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Barbara Zitová*, Jan Flusser

Department of Image Processing, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic
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Abstract

This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying

images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration

geometrically align two images (the reference and sensed images). The reviewed approaches are classified according to their nature (area-

based and feature-based) and according to four basic steps of image registration procedure: feature detection, feature matching, mapping

function design, and image transformation and resampling. Main contributions, advantages, and drawbacks of the methods are mentioned in

the paper. Problematic issues of image registration and outlook for the future research are discussed too. The major goal of the paper is to

provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Image registration is the process of overlaying two or

more images of the same scene taken at different times,

from different viewpoints, and/or by different sensors. It

geometrically aligns two images—the reference and

sensed images. The present differences between images

are introduced due to different imaging conditions. Image

registration is a crucial step in all image analysis tasks

in which the final information is gained from the

combination of various data sources like in image fusion,

change detection, and multichannel image restoration.

Typically, registration is required in remote sensing

(multispectral classification, environmental monitoring,

change detection, image mosaicing, weather forecasting,

creating super-resolution images, integrating information

into geographic information systems (GIS)), in medicine

(combining computer tomography (CT) and NMR data

to obtain more complete information about the patient,

monitoring tumor growth, treatment verification,

comparison of the patient’s data with anatomical atlases),

in cartography (map updating), and in computer vision

(target localization, automatic quality control), to name

a few.

During the last decades, image acquisition devices have

undergone rapid development and growing amount and

diversity of obtained images invoked the research on

automatic image registration. A comprehensive survey of

image registration methods was published in 1992 by

Brown [26]. The intention of our article is to cover relevant

approaches introduced later and in this way map the current

development of registration techniques. According to the

database of the Institute of Scientific Information (ISI), in

the last 10 years more than 1000 papers were published on

the topic of image registration. Methods published before

1992 that became classic or introduced key ideas, which are

still in use, are included as well to retain the continuity and

to give complete view of image registration research. We do

not contemplate to go into details of particular algorithms or

describe results of comparative experiments, rather we want

to summarize main approaches and point out interesting

parts of the registration methods.

In Section 2 various aspects and problems of image

registration will be discussed. Both area-based and feature-

based approaches to feature selection are described in

Section 3. Section 4 reviews the existing algorithms for

feature matching. Methods for mapping function design are

given in Section 5. Finally, Section 6 surveys main
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techniques for image transformation and resampling.

Evaluation of the image registration accuracy is covered

in Section 7. Section 8 concludes main trends in the research

on registration methods and offers the outlook for the future.

2. Image registration methodology

Image registration, as it was mentioned above, is widely

used in remote sensing, medical imaging, computer vision

etc. In general, its applications can be divided into four main

groups according to the manner of the image acquisition:

Different viewpoints (multiview analysis). Images of the

same scene are acquired from different viewpoints. The aim

is to gain larger a 2D view or a 3D representation of the

scanned scene.

Examples of applications: Remote sensing—mosaicing

of images of the surveyed area. Computer vision—shape

recovery (shape from stereo).

Different times (multitemporal analysis). Images of the

same scene are acquired at different times, often on regular

basis, and possibly under different conditions. The aim is to

find and evaluate changes in the scene which appeared

between the consecutive image acquisitions.

Examples of applications: Remote sensing—monitoring

of global land usage, landscape planning. Computer

vision—automatic change detection for security monitor-

ing, motion tracking. Medical imaging—monitoring of the

healing therapy, monitoring of the tumor evolution.

Different sensors (multimodal analysis). Images of the

same scene are acquired by different sensors. The aim is to

integrate the information obtained from different source

streams to gain more complex and detailed scene

representation.

Examples of applications: Remote sensing—fusion of

information from sensors with different characteristics like

panchromatic images, offering better spatial resolution,

color/multispectral images with better spectral resolution, or

radar images independent of cloud cover and solar

illumination. Medical imaging—combination of sensors

recording the anatomical body structure like magnetic

resonance image (MRI), ultrasound or CT with sensors

monitoring functional and metabolic body activities like

positron emission tomography (PET), single photon emis-

sion computed tomography (SPECT) or magnetic resonance

spectroscopy (MRS). Results can be applied, for instance, in

radiotherapy and nuclear medicine.

Scene to model registration. Images of a scene and a

model of the scene are registered. The model can be a

computer representation of the scene, for instance maps or

digital elevation models (DEM) in GIS, another scene with

similar content (another patient), ‘average’ specimen, etc.

The aim is to localize the acquired image in the scene/model

and/or to compare them.

Examples of applications: Remote sensing—registration

of aerial or satellite data into maps or other GIS layers.

Computer vision—target template matching with real-time

images, automatic quality inspection. Medical imaging—

comparison of the patient’s image with digital anatomical

atlases, specimen classification.

Due to the diversity of images to be registered and due to

various types of degradations it is impossible to design a

universal method applicable to all registration tasks. Every

method should take into account not only the assumed type

of geometric deformation between the images but also

radiometric deformations and noise corruption, required

registration accuracy and application-dependent data

characteristics.

Nevertheless, the majority of the registration methods

consists of the following four steps (see Fig. 1):

† Feature detection. Salient and distinctive objects

(closed-boundary regions, edges, contours, line intersec-

tions, corners, etc.) are manually or, preferably, auto-

matically detected. For further processing, these features

can be represented by their point representatives (centers

of gravity, line endings, distinctive points), which are

called control points (CPs) in the literature.

† Feature matching. In this step, the correspondence

between the features detected in the sensed image and

those detected in the reference image is established.

Various feature descriptors and similarity measures

along with spatial relationships among the features are

used for that purpose.

† Transform model estimation. The type and parameters of

the so-called mapping functions, aligning the sensed

image with the reference image, are estimated. The

parameters of the mapping functions are computed by

means of the established feature correspondence.

† Image resampling and transformation. The sensed

image is transformed by means of the mapping

functions. Image values in non-integer coordinates

are computed by the appropriate interpolation

technique.

The implementation of each registration step has its

typical problems. First, we have to decide what kind of

features is appropriate for the given task. The features

should be distinctive objects, which are frequently spread

over the images and which are easily detectable. Usually,

the physical interpretability of the features is demanded.

The detected feature sets in the reference and sensed images

must have enough common elements, even in situations

when the images do not cover exactly the same scene or

when there are object occlusions or other unexpected

changes. The detection methods should have good localiz-

ation accuracy and should not be sensitive to the assumed

image degradation. In an ideal case, the algorithm should be

able to detect the same features in all projections of the

scene regardless of the particular image deformation.

In the feature matching step, problems caused by an

incorrect feature detection or by image degradations can
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arise. Physically corresponding features can be dissimilar

due to the different imaging conditions and/or due to the

different spectral sensitivity of the sensors. The choice of the

feature description and similarity measure has to consider

these factors. The feature descriptors should be invariant to

the assumed degradations. Simultaneously, they have to be

discriminable enough to be able to distinguish among

different features as well as sufficiently stable so as not to be

influenced by slight unexpected feature variations and noise.

The matching algorithm in the space of invariants should be

robust and efficient. Single features without corresponding

counterparts in the other image should not affect its

performance.

The type of the mapping functions should be

chosen according to the a priori known information

about the acquisition process and expected image

degradations. If no a priori information is available, the

model should be flexible and general enough to handle

all possible degradations which might appear. The

accuracy of the feature detection method, the reliability

of feature correspondence estimation, and the acceptable

approximation error need to be considered too. Moreover,

the decision about which differences between images

have to be removed by registration has to be done. It is

desirable not to remove the differences we are searching

for if the aim is a change detection. This issue is very

important and extremely difficult.

Finally, the choice of the appropriate type of resampling

technique depends on the trade-off between the demanded

accuracy of the interpolation and the computational

Fig. 1. Four steps of image registration: top row—feature detection (corners were used as the features in this case). Middle row—feature matching by invariant

descriptors (the corresponding pairs are marked by numbers). Bottom left—transform model estimation exploiting the established correspondence. Bottom

right—image resampling and transformation using appropriate interpolation technique.
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complexity. The nearest-neighbor or bilinear interpolation

are sufficient in most cases; however, some applications

require more precise methods.

Because of its importance in various application areas as

well as because of its complicated nature, image registration

has been the topic of much recent research. The historically

first survey paper [64] covers mainly the methods based on

image correlation. Probably the most exhaustive review of

the general-purpose image registration methods is in Ref.

[26]. Registration techniques applied particularly in medical

imaging are summarized in Refs. [86,111,123,195]. In Ref.

[9] the surface based registration methods in medical

imaging are reviewed. Volume-based registration is

reviewed in Ref. [40]. The registration methods applied

mainly in remote sensing are described and evaluated in [59,

81,106]. Big evaluation project of different registration

methods was run in Vanderbilt university [206].

Registration methods can be categorized with respect to

various criteria. The ones usually used are the application

area, dimensionality of data, type and complexity of

assumed image deformations, computational cost, and the

essential ideas of the registration algorithm. Here, the

classification according to the essential ideas is chosen,

considering the decomposition of the registration into the

described four steps. The techniques exceeding this four-

step framework are covered according to their major

contribution.

3. Feature detection

Formerly, the features were objects manually selected by

an expert. During an automation of this registration step,

two main approaches to feature understanding have been

formed.

3.1. Area-based methods

Area-based methods put emphasis rather on the feature

matching step than on their detection. No features are

detected in these approaches so the first step of image

registration is omitted. The methods belonging to this class

will be covered in sections corresponding to the other

registration steps.

3.2. Feature-based methods

The second approach is based on the extraction of salient

structures–features—in the images. Significant regions

(forests, lakes, fields), lines (region boundaries, coastlines,

roads, rivers) or points (region corners, line intersections,

points on curves with high curvature) are understood as

features here. They should be distinct, spread all over the

image and efficiently detectable in both images. They are

expected to be stable in time to stay at fixed positions during

the whole experiment.

The comparability of feature sets in the sensed and

reference images is assured by the invariance and accuracy

of the feature detector and by the overlap criterion. In other

words, the number of common elements of the detected sets

of features should be sufficiently high, regardless of the

change of image geometry, radiometric conditions, presence

of additive noise, and of changes in the scanned scene. The

‘remarkableness’ of the features is implied by their

definition. In contrast to the area-based methods, the

feature-based ones do not work directly with image intensity

values. The features represent information on higher level.

This property makes feature-based methods suitable for

situations when illumination changes are expected or

multisensor analysis is demanded.

Region features. The region-like features can be the

projections of general high contrast closed-boundary

regions of an appropriate size [54,72], water reservoirs,

and lakes [71,88], buildings [92], forests [165], urban areas

[161] or shadows [24]. The general criterion of closed-

boundary regions is prevalent. The regions are often

represented by their centers of gravity, which are invariant

with respect to rotation, scaling, and skewing and stable

under random noise and gray level variation.

Region features are detected by means of segmentation

methods [137]. The accuracy of the segmentation can

significantly influence the resulting registration. Goshtasby

et al. [72] proposed a refinement of the segmentation

process to improve the registration quality. The segmenta-

tion of the image was done iteratively together with the

registration; in every iteration, the rough estimation of the

object correspondence was used to tune the segmentation

parameters. They claimed the subpixel accuracy of

registration could be achieved.

Recently, selection of region features invariant with

respect to change of scale caught attention. Alhichri and

Kamel [2] proposed the idea of virtual circles, using

distance transform. Affinely invariant neighborhoods were

described in [194], based on Harris corner detector [135]

and edges (curved or straight) going through detected

corners. Different approach to this problem using Maxi-

mally Stable Extremal Regions based on homogeneity of

image intensities was presented by Matas et al. [127].

Line features. The line features can be the representations

of general line segments [92,132,205], object contours [36,

74,112], coastal lines, [124,168], roads [114] or elongated

anatomic structures [202] in medical imaging. Line

correspondence is usually expressed by pairs of line ends

or middle points.

Standard edge detection methods, like Canny detector

[28] or a detector based on the Laplacian of Gaussian [126],

are employed for the line feature detection. The survey of

existing edge detection method together with their evalu-

ation can be found in [222]. Li et al. [112] proposed to

exploit the already detected features in the reference image

(optical data) for the detection of lines in the sensed images

(SAR images with speckle noise, which is a typical
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degradation present in this type of data). They applied

elastic contour extraction. The comparison of different

operators for the feature edge detection and the ridge

detection in multimodal medical images is presented by

Maintz et al. [121,122].

Point features. The point features group consists of

methods working with line intersections [175,198], road

crossings [79,161], centroids of water regions, oil and gas

pads [190], high variance points [45], local curvature

discontinuities detected using the Gabor wavelets [125,

219], inflection points of curves [3,11], local extrema of

wavelet transform [58,90], the most distinctive points with

respect to a specified measure of similarity [115], and

corners [20,92,204].

The core algorithms of feature detectors in most cases

follow the definitions of the ‘point’ as line intersection,

centroid of closed-boundary region or local modulus

maxima of the wavelet transform. Corners form specific

class of features, because ‘to-be-a-corner’ property is hard

to define mathematically (intuitively, corners are under-

stood as points of high curvature on the region boundaries).

Much effort has been spent in developing precise, robust,

and fast method for corner detection. A survey of corner

detectors can be found in Refs. [155,172,220] and the most

up-to-date and exhaustive in Ref. [156]. The latter also

analyzes localization properties of the detectors. Corners are

widely used as CPs mainly because of their invariance to

imaging geometry and because they are well perceived by a

human observer.

Kitchen and Rosenfeld [101] proposed to exploit the

second-order partial derivatives of the image function for

corner detection. Dreschler and Nagel [43] searched for the

local extrema of the Gaussian curvature. However, corner

detectors based on the second-order derivatives of the image

function are sensitive to noise. Thus Förstner [62] developed

a more robust, although time consuming, corner detector,

which is based on the first-order derivatives only. The

reputable Harris detector (also referred to as the Plessey

detector) [135] is in fact its inverse. The application of the

Förstner detector is described in Ref. [107], where it is used

for the registration of dental implants images.

More intuitive approach was chosen by Smith and Brady

[173] in their robust SUSAN method. As the criterion they

used the size of the area of the same color as that of the

central pixel. Trajkovic and Hedley [192] designed their

operator using the idea that the change of the image

intensity at the corners should be high in all directions.

Recently, Zitová et al. [224] proposed a parametric corner

detector, which does not employ any derivatives and which

was designed to handle blurred and noisy data. Rohr et al.

designed corner detectors, even for 3D data, allowing user

interaction [158].

The number of detected points can be very high, which

increases the computational time necessary for the regis-

tration. Several authors proposed methods for an efficient

selection of a subset of points (better than random) which

does not degrade the quality of the resulting registration.

Goshtasby [71] used only points belonging to a convex hull

of the whole set. Lavine [104] proposed to use points

forming the minimum spanning trees of sets. Ehlers [45]

merged points into ‘clumps’—large dense clusters.

3.3. Summary

To summarize, the use of feature-based methods is

recommended if the images contain enough distinctive and

easily detectable objects. This is usually the case of

applications in remote sensing and computer vision. The

typical images contain a lot of details (towns, rivers, roads,

forests, room facilities, etc). On the other hand, medical

images are not so rich in such details and thus area-based

methods are usually employed here. Sometimes, the lack of

distinctive objects in medical images is solved by the

interactive selection done by an expert or by introducing

extrinsic features, rigidly positioned with respect to the

patient (skin markers, screw markers, dental adapters, etc.)

[123]. The applicability of area-based and feature-based

methods for images with various contrast and sharpness is

analyzed in Ref. [151]. Recently, registration methods using

simultaneously both area-based and feature-based

approaches have started to appear [85].

4. Feature matching

The detected features in the reference and sensed images

can be matched by means of the image intensity values in

their close neighborhoods, the feature spatial distribution, or

the feature symbolic description. Some methods, while

looking for the feature correspondence, simultaneously

estimate the parameters of mapping functions and thus

merge the second and third registration steps.

In the following paragraphs, the two major categories

(area-based and feature-based methods, respectively), are

retained and further classified into subcategories according

to the basic ideas of the matching methods.

4.1. Area-based methods

Area-based methods, sometimes called correlation-like

methods or template matching [59] merge the feature

detection step with the matching part. These methods deal

with the images without attempting to detect salient objects.

Windows of predefined size or even entire images are used

for the correspondence estimation during the second

registration step, [4,12,145].

The limitations of the area-based methods originate in

their basic idea. Firstly, the rectangular window, which is

most often used, suits the registration of images which

locally differ only by a translation. If images are deformed

by more complex transformations, this type of the window

is not able to cover the same parts of the scene in
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the reference and sensed images (the rectangle can be

transformed to some other shape). Several authors proposed

to use circular shape of the window for mutually rotated

images. However, the comparability of such simple-shaped

windows is violated too if more complicated geometric

deformations (similarity, perspective transforms, etc.) are

present between images.

Another disadvantage of the area-based methods refers to

the ‘remarkableness’ of the window content. There is high

probability that a window containing a smooth area without

any prominent details will be matched incorrectly with other

smooth areas in the reference image due to its non-saliency.

The features for registration should be preferably detected in

distinctive parts of the image. Windows, whose selection is

often not based on their content evaluation, may not have

this property.

Classical area-based methods like cross-correlation (CC)

exploit for matching directly image intensities, without any

structural analysis. Consequently, they are sensitive to the

intensity changes, introduced for instance by noise, varying

illumination, and/or by using different sensor types.

4.1.1. Correlation-like methods

The classical representative of the area-based methods is

the normalized CC and its modifications [146].

CCði; jÞ ¼

P
W ðW 2 EðWÞÞðIði;jÞ 2 EðIði;jÞÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

W ðW 2 EðWÞÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Iði;jÞ
ðIði;jÞ 2 EðIði;jÞÞÞ

2
q

This measure of similarity is computed for window pairs

from the sensed and reference images and its maximum is

searched. The window pairs for which the maximum is

achieved are set as the corresponding ones (see Fig. 2). If the

subpixel accuracy of the registration is demanded, the

interpolation of the CC measure values needs to be used.

Although the CC based registration can exactly align

mutually translated images only, it can also be successfully

applied when slight rotation and scaling are present.

There are generalized versions of CC for geometrically

more deformed images. They compute the CC for each

assumed geometric transformation of the sensed image

window [83] and are able to handle even more complicated

geometric deformations than the translation-usually the

similarity transform. Berthilsson [17] tried to register in this

manner even affinely deformed images and Simper [170]

proposed to use a divide and conquer system and the CC

technique for registering images differing by perspective

changes as well as changes due to the lens imperfections.

The computational load, however, grows very fast with

the increase of the transformation complexity. In case the

images/objects to be registered are partially occluded the

extended CC method based on increment sign correlation

[98] can be applied [99].

Similar to the CC methods is the sequential similarity

detection algorithm (SSDA) [12]. It uses the sequential

search approach and a computationally simpler distance

measure than the CC. It accumulates the sum of absolute

differences of the image intensity values (matrix l1norm)

and applies the threshold criterion—if the accumulated sum

exceeds the given threshold, the candidate pair of windows

from the reference and sensed images is rejected and the

next pair is tested. The method is likely to be less accurate

than the CC but it is faster. Sum of squared differences

similarity measure was used in Ref. [211] for iterative

estimation of perspective deformation using piecewise

affine estimates for image decomposed to small patches.

Recently big interest in the area of multimodal

registration has been paid to the correlation ratio based

methods. In opposite to classical CC, this similarity measure

can handle intensity differences between images due to the

usage of different sensors—multimodal images. It supposes

that intensity dependence can be represented by some

function. Comparison of this approach to several other

algorithms developed for multimodal data can be found in

Ref. [154]. In case of noisy images with certain character-

istic (fixed-pattern noise), projection-based registration

[27], working with accumulated image rows and columns,

respectively, outperforms classical CC.

Huttenlocher et al. [95] proposed a method working with

other type of similarity measure. They registered binary

images (the output of an edge detector) transformed by

translation or translation plus rotation, by means of the

Hausdorff distance (HD). They compared the HD based

algorithm with the CC. Especially on images with perturbed

pixel locations, which are problematic for CC, HD outper-

forms the CC.

Two main drawbacks of the correlation-like methods are

the flatness of the similarity measure maxima (due to the

self-similarity of the images) and high computational

complexity. The maximum can be sharpened by preproces-

sing or by using the edge or vector correlation. Pratt [145]

applied, prior to the registration, image filtering to improve

the CC performance on noisy or highly correlated images.

Van Wie [196] and Anuta [6] employed the edge-based

correlation, which is computed on the edges extracted from

the images rather than on the original images themselves. In

this way, the method is less sensitive to intensity differences

between the reference and sensed images, too. Extension of

this approach, called vector-based correlation, computes the

similarity measures using various representations of the

window.

Despite the limitations mentioned above, the correlation-

like registration methods are still often in use, particularly

thanks to their easy hardware implementation, which makes

them useful for real-time applications.

4.1.2. Fourier methods

If an acceleration of the computational speed is needed or

if the images were acquired under varying conditions or

they are corrupted by frequency-dependent noise, then

Fourier methods are preferred rather than the correlation-

like methods. They exploit the Fourier representation of
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the images in the frequency domain. The phase correlation

method is based on the Fourier Shift Theorem [23] and was

originally proposed for the registration of translated images.

It computes the cross-power spectrum of the sensed and

reference images and looks for the location of the peak in its

inverse (see Fig. 2).

Fðf ÞFðgÞp

lFðf ÞFðgÞpl
¼ e2piðux0þvy0Þ

The method shows strong robustness against the correlated

and frequency dependent noise and non-uniform, time

varying illumination disturbances. The computational time

savings are more significant if the images, which are to be

registered, are large.

De Castro and Morandi [29] introduced an extension

of the phase correlation for additional rotation transform.

If the change of image scale is present too, the images

can be registered using the combination of polar-log

mapping of the spectral magnitude (which corresponds to

Fourier–Mellin transform) and the phase correlation [31,

150] or cepstrum filter [107]. The applications of the

extended algorithm in remote sensing (SPOT images) and

medical imaging (MR images) are described in Ref. [31].

The testing of the accuracy of the method in simulated

conditions (registration of deformed and noisy images of

ocular fundus) was performed with satisfying results [34].

Affinely distorted images were registered by means of

phase correlation and log-polar mapping in Ref. [210].

Application of phase correlation in 3D is described in

Ref. [119]. Another application exploiting the Fourier

transform is described in Ref. [6]. The authors proposed

to compute the correlation in frequency domain. This

Fig. 2. Area-based matching methods: registration of small template to the whole image using normalized cross-correlation (middle row) and phase correlation

(bottom row). The maxima identify the matching positions. The template is of the same spectral band as the reference image (the graphs on the left depict red-

red channel matching) and of different spectral band (the graphs on the right demonstrate red-blue channel matching). In a general case the normalized cross-

correlation could fail in case of multimodal data.
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method can handle multimodal images when applied to

the edge representations instead of the original graylevel

images. Extension of phase correlation to subpixel

registration by means of the analytic expression of

phase correlation on down sampled images was intro-

duced by Foroosh et al. [61].

4.1.3. Mutual information methods

The mutual information (MI) methods are the last group

of the area-based methods to be reviewed here. They have

appeared recently and represent the leading technique in

multimodal registration. Registration of multimodal images

is the difficult task, but often necessary to solve, especially

in medical imaging. The comparison of anatomical and

functional images of the patient’s body can lead to a

diagnosis, which would be impossible to gain otherwise.

Remote sensing often makes use of the exploitation of more

sensor types, too.

The MI, originating from the information theory, is a

measure of statistical dependency between two data sets and

it is particularly suitable for registration of images from

different modalities. MI between two random variables X

and Y is given by

MIðX;YÞ ¼ HðYÞ2 HðY lXÞ ¼ HðXÞ þ HðYÞ2 HðX;YÞ;

where HðXÞ ¼ 2EXðlogðPðXÞÞÞ represents entropy of ran-

dom variable and PðXÞ is the probability distribution of X:

The method is based on the maximization of MI (Fig. 3)

Often the speed up of the registration is implemented,

exploiting the coarse-to-fine resolution strategy (the pyr-

amidal approach).

One of the first articles proposing this technique is Viola

and Wells [201]. The authors described the application of

MI for the registration by magnetic resonance images as

well as for the 3D object model matching to the real scene.

MI was maximized using the gradient descent optimization

method. Thévenaz and Unser [186–188] tried to combine

various approaches, solving individual steps of MI regis-

tration. They employed the Parzen window for the joint

probability computation and the Jeeves method [187] or the

Marquardt–Levenberg method [186] to maximize the MI.

To speed up the computation, they used spline pyramids

Fig. 3. Mutual information: MI criterion (bottom row) computed in the neighborhood of point P between new and old photographs of the mosaic (top row).

Maximum of MI shows the correct matching position (point A). Point B indicates the false matching position selected previously by the human operator. The

mistake was caused by poor image quality and by complex nature of the image degradations.
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[188]. Ritter et al. [152] used hierarchical search strategy

together with simulated annealing to find the maximum of

the MI. Studholme et al. [177] compared three similar

measures of information dependency—the joint entropy, the

MI, and the normalized MI (a new idea, claimed to

outperform the others). They applied discrete histogram

estimates of the joint probability distribution instead of

application of the Parzen window used in previous work.

Maximization was achieved by using a multiresolution hill

climbing algorithm. They registered MR-CT and MR-PET

images of a human brain. Maes et al. [120] optimized the MI

by means of the Brent’s method and the Powell’s multi-

dimensional direction set method to register MR, CT, and

PET images of a human brain that differ by similarity

transform. MI applied to breast MR images is described in

Ref. [162]. The authors proposed to model the global

deformation present between the images by a combination

of the affine transformations and the spline-based free form

deformation. Likar and Pernus [116] studied the perform-

ance of different methods for the joint probability estimation

in registration of muscle fibre images. The comparison of

the basic MI registration with the version employing the

coarse-to-fine speed up was done in Ref. [143]. The

comparison of MI to six other registration methods

including the normalized CC and the gradient correlation

is described in Ref. [142]. The relation of MI to other area-

based similarity (correlation coefficients, correlation ratio)

measures is described in Ref. [153] using the formulation of

maximum likelihood estimation problem.

The above mentioned MI methods work with the entire

image data and directly with image intensities. Rangarajan

et al. [149] applied MI on extracted features (points of the

area borders), but this approach is still rare. Similar to MI,

coming form the theory of information, is similarity

measure based on cross-entropy [221].

4.1.4. Optimization methods

Finding the minimum of dissimilarity measure (penalty

function) or the maximum of similarity measure is a

multidimensional optimization problem, where the number

of dimensions corresponds to the degrees of freedom of the

expected geometrical transformation. The only method

yielding global extreme solution is an exhaustive search

over the entire image. Although it is computationally

demanding, it is often used if only translations are to be

estimated.

In case of transformations with more degrees of freedom

or in case of more complex similarity measures, sophisti-

cated optimization algorithms are required, which help to

localize the maxima or minima, respectively. The appli-

cation of Gauss–Newton numerical minimization algorithm

for minimizing the sum of squared differences is described

in Ref. [166], where the projective geometric deformation

was used. In Ref. [201] maxima of MI was found using the

gradient descent optimization method. Levenberg–Mar-

quardt optimization method was applied in Ref. [164] to

minimize the variance in intensities of corresponding pixels.

The images were registered by means of the projective

transformation model plus the lens distortion model. The

combination of the Levenberg–Marquardt method and the

sum of the squared differences metric is described in Ref.

[185]. Similarly, Wolberg and Zokai [211] used this

combination for registering of perspectively deformed

images. The Powell’s multidimensional direction set

method [96] is applied in Maes et al. [120]. Starink and

Backer [174] tried to minimize a dissimilarity measure

defined on point pairs by means of simulated annealing.

Another optimization method, suited for multimodal data

registration was introduced in Ref. [97] and its applicability

was proved in combination with MI and correlation ratio.

Again, the optimization methods can be speeded up by the

pyramidal approach.

There should be noted one thing with respect to these

optimization methods. Sometimes next to the dissimilarity

measure term the formula to be minimized contains as well

so-called regularization or penalty term, which intercon-

nects the transformation and data to be transformed [82].

These two terms together form the cost function (energy)

associated with the registration and the aim of the

optimization methods is to minimize it. In literature such

methods can be referred to as energy minimization methods.

The regularization term is usually omitted in case of rigid

body transforms, but in non-rigid transformations such as

elastic or fluid registration methods, described more in

detail in Section 5, is present.

4.2. Feature-based methods

We assume that two sets of features in the reference and

sensed images represented by the CPs (points themselves,

end points or centers of line features, centers of gravity of

regions, etc.) have been detected. The aim is to find the pair-

wise correspondence between them using their spatial

relations or various descriptors of features.

4.2.1. Methods using spatial relations

Methods based primarily on the spatial relations among

the features are usually applied if detected features are

ambiguous or if their neighborhoods are locally distorted.

The information about the distance between the CPs and

about their spatial distribution is exploited.

Goshtasby in Ref. [71] described the registration based

on the graph matching algorithm. He was evaluating the

number of features in the sensed image that, after the

particular transformation, fall within a given range next to

the features in the reference image. The transformation

parameters with the highest score were then set as a valid

estimate.

Clustering technique, presented by Stockman et al. [175],

tries to match points connected by abstract edges or line

segments. The assumed geometrical model is the similarity

transform. For every pair of CPs from both the reference and
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sensed images, the parameters of the transformation which

maps the points on each other are computed and represented

as a point in the space of transform parameters. The

parameters of transformations that closely map the highest

number of features tend to form a cluster, while mismatches

fill the parameter space randomly. The cluster is detected

and its centroid is assumed to represent the most probable

vector of matching parameters. Mapping function par-

ameters are thus found simultaneously with the feature

correspondence. Local errors do not influence globally the

registration process. The clustering technique was

implemented, for example, in Refs. [30,72].

Barrow et al. [14] introduced the chamfer matching for

image registration. Line features detected in images are

matched by means of the minimalization of the generalized

distance between them. Borgefors [22] proposed an

improved version, where better measure of correspon-

dence-the sequential distance transform together with the

root mean square average—was applied. The algorithm

employs also the pyramidal speed-up.

Even that this overview does not intend to cover 3D

registration methods, here the well-known Iterative Closest

Point (ICP) algorithm, introduced by Besl and McKay [18]

is mentioned, because it represents a key approach for

registering 3D shapes (including free-form curves and

surfaces).

4.2.2. Methods using invariant descriptors

As an alternative to the methods exploiting the spatial

relations, the correspondence of features can be estimated

using their description, preferably invariant to the

expected image deformation (see Fig. 4). The description

Fig. 4. Feature-based method using invariant descriptors: in these two satellite images, control points (corners) were matched using invariants based on

complex moments [56]. The numbers identify corresponding CP’s. The bottom image shows the registration result.
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should fulfill several conditions. The most important ones

are invariance (the descriptions of the corresponding

features from the reference and sensed image have to be

the same), uniqueness (two different features should have

different descriptions), stability (the description of a

feature which is slightly deformed in an unknown manner

should be close to the description of the original feature),

and independence (if the feature description is a vector, its

elements should be functionally independent). However,

usually not all these conditions have to (or can) be

satisfied simultaneously and it is necessary to find an

appropriate trade-off.

Features from the sensed and reference images with the

most similar invariant descriptions are paired as the

corresponding ones. The choice of the type of the invariant

description depends on the feature characteristics and the

assumed geometric deformation of the images. While

searching for the best matching feature pairs in the space

of feature descriptors, the minimum distance rule with

thresholding is usually applied. If a more robust algorithm is

needed, the matching likelihood coefficients [51], which can

better handle questionable situations, can be an appropriate

solution. Guest et al. proposed to select features according

to the reliability of their possible matches [80].

The simplest feature description is the image intensity

function itself, limited to the close neighborhood of the

feature [1,107]. To estimate the feature correspondence,

authors computed the CC on these neighborhoods. Other

types of similarity measures can be used, too. Zheng and

Chellapa make use of the correlation coefficients [219].

They assumed the similarity geometric deformation. In their

approach, firstly the rotation between images was compen-

sated by the estimation of the illuminant direction and then

the coarse-to-fine correlation based registration was per-

formed. In Ref. [223] the MI was used for the improvement

of the feature correspondence.

The following references are examples of the intuitive

descriptions, which usually do not fulfill some of the

mentioned criteria of invariant descriptors. Sester et al.

[165] proposed to describe forests, used as the region

features, by elongation parameter, compactness, number of

holes, and several characteristics of the minimum bounding

rectangle. To register stars with a catalog, Murtagh [133]

assigned to every point feature the description of the spatial

distribution of other features lying around. Vujovic and

Brzakovic in Ref. [202] represented every detected feature

(elongated structure intersections) by its signature formed

by the longest structure and angles between all other

structures, participating in the intersection. Similarly, Zana

[218] described each feature point by means of angles

between relevant intersecting lines. Montesinos et al. [131]

proposed to use differential descriptors of the image

function in the neighborhood of the detected CPs. Yang

and Cohen [216] used border triangles generated by object

convex hull and computed on them affine geometric

invariants.

Many authors used closed-boundary regions as the

features. In principle, any invariant and discriminative

enough shape descriptor can be employed in region

matching. Peli [141] proposed simple and fast description

by radial shape vector but the usage of this method is limited

to star-shape regions only. A generalized shape description

in a form of a binary matrix was proposed in Ref. [65,180].

In Ref. [72], the shape matrices were used for registration of

rotated and scaled satellite images. In Ref. [112] a chain

code representation of contours was proposed as the

invariant description and a chain code correlation-like

measure was used for finding the correspondence. Skea et al.

[171] represented non-collinear triplets of CPs by the

sphericity. Suk [178] proposed the invariant shape descrip-

tion of the regions represented by polygons and further

developed this approach in Ref. [179].

A large group of methods uses moment-based invar-

iants for description of closed-boundary region features.

Considering the most often assumed deformations, Hu

[93] introduced moment invariants to the similarity

transform. Flusser and Suk derived the affine transform

invariants [53] and used them successfully for registration

of SPOT and Landsat images [54]. Holm [88] extracted

closed boundary regions and proposed to represent them

by their perimeter, area, compactness, moments, and

moment invariants. Bhattacharya [20] suggested the

application of complex moments. Brivio et al. [24]

modeled shadow structures in mountain images by

means of their inertia ellipses. The ellipses are here

described by their area, inclination of the main axis and

ellipticity. All these attributes are functions of moments.

Li et al. [112] used first two Hu’s moments as preselectors

for matching of closed contours. The candidate matches

were tested using the chain code representation of the

contours. A similar method was described in Ref. [35],

where the moment invariants are used together with the

chain codes. Sato and Cipolla [163] computed directly,

without correspondence estimation, the parameters of the

present geometric deformations (an affine transform was

expected) using the circular moments of distribution of the

line features orientation. They combined moments and the

scale-space representation of the images. Recently, Flusser

and Suk [55] introduced a new class of moment invariants

that are invariant to image blurring and demonstrated their

performance in registering SPOT and AVHRR satellite

images. Bentoutou et al. [16] registered mutually shifted

and blurred digital subtraction angiography images using

these invariants. Flusser et al. further developed this

approach in Ref. [56] by introducing the combined blur-

rotation invariants. In Ref. [52] they generalized the

previous invariants to register 3D images.

Invariant combination of the basic geometric properties

of features can form geometrically oriented descriptors.

Govindu et al. [74] represented the extracted contours

from possibly rotated images by the slopes of tangents in

the contour points. They did not look for contour
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correspondence, but only for the distributions of the

proposed descriptors. By comparison of the corresponding

distributions from the reference and sensed images the

mutual image rotation can be estimated. They derived a

similar type of descriptors for the affine transform, too. A

detailed study of the practical aspects of the proposed

method can be found in Ref. [73]. Wang and Chen [205]

computed the histogram of line-length ratios and the

histogram of angle differences of any two line segments in

the reference and sensed images. They assumed the

similarity transform. Griffin and Alexopoulos [77] used

the ratio of the smallest enclosing circle radii, the difference

of the locations of centroids of gravity, and the sorting of the

neighbors lexicographically according to the angle with the

x axis and the distance from the centroid. All these methods

skip the step of finding the feature correspondence and

establish directly the mapping function parameters.

Hsieh et al. [91] used the angle histogram computed on

line feature points for the compensation of rotation

difference. After the removal of the rotation difference,

the feature point correspondence is found by means of CC.

They compared their rotation compensation with the one

described in Ref. [219].

Shekhar et al. [167] combined different types of features

and their descriptors. They decomposed the present

geometric deformation into elementary steps and then

estimated transform parameters using the feature consen-

sus—every type of feature descriptor votes for the

corresponding value of the parameter. The value of the

parameter which maximizes the number of votes over all

descriptor types is then chosen.

Ventura et al. [200] described image features by

various descriptors (ellipticity, angle, thinness, etc.) and

represented relations among them by a multivalue logical

tree (MVLT). Then they compared the MVLTs of the

reference and sensed images to find the feature

correspondence. MVLTs are applied also in Ref. [24],

together with moment invariants.

Invariant descriptors can be used as well in situations,

when no precedent feature detection was done and the

invariants are successively computed for the window sliding

across the whole image [55]. For translated and rotated

images, Goshtasby [66] proposed to calculate the moment

invariants [93] from the circular-shaped windows and then

to apply the CC criterion on the moment window

representation. A similar idea was used earlier by Wong

and Hall [213]. Along with the moment-based window

description, they applied hierarchical search strategy to

match radar and optical images.

4.2.3. Relaxation methods

A large group of the registration methods is based on the

relaxation approach, as one of the solutions to the consistent

labeling problem (CLP): to label each feature from the

sensed image with the label of a feature from the reference

image, so it is consistent with the labeling given to the other

feature pairs [130]. The process of recalculating the pair

figures of merit, considering the match quality of the feature

pairs and of matching their neighbors, is iteratively repeated

until a stable situation is reached. The reference work was

done by Ranade and Rosenfeld [148]. Here, the displace-

ment of the feature sets transformed by a certain geometric

transformation defines the figures of merit of the feature

pairs. This method can handle shifted images and it tolerates

local image distortions.

Wang et al. [204] extended the classical relaxation by

including the description of the corner features. They used

corner sharpness, contrast, and slope. This algorithm allows

to handle translation and rotation distortions in the images,

but it is computationally demanding. Medioni and Nevatia

[128] used line features and their descriptors (coordinates,

orientation, average contrast). Cheng and Huang [33]

proposed a star-based registration which considers individ-

ual feature points along with all links to their neighbors. Ton

and Jain [190] speeded up the algorithm by integrating the

MergeSort concept. Their method works with shifted and

rotated images. Relaxation based method even for similarity

transformed images was proposed, for example, by Cheng

[32], Ogawa [136] and Li [113]. Different relaxation

methods are compared in Ref. [147].

Another solution to the CLP problem and consequently

to the image registration is backtracking, where consistent

labeling is generated in recursive manner. A registration

method based on backtracking is described in Ref. [130].

4.2.4. Pyramids and wavelets

We conclude the discussion about the feature matching

by mentioning some works that try to reduce the

computational cost due to the large image size by means

of pyramidal approach.

First attempts were done back in 1977. Vanderbrug and

Rosenfeld concentrated in their work on the amount of

computation needed for the window pair testing. In Ref.

[197], they used a subwindow first to find probable

candidates of the corresponding window in the reference

image and then the full-size window was applied. They

discussed the appropriate choice of the subwindow size to

minimize the expected computational cost. In Ref. [160]

they proposed to use first both the sensed and the reference

images at a coarser resolution and then, on locations with

small error measure, to match higher resolution images.

Althof et al. [4] proposed to decrease the necessary

computational load by taking just a sparse regular grid of

windows for which the cross correlation matching is

performed. These techniques are simple examples of

pyramidal methods.

In general, this coarse-to-fine hierarchical strategy

applies the usual registration methods, but it starts with

the reference and sensed images on a coarse resolution

(generated using Gaussian pyramids, simple averaging or

wavelet transform coefficients, among others). Then they

gradually improve the estimates of the correspondence or of
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the mapping function parameters while going up to the finer

resolutions. At every level, they considerably decrease the

search space and thus save the necessary computational

time. Another important advantage resides in the fact that

the registration with respect to large-scale features is

achieved first and then small corrections are made for

finer details. On the other hand, this strategy fails if a false

match is identified on a coarser level. To overcome this, a

backtracking or consistency check should be incorporated

into the algorithms.

Combining CC with the pyramidal approach that

exploits a summing pyramid (the pixel value at a coarser

level corresponds to the summation of the pixel values

on the previous level), a median pyramid, and an

averaging pyramid was proposed in Refs. [37,208,219],

respectively. Wong and Hall [214] combined the SSDA

method with pyramidal speed-up. Wang and Chen [205]

extracted features (centroids of closed boundary regions)

at every resolution level and found the parameters of

geometric deformation from the histogram of angle

differences and line-length ratios, as mentioned above.

Thévenaz et al. applied a cubic spline based pyramid

along with the minimization of the mean square intensity

difference between the images [184] and the MI

maximization [187], respectively. Sharma and Pavel

[166] used the multiresolution Laplacian pyramid for

the infrared and radar images registration. Kumar et al.

[102] combined different types of pyramids (Laplacian,

Gaussian) with different similarity measures (CC, sum of

squared differences) to register aerial video sequences.

Non-linear min-max filters applied in a pyramidal

scheme was used in Ref. [169].

Recently, wavelet decomposition of the images was

recommended for the pyramidal approach due to its inherent

multiresolution character. Methods can differ in the type of

the applied wavelet and the set of wavelet coefficients used

for finding the correspondence. Most frequently used

methods decompose the image recursively into four sets

of coefficients (LL, HL, LH, HH) by filtering the image

successively with two filters, a low-pass filter L and a high-

pass filter H, both working along the image rows and

columns.

Turcajova and Kautsky [193] tested various orthogonal

and biorthogonal wavelets (they used LL coefficients)

together with CC on a regular grid of points to register

affine transformed images. Spline biorthogonal wavelets

and Haar wavelet outperformed others. Fonseca and Costa

[58] detected the modulus maxima of LH and HL

coefficients and looked for the maxima of the correlation

coefficients, computed from LL coefficients in small

surroundings of the detected maxima. Djamdji et al.

[41] use just HH coefficients. Le Moigne [105] applied the

Daubechies wavelet to register Landsat images and

AVHRR data. They extracted LH and HL frequency

coefficients and found the correspondence by means of

CC. Liu et al. [118] proposed the application of Gabor

wavelet transform and Gaussian model of registration

residua. You and Bhattacharya [217] use the maximum

compact fuzzy sets of wavelet coefficients as features and

HD as similarity measure. The robustness of the

registration by means of the Daubechies and Haar

wavelets was studied in Ref. [176].

4.2.5. Summary

Area-based methods are preferably applied when the

images have not many prominent details and the distinctive

information is provided by graylevels/colors rather than by

local shapes and structure. Area-based methods have two

principal limitations. Reference and sensed images must

have somehow ‘similar’ intensity functions, either identical

(and then correlation-like methods can be used) or at least

statistically dependent (this typically occurs in multimodal

registration).

From the geometric point of view, only shift and small

rotation between the images are allowed when using area-

based methods (although the area-based methods can be

generalized to full rotation and scaling, it is practically

meaningless because of an extreme computational load). To

speed up the searching, area-based methods often employ

pyramidal image representations and sophisticated optim-

ization algorithms to find the maximum of the similarity

matrix.

Feature-based matching methods are typically applied

when the local structural information is more significant

than the information carried by the image intensities. They

allow to register images of completely different nature (like

aerial photograph and map) and can handle complex

between-image distortions. The common drawback of the

feature-based methods is that the respective features might

be hard to detect and/or unstable in time. The crucial point

of all feature-based matching methods is to have discrimi-

native and robust feature descriptors that are invariant to all

assumed differences between the images.

5. Transform model estimation

After the feature correspondence has been established

the mapping function is constructed. It should transform the

sensed image to overlay it over the reference one. The

correspondence of the CPs from the sensed and reference

images together with the fact that the corresponding CP

pairs should be as close as possible after the sensed image

transformation are employed in the mapping function

design.

The task to be solved consists of choosing the type of

the mapping function (see Fig. 5) and its parameter

estimation. The type of the mapping function should

correspond to the assumed geometric deformation of the

sensed image, to the method of image acquisition (e.g.

scanner dependent distortions and errors) and to the

required accuracy of the registration (the analysis of error
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for rigid-body point-based registration was introduced in

Ref. [48]).

In special situations when the geometric deformation is

partially known, e.g. when there exists a model for the

distortion caused by the acquisition device and/or the

scene geometry, the pre-correction based on the inverse of

the deformation can be performed (for example, in Refs.

[94,168,181], the authors model the Earth’s shape and

rotation, the satellite orbit and the scanning geometry of

the sensor).

Models of mapping functions can be divided into two

broad categories according to the amount of image data

they use as their support. Global models use all CPs for

estimating one set of the mapping function parameters

valid for the entire image. On the other hand, the local

mapping functions treat the image as a composition of

patches and the function parameters depend on the

location of their support in the image. It leads to the

tessellation of the image, usually a triangulation, and to

the defining of parameters of the mapping function for

each patch separately.

From another point of view, mapping functions can be

categorized according to the accuracy of overlaying of the

CPs used for computation of the parameters. Interpolating

functions map the sensed image CPs on the reference

image CPs exactly, whereas approximating functions try

to find the best trade-off between the accuracy of the final

mapping and other requirements imposed on the character

of the mapping function. Since the CP coordinates are

usually supposed not to be precise, the approximation

model is more common.

5.1. Global mapping models

One of the most frequently used global models uses

bivariate polynomials of low degrees. Similarity transform

is the simplest model—it consists of rotation, translation

and scaling only

u ¼ sðx cosðwÞ2 y sinðwÞÞ þ tx

v ¼ sðx sinðwÞ þ y cosðwÞÞ þ ty

This model is often called ‘shape-preserving mapping’

because it preserves angles and curvatures and is unam-

biguously determined by two CPs.

Slightly more general but still linear model is an affine

transform

u ¼ a0 þ a1x þ a2y

v ¼ b0 þ b1x þ b2y;

which can map a parallelogram onto a square. This model

is defined by three non-collinear CPs, preserves straight

lines and straight line parallelism. It can be used for

multiview registration assuming the distance of the

camera to the scene is large in comparison to the size

of the scanned area, the camera is perfect (a pin-hole

camera), the scene is flat, and the present geometric

distortion has no local factors.

Fig. 5. Examples of various mapping functions: similarity transform (top left), affine transform (top right), perspective projection (bottom left), and elastic

transform (bottom right).
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If the condition on the distance of the camera from the

scene is not satisfied the perspective projection model

u ¼
a0 þ a1x þ a2y

1 þ c1x þ c2y

v ¼
b0 þ b1x þ b2y

1 þ c1x þ c2y

should be used. This model exactly describes a deformation

of a flat scene photographed by a pin-hole camera the

optical axis of which is not perpendicular to the scene. It can

map a general quadrangle onto a square while preserving

straight lines and is determined by four independent CPs.

Slight violations of these assumptions may lead to the use

of the second or the third-order polynomial models. Higher

order polynomials usually are not used in practical

applications because they may unnecessarily warp the

sensed image in areas away from the CPs when aligning

with the reference image.

In general, the number of CPs is usually higher than the

minimum number required for the determination of the

mapping function. The parameters of the mapping functions

are then computed by means of the least-square fit, so that

the polynomials minimize the sum of squared errors at the

CPs. Such mapping functions do not map the CPs onto their

counterparts exactly. This approach was proved to be very

effective and accurate for satellite images, for instance.

5.2. Local mapping models

However, a global polynomial mapping cannot properly

handle images deformed locally. This happens, for instance,

in medical imaging and in airborne imaging. The least

square technique averages out the local geometric distortion

equally over the entire image which is not desirable. Local

areas of the image should be registered with the available

information about the local geometric distortion in mind.

Several authors have shown the superiority of the local or

at least locally sensitive registration methods above the

global ones in such situations (Goshtasby [69], Ehlers and

Fogel [46], Wiemker [209], and Flusser [50], among

others). The weighted least square and weighted mean

methods [69] gain the ability to register images locally by

introducing the slight variation to the original least square

method. The local methods called piecewise linear mapping

[67] and piecewise cubic mapping [68], together with the

Akima’s quintic approach [209], apply the combination of

the CP-based image triangulation and of the collection of

local mapping functions each valid within one triangle.

These approaches belong to the group of the interpolating

methods.

5.3. Mapping by radial basis functions

Radial basis functions are representatives of the group of

global mapping methods but they are able to handle even

locally varying geometric distortions. The resulting map-

ping function has a form of a linear combination of

translated radially symmetric function plus a low-degree

polynomial

u ¼ a0 þ a1x þ a2y þ
XN

i¼1

cigðx; xiÞ

and similarly for v:

Originally they were developed for the interpolation of

irregular surfaces. Their name ‘radial’ reflects an important

property of the function value at each point-it depends just

on the distance of the point from the CPs, not on its

particular position. Multiquadrics, reciprocal multiquadrics,

Gaussians, Wendland’s functions, and thin-plate splines are

several examples of the radial basis functions used in image

registration.

The application of the multiquadrics in the airborne

remote sensing, together with the comparison to the third

order polynomial method, is described in Ref. [46]. Its

comparison to the Akima’s method is presented in Ref.

[209]. The medical application of multiquadrics is shown in

Ref. [117]. Wendland’s functions applied in medical image

registration appear in Ref. [60]. These functions have very

small global influence and even significant local defor-

mations can be well registered by this approach. This

property is advantageous for registering medical images,

where changes occur mainly locally.

The most often used representatives of the radial basis

functions are the thin-plate splines (TPS), where the radial

terms have the form

gðx; xiÞ ¼ kx 2 xik
2
lnðkx 2 xikÞ

(see Duchon [44] and Wahba [203] for the respective

mathematical background). Although they had been used in

mechanics and engineering for decades [84], they were

introduced to image analysis community by Grimson [78]

and Bookstein [21]. The TPS can be viewed as a very thin

plate, which is fixed at the positions determined by the CPs

in the reference image in the heights given by the x or y

coordinates of the corresponding CPs in the sensed image

[70]. The TPS minimizes the quadratic variation functional

of potential energy that reflects the amount of function

variation and which should be small for a good mapping

function. The type of registration can be chosen:exact

interpolation [70], approximation [159] or generalized

approximation taking into account that the anisotropic

landmark errors [157] are possible. A comprehensive study

focused on TPS-based registration of medical images can be

found in Ref. [156].

The TPS registration gives good results but the

computations can be very time consuming, namely if the

number of CPs is high. Considerable attention has been paid

to the methods decreasing the complexity of the TPS

evaluation while preserving reasonable accuracy. Flusser

[50] proposed an adaptive approximation of the TPS on
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square or triangular regions by simpler functions. Beatson

and Newsam [15] adapted an earlier method by Greengard

[75] for multipole expansion of radial functions. Powell

[144] reduced the computational cost by the TPS tabulation.

Barrodale et al. [13] paid attention to fast and robust

calculation of the TPS coefficients.

Numerous papers have dealt with the comparison of

the performance of thin-plate splines and other mapping

functions. In Refs. [57,70,209] they are compared with

polynomials and multiquadrics when registering aerial

images. The comparison of the TPS with the Gaussian

radial basis functions and with multiquadrics considering

their local properties was done in Ref. [8]. It was

concluded that the TPS have favorable properties

when used as mapping functions for image registration,

while the other radial basis functions are more convenient

for other applications such as image warping and

morphing [8].

The TPS are not the only representatives of the spline

family used for the mapping function design. A linear

combination of translated cubic B-splines was used for

the registration of the echo planar images [103]. Another

type of spline-based function, the elastic body spline

(EBS), was proposed in [39]. It evolved from the

description of the equilibrium displacements of homo-

geneous isotropic elastic material subjected to a load.

Body tissues depicted in the image data to be registered

often have properties of elastic material. The EBS was

used for the registration of 3D MRI images of breasts.

The authors claimed the EBS had outperformed the TPS

in their experiments.

5.4. Elastic registration

Another approach to the registration of images with

considerable complex and/or local distortions is not to use

any parametric mapping functions, where the estimation of

the geometric deformation is reduced to the search for the

‘best’ parameters. This idea were introduced by Bajcsy et al.

[10] and is often called elastic registration.

The images are viewed as pieces of a rubber sheet, on

which external forces stretching the image and internal

forces defined by stiffness or smoothness constraints are

applied to bring them into alignment with the minimal

amount of bending and stretching. The feature matching and

mapping function design steps of the registration are done

simultaneously. This is one of the advantages of elastic

methods, because feature descriptors invariant to compli-

cated deformations are not known and the feature

correspondence is difficult to establish in the traditional

way. The registration is achieved by locating the minimum

energy state in an iterative fashion. A pyramidal approach is

often applied. The external forces can be derived from the

local optimization of the similarity function which is

defined by the intensity values or by the correspondence

of boundary structures [38], among others. In Ref. [140], no

external forces were used and the prescribed displacements,

derived from the correspondence of boundary structures,

were incorporated to the elastic image deformation.

Disadvantage of elastic registration is in situations when

image deformations are very localized. This can be handled

by means of fluid registration. Fluid registration methods

make use of the viscous fluid model to control the image

transformation. The reference image is here modelled as a

thick fluid that flows out to match the sensed image under

the control of the derivative of a Gaussian sensor model.

This approach is mainly used in medical applications [25].

The weakness of this approach is blurring introduced during

the registration process. Lester and Arridge [110] proposed

to use fluid model just for finding the correspondence of CPs

and then process the very transformation by means of the

thin plate splines. Comparison of three methods for fluid-

based registration can be found in Ref. [212].

Another examples of non-rigid methods are diffusion-

based registration, level sets registration, and optical flow

based registration. The diffusion registration handles object

contours and other features as membranes, setting the

geometrical constraints. Three variations of this approach

are described in Ref. [189]. Different solution was proposed

by Andersen and Nielsen [5]. Vemuri et al. [199] introduced

elastic registration method, based on evolution of level sets,

moving along their respective normals. Finally, the optical

flow approach was originally motivated by estimation of

relative motion between images [19]. The class of optical

flow registration covers very large number of methods and is

beyond the scope of this survey.

6. Image resampling and transformation

The mapping functions constructed during the previous

step are used to transform the sensed image and thus to

register the images. The transformation can be realized in a

forward or backward manner. Each pixel from the sensed

image can be directly transformed using the estimated

mapping functions. This approach, called a forward method,

is complicated to implement, as it can produce holes and/or

overlaps in the output image (due to the discretization and

rounding). Hence, the backward approach is usually chosen.

The registered image data from the sensed image are

determined using the coordinates of the target pixel (the

same coordinate system as of the reference image) and the

inverse of the estimated mapping function. The image

interpolation takes place in the sensed image on the regular

grid. In this way neither holes nor overlaps can occur in the

output image.

The interpolation itself is usually realized via convolu-

tion of the image with an interpolation kernel. An optimal

interpolant—2D sinc function—is hard to implement in

practice because of its infinite extent. Thus, many simpler

interpolants of bounded support have been investigated in

the literature. In order to reduce the computational cost,

B. Zitová, J. Flusser / Image and Vision Computing 21 (2003) 977–1000992



preferably separable interpolants have been considered. The

separability enables to replace an m £ m 2D convolution by

ðm þ 1Þ 1D convolutions which is much faster.

The nearest neighbor function, the bilinear and bicubic

functions (see Fig. 6), quadratic splines [42,191], cubic B-

splines [89], higher-order B-splines [108], Catmull–Rom

cardinal splines [100,184], Gaussians [7], and truncated sinc

functions [182] belong to the most commonly used

interpolants. Meijering et al. [129] investigated higher-

order polynomial kernels (quintic and septic). However,

their experiments showed only marginal improvement in

comparison with cubic interpolation at an highly increased

computational cost.

Several survey papers on resampling techniques have

been published in the last years. A detailed investigation and

comparison of methods was carried out in Ref. [138] for 2D

images and in Ref. [76] for 3D data. Thevenaz et al. [182]

paid attention to the elimination of undesired interpolation

artifacts. Lehman et al. [109] published a survey article

covering main interpolation methods (various versions of

sinc functions, nearest neighbor, linear, quadratic, cubic,

cubic B-spline, Lagrange and Gaussian kernels) with the

emphasis on medical imaging applications. They compared

them using the spatial and Fourier analysis and tested the

computational complexity as well as interpolation errors.

Most recently, Thevenaz et al. [183] have proposed a

different approach to image resampling. Unlike the other

methods, their resampling functions do not necessarily

interpolate the image graylevels. They rather interpolate

values calculated as certain functions of the graylevels. The

authors have demonstrated this approach outperforms

traditional interpolation techniques.

Even though the bilinear interpolation is outperformed

by higher-order methods in terms of accuracy and visual

appearance of the transformed image, it offers probably the

best trade-off between accuracy and computational com-

plexity and thus it is the most commonly used approach.

Cubic interpolation is recommended when the geometric

transformation involves a significant enlargement of the

sensed image. Nearest neighbor interpolation should be

Fig. 6. Image interpolation methods: the original image (top left) was enlarged five times using three different interpolation techniques—nearest neighbor (top

right), bilinear (bottom left), and bicubic (bottom right).
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avoided in most cases because of artifacts in the resampled

image. The only exclusion is when the image to be

transformed contains low number of intensities and we do

not want to introduce ‘synthetic’ graylevels/colors by higher

order interpolation.

7. Evaluation of the image registration accuracy

Regardless of the particular images, the used registration

method, and the application area, it is highly desirable to

provide the user with an estimate how accurate the

registration actually is. The accuracy evaluation is a non-

trivial problem, partially because the errors can be dragged

into the registration process in each of its stages and

partially because it is hard to distinguish between regis-

tration inaccuracies and actual physical differences in the

image contents. In this Section, we review basic error

classes and methods for measuring the registration

accuracy.

Localization error. Displacement of the CP coordinates

due to their inaccurate detection is called localization error.

Being an intrinsic error of the detection method, the

localization error cannot be measured directly on the

given image. However, the mean precision of most CP

detection methods is known for various image types from

computer simulation studies and ground truth comparisons.

This can be used for estimation of the expected localization

error in the particular case. Localization error can be

reduced by selecting an ‘optimal’ feature detection

algorithm for the given data but usually there is a trade-

off between the number of detected CP candidates and the

mean localization error. Sometimes we prefer to have more

CP with higher localization error rather than only few of

them, yet detected more precisely.

Matching error. Matching error is measured by the

number of false matches when establishing the correspon-

dence between CP candidates. It is a serious mistake which

usually leads to failure of the registration process and should

be avoided. Fortunately, in most cases it can be ensured by

robust matching algorithms. False match can be identified

by consistency check, where two different matching

methods are applied to the same set of the CP candidates.

Only those pairs found by the both methods are considered

as valid CP pairs, the other candidate points are excluded

from the further processing. In case there is no other reliable

matching method, false CP pairs can be identified by cross-

validation. In each step, we exclude one pair from the set of

CP’s and calculate the mapping parameters (translation

vector and rotation angle for instance). Then we check how

well the excluded points are mapped one to the other by this

model. If their displacement is below a given threshold, they

are accepted as a valid CP pair.

Alignment error. By the term alignment error we denote

the difference between the mapping model used for the

registration and the actual between-image geometric

distortion. Alignment error is always present in practice

because of two different reasons. The type of the chosen

mapping model may not correspond to the actual distortion

and/or the parameters of the model were not calculated

precisely. The former case is caused by lack of a priori

information about the geometric distortion while the latter

originates from the insufficient number of CP’s and/or their

localization errors.

Alignment error can be evaluated in several ways. The

simplest measure is a mean square error at the CP’s (CPE).

Although commonly used, it is not good alignment error

measure. In fact, it only quantifies how well the CP

coordinates can be fitted by the chosen mapping model. For

any CP set, zero CPE can be reached just by selection of a

mapping model with enough degrees of freedom (this well-

known phenomenon is in numerical analysis called ‘over-

fitting’). On the other hand, large CPE can be caused by CP

localization errors and does not necessarily reflect poor

registration accuracy.

Very similar to the CPE is so called test point error

(TPE). Test points are CPs that were deliberately excluded

from the calculation of the mapping parameters. TPE cannot

be set to zero by overfitting which makes it more

meaningful than CPE. However, the localization error of

the test points may negatively affect this measure. This

method can be used only if a sufficient number of the CP’s is

available. Otherwise, the exclusion of several CP’s may

result in inaccurate estimation of mapping parameters. In

medical applications, CP’s can be far from the region of

interest. Thus, Fitzpatrick et al. [47,49] proposed to detect

anatomical points within the region of interest and to use

them as test points (the called them ‘target points’). The

concept of TPE can be extended such that the distance

between corresponding ‘test’ lines or surfaces is measured

[134,139].

Another approach to estimation of alignment accuracy is

consistency check using multiple cues. Here, the image

registered by the method under investigation is compared

(by a proper metric in the image space) with the same image

registered by another comparative method. As the com-

parative method we use preferably ‘gold standard method’,

which is a method commonly believed to be the best in the

particular application area or for the given image type (gold

standard method then plays a role similar to ground truth).

This approach is often used in medical imaging [47,207]. In

application areas where any gold standard does not exist,

like in remote sensing, computer vision, and industrial

inspection, we take as the comparative method any method

of different nature. Small difference between the registration

results then indicates (although does not guarantee) good

registration accuracy.

Different consistency check can be employed when a set

of at least two sensed images is registered to the same

reference [34,63,87,215]. The sensed images can be also

registered among themselves using the same set of CP’s,

which provides another set of mapping parameters. Using
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transitivity of mappings, we obtain for each sensed image

two sets of mapping parameters, i.e. two registered images,

which should be theoretically the same. The displacement of

the test points can serve as a quality measure.

Finally, the oldest method of registration accuracy

estimation—visual assessment by a domain expert—should

be mentioned. It is still in use at least as a complement of the

above mentioned objective error measures.

Estimation of accuracy of registration algorithms is an

substantial part of registration process. Without quantitative

evaluation, no registration method can be accepted for

practical utilization. A lot of work has been done on

validation of rigid-body registration (the most comprehen-

sive case-study is probably the Vanderbilt University

project [207]) while validation of non-linear, local and

elastic registration methods is still at the beginning.

8. Current trends and outlook for the future

Image registration is one of the most important tasks

when integrating and analyzing information from various

sources. It is a key stage in image fusion, change detection,

super-resolution imaging, and in building image infor-

mation systems, among others. This paper gives a survey of

the classical and up-to-date registration methods, classify-

ing them according to their nature as well as according to the

four major registration steps. Although a lot of work has

been done, automatic image registration still remains an

open problem. Registration of images with complex non-

linear and local distortions, multimodal registration, and

registration of N-D images (where N . 2) belong to the

most challenging tasks at this moment.

When registering images with non-linear, locally depen-

dent geometric distortions, we are faced with two basic

problems—how to match the CPs and what mapping

functions to use for registration. While the second one can

be solved at least on theoretical level by using appropriate

radial basis functions, the first problem is generally

unsolvable due to its nature. Since the between-image

deformations can be arbitrary, we cannot use any automatic

matching method. Another conceptual question here is how

can we distinguish between image deformations and real

changes of the scene.

In multimodal registration, MI technique has become a

standard reference, mainly in medical imaging. However,

being an area-based technique, the MI has principal

limitations. To overcome them, some authors combined

the MI with other, preferably feature-based, methods to gain

higher robustness and reliability. To speed up the compu-

tation, they often employed pyramidal image representation

along with fast optimization algorithms. Unfortunately,

when the images have significant rotation and/or scaling

differences, these methods either fail or become extremely

time expensive. The future development on this field could

pay more attention to the feature-based methods, where

appropriate invariant and modality-insensitive features can

provide good platform for the registration. Besides, we trust

that new application-specific methods utilizing particular

sensor characteristics appear soon in remote sensing.

The major difficulty of N-D image registration resides

in its computational complexity. Although the speed of

computers has been growing, the need to decrease the

computational time of methods persists. The complexity

of methods as well as the size of data still grows (the

higher resolution, higher dimensionality, larger size of

scanned areas). Moreover, the demand for higher robust-

ness and accuracy of the registration usually enforces

solutions utilizing the iterations or backtracking, which

also produces increase of computational complexity of the

method.

In the future, the idea of an ultimate registration method,

able to recognize the type of given task and to decide by

itself about the most appropriate solution, can motivate the

development of expert systems. They will be based on the

combination of various approaches, looking for consensus

of particular results.
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B. Zitová, J. Flusser / Image and Vision Computing 21 (2003) 977–1000998



[143] J.P.W. Pluim, J.B.A. Maintz, M.A. Viergever, Mutual information

matching in multiresolution contexts, Image and Vision Computing

19 (2001) 45–52.

[144] M.J.D. Powell, Tabulation of thin plate splines on a very fine two-

dimensional grid, Numerical Analysis Report of University of

Cambridge, DAMTP/1992/NA2, Cambridge, UK, 1992.

[145] W.K. Pratt, Correlation techniques of image registration, IEEE

Transactions on Aerospace and Electronic Systems 10 (1974)

353–358.

[146] W.K. Pratt, Digital Image Processing, 2nd ed., Wiley, New York,

1991.

[147] K.E. Price, Relaxation matching techniques—a comparison, IEEE

Transactions on Pattern Analysis and Machine Intellingence 7

(1985) 617–623.

[148] S. Ranade, A. Rosenfeld, Point pattern matching by relaxation,

Pattern Recognition 12 (1980) 269–275.

[149] A. Rangarajan, H. Chui, J.S. Duncan, Rigid point feature registration

using mutual information, Medical Image Analysis 4 (1999) 1–17.

[150] B.S. Reddy, B.N. Chatterji, An FFT-based technique for translation,

rotation and scale-invariant image registration, IEEE Transactions

on Image Processing 5 (1996) 1266–1271.

[151] B. Rezaie, M.D. Srinath, Algorithms for fast image registration,

IEEE Transactions on Aerospace and Electronic Systems 20 (1984)

716–728.

[152] N. Ritter, R. Owens, J. Cooper, R.H. Eikelboom, P.P. van Saarloos,

Registration of stereo and temporal images of the retina, IEEE

Transactions on Medical Imaging 18 (1999) 404–418.

[153] A. Roche, G. Malandain, N. Ayache, Unifying maximum likelihood

approaches in medical image registration, International Journal of

Imaging Systems and Technology 11 (2000) 71–80.

[154] A. Roche, G. Malandain, X. Pennec, N. Ayache, The correlation

ratio as a new similarity measure for multimodal image registration,

Proceedings of the First International Conference on Medical Image

Computing and Computer-Assisted Intervention (MICCAI’98),

Lecture Notes in Computer Science, Cambridge, USA, vol. 1496,

1998, pp. 1115–1124.

[155] K. Rohr, Localization properties of direct corner detectors, Journal of

Mathematical Imaging and Vision 4 (1994) 139–150.

[156] K. Rohr, Landmark-Based Image Analysis: Using Geometric and

Intensity Models, Computational Imaging and Vision Series, vol. 21,

Kluwer Academic Publishers, Dordrecht, 2001.

[157] K. Rohr, H.S. Stiehl, T.M. Buzug, J. Weese, M.H. Kuhn, Landmark-

based elastic registration using approximating thin-plate splines,

IEEE Transactions on Medical Imaging 20 (2001) 526–534.

[158] K. Rohr, H.S. Stiehl, R. Sprengel, W. Beil, T.M. Buzug, J. Wees,

M.H. Kuhn, Point based elastic registration of medical image data

using approximating thin-plate splines, Proceedings of the Visual-

ization in Biomedical Computing VBC’96, Hamburg, Germany,

1996, pp. 297–306.

[159] K. Rohr, H.S. Stiehl, R. Sprengel, W. Beil, T.M. Buzug, J. Weese,

M.H. Kuhn, Nonrigid registration of medical images based on

anatomical point landmarks and approximating thin-plate splines,

Proceedings of the Aacheren Workshop: Bildverarbeiterung für die

Medizin, Aachen, Germany, 1996, pp. 41–46.

[160] A. Rosenfeld, G.J. Vanderbrug, Coarse–fine template matching,

IEEE Transactions on Systems, Man and Cybernetics 7 (1977)

104–107.

[161] M. Roux, Automatic registration of SPOT images and digitized

maps, Proceedings of the IEEE International Conference on Image

Processing ICIP’96, Lausanne, Switzerland, 1996, pp. 625–628.

[162] D. Rueckert, C. Hayes, C. Studholme, P. Summers, M. Leach, D.J.

Hawkes, Non-rigid registration of breast MR images using mutual

information, Proceedings of the Medical Image Computing and

Computer-Assisted Intervention MICCAI’98, Cambridge, Massa-

chusetts, 1998, pp. 1144–1152.

[163] J. Sato, R. Cipolla, Image registration using multi-scale texture

moments, Image and Vision Computing 13 (1995) 341–353.

[164] H.S. Sawhney, R. Kumar, True multi-image alignment and its

applications to mosaicing and lens distortion correction, IEEE

Transactions on Pattern Analysis and Machine Intellingece 21

(1999) 235–243.

[165] M. Sester, H. Hild, D. Fritsch, Definition of ground control features

for image registration using GIS data, Proceedings of the

Symposium on Object Recognition and Scene Classification from

Multispectral and Multisensor Pixels, CD-ROM, Columbus, Ohio,

1998, 7 pp.

[166] R.K. Sharma, M. Pavel, Multisensor image registration, Proceedings

of the Society for Information Display XXVIII (1997) 951–954.

[167] C. Shekhar, V. Govindu, R. Chellapa, Multisensor image registration

by feature consensus, Pattern Recognition 32 (1999) 39–52.

[168] D. Shin, J.K. Pollard, J.P. Muller, Accurate geometric correction of

ATSR images, IEEE Transactions on Geoscience and Remote

Sensing 35 (1997) 997–1006.

[169] Y. Shinagawa, T.L. Kunii, Unconstrained automatic image matching

using multiresolutional critical-point filters, IEEE Transactions on

Pattern Analysis and Machine Intelligence 20 (1998) 994–1010.

[170] A. Simper, Correcting general band-to-band misregistrations,

Proceedings of the IEEE International Conference on Image

Processing ICIP’96, Lausanne, Switzerland, 1996, 2, pp. 597–600.

[171] D. Skea, I. Barrodale, R. Kuwahara, R. Poeckert, A control point

matching algorithm, Pattern Recognition 26 (1993) 269–276.

[172] S.M. Smith, SUSAN low level image processing, http://www.fmrib.

ox.ac.uk/~spacesteve/susan.

[173] S.M. Smith, J.M. Brady, SUSAN—a new approach to low level

image processing, International Journal of Computer Vision 23

(1997) 45–78.

[174] J.P.P. Starink, E. Baker, Finding point correspondence using

simulated annealing, Pattern Recognition 28 (1995) 231–240.

[175] G. Stockman, S. Kopstein, S. Benett, Matching images to models for

registration and object detection via clustering, IEEE Transactions

on Pattern Analysis and Machine Intelligence 4 (1982) 229–241.

[176] H.S. Stone, J. le Moigne, M. McGuire, The translation sensitivity of

wavelet-based registration, IEEE Transactions on Pattern Analysis

and Machine Intelligence 21 (1999) 1074–1081.

[177] C. Studholme, D.L.G. Hill, D.J. Hawkes, An overlap invariant

entropy measure of 3D medical image alignment, Pattern Recog-

nition 32 (1999) 71–86.

[178] T. Suk, J. Flusser, Vertex-based features for recognition of

projectively deformed polygons, Pattern Recognition 29 (1996)

361–367.

[179] T. Suk, J. Flusser, Point-based projective invariants, Pattern

Recognition 33 (2000) 251–261.

[180] A. Taza, C.Y. Suen, Description of planar shapes using shape

matrices, IEEE Transactions on Systems, Man, and Cybernetics 19

(1989) 1281–1289.

[181] O. Thepaut, K. Kpalma, J. Ronsin, Automatic registration of ERS

and SPOT multisensor images in a data fusion context, Forest

Ecology and Management 128 (2000) 93–100.
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[185] P. Thévenaz, U.E. Ruttimann, M. Unser, Iterative multiscale

registration without landmarks, Proceedings of the IEEE Inter-

national Confernece on Image Processing ICIP’95, Washington DC,

1995, pp. 228–231.
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