive functions of 
PS, like reasoning and knowledge base management. In the framework, there are 
already integrated different areas of AI, like ML, Prolog-like clauses representation 
and deduction, ontological knowledge representation. It brings difficulties, e.g. 
terminological and technical. C’est la vie. 

The rest of the paper is organized in two following sections. In the next section 2, a 
basic problem solver set-up is given. In the first subsection of the section 3, our 
approach to analogy and its relation to the creation of object description are described. 
Then, in the next subsection, learning suitable rules is described. In the last subsection 
of this section, the management of knowledge base is described. The object is a 
central concept of our framework. However, I am not going to give a precise 
specification of this concept. I am able to give (a lot of) examples of objects only (see 
above). The framework is implemented, mainly as a Smalltalk-based [30] system; 
used examples are (mostly) produced by this system. Its design is supported by 
Rational Rose [25] and Rational SoDA [29] tools. Its testing is based on SUnit [1], 



 

[30]. Its rule based representation and deduction is based on SOUL [18]. Its 
visualization and user interface is partially based on WinBoard [17]. As the paper 
covers several areas of AI its extent is limited (see [7], [8] for more details). 

2 Basic Set-up 

The basic set-up consists of environment and problem solver (PS). On a conceptual 
level, it is described in [5], [6]. The environment is a simulated chess environment. It 
is governed by its set of rules. It allows legal moves only. PS should solve problems, 
i.e. its goal is to comply with that what the environment allows, with the rules of the 
environment. At the beginning, PS does not know these rules. It can only recognize 
that it has a problem, when it does not respect them. PS is connected with its 
environment by its inputs and outputs. PS should provide outputs, which do not cause 
the problem. It can use its inputs for this, i.e. it can use inputs and knowledge of a 
function, f: X→Y, where X and Y are spaces of inputs’ and outputs’ values. 
Practically no knowledge is pre-built into PS and only a trivial interface between PS 
and its environment is chosen.  

This trivial interface does not mean a simple one. The inputs consist of 773 binary 
attributes, outputs of 5 integer and binary attributes. For each side, figure, and field of 
the chess environment, there is an input attribute (2x6x8x8=768 attributes) specifying 
whether a corresponding figure is at a corresponding field. As PS has no knowledge 
about sides, fields, and figures, it also has no knowledge about relations of these 
attributes to these objects. There are also other 5 input attributes specifying whether 
there is a problem identified by the teacher, p1, by board, p2, as a move problem, p3; 
p4 specifies if it is PS turn to move, p5 if there is a problem at all. These input 
attributes fully characterize the state of the environment (for our purposes). Using p5, 
moves can be evaluated and positive (good) and negative (wrong) examples of PS 
behavior can be gathered. This means that the evaluation is done by PS and is based 
on values provided by environment. Our teacher is a part of the environment and can 
influence the evaluation only indirectly and partially. o1, o2, o3, o4, o5 output 
attributes specify from which column, o1, and row, o2, to move and to which column, 
o3, and row, o4, to move, o5 specifies whether PS makes a move at all. The 
performance P of PS is probability of successful-good move. 

This trivial interface is intentional. It is something like a situation of a new-born 
baby. We do know there are, in this environment, objects like fields, figures, columns, 
rows, and there are rules governing their behavior. For example, there is a rule like 

at(o5,?X):-at(p4,?X) (1) 

where at(o5,1), means PS should move, at(o5,0) means PS should not move. I use a 
Prolog-like notation. There are clauses like at(o5,1), Prolog terms like o5 and 1. Some 
of these Prolog terms, e.g. o5, correspond to PS attributes, others to their values. This 
very-little-knowledge (assumption) aims at two things. First, to provide an opportunity 
to learn descriptions of these objects and rules, and second, to analyze and govern 
learning processes, which are discovering them.  



 

As PS has initially practically no knowledge, there is a low probability of a good 
move, low performance P. It depends on specific situation, but it is roughly from 
0.00012 to 0.05. This could lead to many negative examples as compared to positive 
ones, and consequently to low efficiency of learning. To overcome this, PS can follow 
suggestions of the teacher.  

PS knowledge base (KB) is a net of object descriptions. They are related like 
concepts in an ontology, e.g. by generalization, association, and aggregation relations. 
There are three extensions as compared to the classical ontology structure [23]. First, 
descriptions can contain rules to describe behavior of corresponding objects. Rules 
are already present in ontologies like CLASSIC [4] and Loom [16]. What 
differentiates these ontologies from our one is that we do not assume consistency of 
rules, but allow inconsistency. This corresponds to a human approach to the real 
environment. Second, they can also contain inputs and outputs interfaces to relate 
them to other descriptions. Third, descriptions can be composed from other 
descriptions, views, which partially describe corresponding object. At the beginning 
of PS work, KB is nearly empty. It contains only descriptions corresponding to the 
attribute values. It also contains trivial descriptions of the whole environment, called 
model, and of the whole PS, called plan; here, a trivial description means a 
description without rules. 

3 Learning 

The previously described set-up allows the gathering of history and consequently the 
preparation of evaluated examples of PS behavior. Then we can use known heuristic 
methods [19], [15] allowing to find description of function f: X→Y, if we have a set 
of examples E, (x,y) є E, x є X, y є Y. We can learn description of function f. 
Function f can be described using rules, e.g. to distinguish positive and negative 
moves 

at(p,0):-at(p4,0),at(p3,0),at(WPe4,0),at(o5,0) 

at(p,1):-at(p4,1),at(p3,0),at(WPe3,1),at(WPe4,0) 

at(p,0):-at(p4,1),at(p3,1),at(WPe3,1),at(WPe4,0), 
at(o5,1) 

... 

(2) 

where at(p,0), resp. at(p,1) mean positive resp. negative consequences of 
combinations of inputs and outputs; WPe3 and WPe4 are names of input attributes 
used for visualization purposes. Problem1 is that the space F of possible functions f є 
F is usually huge. The cardinality of F,  

|F|=|Y||X|-|E| , (3) 

                                                        
1 It is a problem of PS design. It should be distinguished from the problem of PS. 



 

grows super-exponentially with number of input attributes [15]. This is not a new 
problem. It is necessary to constraint this space somehow. My approach to this 
problem is to use every suitable possibility (heuristics) to reduce this complexity. 

3.1 Analogy and objects 

The basic idea how to learn objects is following: Let PS follows a sequence of 
recommended similar moves, like 1. e3 ..., 2. e4 ..., 3. e5 ..., ... If we segment history 
into appropriate parts, we can learn corresponding descriptions. These descriptions 
are called views. From these views we can get a set of similar rules like 

at(o3,5,o4,3):-at(WPe3,0) 

at(o3,5,o4,4):-at(WPe4,0) 

at(o3,5,o4,5):-at(WPe5,0) 

... 

and by analogy we can derive that this can be described as 

at(o3,5,o4,?A1):-at(?A2,0),r(?A1,?A2) 

r(3,WPe3). r(4,Wpe4). r(5,Wpe5). ... 

and the sets of basic objects, i.e. variable value ranges  

?A1~{3,4,5,...},?A2~{WPe3,Wpe4,Wpe5,...} 

correspond to some possibly new objects. In fact, object {3,4,5,...} is not a new 
one; it corresponds to the values of o3 attribute. However, {WPe3,Wpe4, 
Wpe5,...} is new, it corresponds to something like a seed of e-column.  

It showed that the task is more complicated. Learned 7, 2, and 7 rules look like 

at(o3,4):-at(p3,0),at(WPe3,1),at(WPe4,0),at(o5,0) 

at(o3,5):-at(p3,1),at(WPe3,1),at(WPe4,0),at(o5,1) 

... 

(4) 

at(o3,4):-at(o5,1) 

at(o3,3):-at(o5,0) 

(5) 

at(o3,4):-at(WPe4,1),at(WPe5,0),at(WPe6,0),at(o5,0) 

at(o3,3):-at(WPe4,0),at(WPe5,0),          at(o5,0) 

... 

(6) 

They are not very similar. The measure of similarity is chosen to be inversely 
proportional to the number of differences in compared descriptions. There are several 
possible reasons for their dissimilarity: A) Conditions for learning are changing as 
learned knowledge is immediately applied. B) If PS has no knowledge to use, it 



 

selects a move randomly. C) PS has no knowledge to segment examples properly. D) 
There are (two) different groups of attributes; I would call them local and global ones. 
Global ones are changing more often. Global ones are e.g. p3, o5, local e.g. WPe3. 
There are dependencies among global attributes and it is necessary to discover and 
use them first. E) The rules are relatively complex. When applying analogy in this 
situation we obtain rules like 

at(?A1,?X):-at(?A2,?Y),not(?X,?Y),r(?A1,?A2) 

with variable value ranges 

?A1~{p5n,p4n,p3n,p5n,BPf2n,BPg5n,p1n,p3n,BPg6n,WPd2n, 
p5n,WPe4n,p4n,p3n}, 

?A2~{p3, p5, o5, p5, BPf3, o5,   p3n,p4, BPg7, WPd3, 
p1, o5,   o5, p3} 

where name like p5n refers to next version of p5. They are obviously useless. 
This means that on the way to learning objects we must first understand (learn) 

dependencies among (global) attributes, i.e. find ways how to create suitable rules 
describing these dependencies and use these rules to simplify views and, analogies. 

3.2 Rules 

There are several possibilities how to learn suitable rules: 1) orientate on changes, 2) 
eliminate redundant attributes, 3) use standard information gain [19], 4) reduce the 
number of used attributes, 5) use simplifications, 6) maintain dependency on released 
output attributes, 7) remove cyclic dependencies, 8) use recognized inconsistency, 9) 
use plan and model, 10) use learned descriptions immediately, 11) variabilize rules, 
12) introduce variables into simple rules. I’ll elaborate some. 
Orientation on changes. The greatest influence on |F| has the exponent from (3). So, 
we try to reduce |X|. The first reduction possibility is an orientation on changes. The 
chess environment is relatively stable, e.g. in our experiments about 0.2% of input 
attributes changes their value in one move. PS focuses its attention on changing 
attributes only. It brings enormous reduction of cardinality of F. 
Elimination of redundant attributes. The next reduction also focuses on |X|. It is 
done by eliminating redundant attributes form X. We consider attribute xi redundant if 

f(x1, ... xi-1, xi, xi+1,... xn)= f(x1, ... xi-1, xi+1,... xn) . (7) 

Using the modified approach of [31], we could eliminate all redundant attributes. It 
is true that due to a restricted number of used learning examples some other in-fact 
non-redundant attributes can be considered redundant also. This could lead to a local 
extreme (from the viewpoint of simplicity of learned description) and to situation 
when really redundant attributes are not eliminated. However, this can be at least 
partially refined by the other PS possibilities. 
Reduction of number of used attributes. The next reduction again focuses on |X|. It 
is possible to try to reduce the number of used attributes. We try to find a dependency 
among the smallest set of attributes. This set is determined as a set of attributes 
changed between (two) consecutive moves. 



 

Simplifications. The next reduction focuses on |Y|. The simplification is a function 
derived from the original one by removing output attribute(s), i.e. from 

y=(y1, ... ym)=f(x) , (8) 

yj=fj(x) (9) 

can be derived. (This possibility is used by [22]. They call it a functional 
transformation.) Examples of such learned descriptions are 

at(o5,?X):-at(p4,?X) (10) 

at(p4n,?X):-at(o5,?Y),not(?X,?Y) (11) 

at(p3n,1):-at(p4,1),at(o5,0) 

at(p3n,0):-at(p4,1),at(o5,1) 

at(p3n,1):-at(p4,0),at(o5,1) 

(12) 

The example of learned not simplified description, so called equivalent description, is  

at(p,?X):-at(p5n,?X) (13) 

This “describes the whole model”, i.e. how the most important attribute of the model, 
p, depends on the remaining attributes. (How to learn the dependency of p5n on other 
attributes still remains to be solved - learned.) 
Maintenance of dependency. Simplification can depend on removed output 
attributes. It is possible to keep this dependency by including these output attributes 
among potential input attributes. The whole hierarchy of dependent descriptions may 
be created. 

3.3 Ontology 

The exploitation of possibilities listed in the previous subsections leads and, at the 
same time, is driven by an organization of knowledge descriptions into some kind of 
ontology. What is the aim of this ontology? It is given by the necessity to describe 
relations among descriptions. Here, we describe a part of our ontology, this one, 
supporting the creation of analogies (and learning objects). It is illustrated by Fig. 1.  

Above, we introduced plan, model, view, and simplification. They are organized in 
the following way. Plan and model are similar structures (similar in a general sense, 
not in the sense introduced above). They differ in that the inputs and outputs of plan 
are identical to the inputs and outputs of PS. The inputs of the model consist of the 
inputs and outputs of PS. The outputs of the model consist of next inputs of PS. It 
means that model determines what happens if, in some environment state given by PS 
inputs, PS outputs are applied. It determines the next environment state. This is given 
by next inputs of PS. Plan or model form a context. During learning, the contexts are 
iteratively filled with new descriptions. 



 

context : 
Description

view : 
Description

simplification : 
Description

analogy : 
DescriptionOfAnalogyFunction

partialAnalogy : 
DescriptionOfAnalogyFunction

view generalization : 
Description

 

Fig. 1. Part of ontology used for analogies. Boxes correspond to objects, now in a software 
sense. The first part of name is an object name, the second is a corresponding class name. Box 
connections show relations between objects. In UML terms [3], this is a type of object diagram. 

On the first level, the context is described by or consists of particular views. (This 
will be refined later.) Each view is in turn described either directly by so called full 
description (not in the Figure) or by a collection of simplifications. In this knowledge 
structure, analogies are searched by searching for similar descriptions in all views. 
There are compared only these descriptions which have the same structure, i.e. same 
number of rules and same number of predicates in rule’s conditions. If similar 
descriptions are found, the search continues as the searching mechanisms attempts to 
find all similar descriptions corresponding to the same analogy. It is also checked if 
the description does not belong to an already found analogy. The newly created 
analogy is connected to the context. 

This kind of search is used also to search for generally valid descriptions, i.e. 
descriptions valid in more views. In that search directly the sameness is required. If 
some same descriptions are found then their generality is examined. It happens that in 
some view, this just found description is not learnable, yet it is consistent with the 
view’s examples. In such case, this description is considered valid also for this view. 
If this description is valid for all views of the context, it is connected directly to this 
context as analogy and at the same time, the original description is removed from its 
original position. View histories contain changes only. To be able to examine the 
generality, views must be connected by anchors (not in the Figure), which store 
relative differences between corresponding view histories. When a new view is 
processed, it is only checked if corresponding analogical description is valid for the 
view’s examples. This is the way in which descriptions (10-13) were found. If a new 
description is not valid for all views of the context, a new view is created as view 
generalization, this description is connected to this view as a partial analogy, this new 
view generalization is connected with original views, and again the original 
descriptions are removed from their original positions. 



 

4 Conclusion 

It is not a problem to generate as many rules as you like, if you have enough 
examples. This is our case. The problem is to generate - learn useful rules. This paper 
describes an experimental approach to one significant and unsolved task of machine 
learning, namely that of learning objects. Learning objects is not an easy task. Our 
contribution is a contribution to the understanding of this task and its solution. The 
understanding was gained via gradual solution of the task and revealed some suitable 
steps towards the solution itself. Learning useful rules seems to be one of such steps. 
Specifically, this approach has resulted in learning several useful rules, (10-13).  

The core idea of our approach is the integration of more AI concepts – functions 
into one system. It is not new. In AI, this is slowly, painfully, but steadily pushed 
ahead. In the introduction, we mentioned the steps, which are necessary to achieve 
full learning. They exemplify the integration. These steps are (of course) implemented 
in our framework. They are there in simplified versions. The implementation is not 
simple, contrariwise, it is reasonably complex. For this reason it is based on a 
principle: “make it work, as simple as possible”. Thence the breadth given by the 
attempt to integrate necessarily brings some shallowness. However, I see it as a 
necessary way ahead.  

There is a huge space of possible further developments and improvements. They 
can range from small and miner improvements to important and great ones. Among 
small, we can name e.g. a delayed use of learned descriptions, which could bring 
more stability and similarity into knowledge base and consequently improvement in 
discovering analogies. Among greater, we can mention the introduction of self-
control or the extension of range of learning methods – representations of 
descriptions. However, these are only the implementations of the other parts of our 
general framework. 
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