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Abstract

Existing multichannel blind restoration techniques are
prone to noise, assume perfect spatial alignment of chan-
nels and a correct estimation of blur size. We develop an
alternating minimization scheme based on maximum a pos-
teriori probability estimation with a priori distribution of
blurs derived from the multichannel framework and a priori
distribution of original images defined by the total variation
semi-norm. This stochastic approach enables us to recover
the blurs and the original image from channels severely cor-
rupted by noise. We observe that the exact knowledge of
the blur size is not necessary and we show that translation
misregistration up to a certain extent can be automatically
removed in the restoration process.

1. Introduction

In many applications such as microscopy imaging, re-
mote sensing, and astronomical imaging, observed images
are degraded by unknown or partially known distortion. Ex-
amples of most common distortions are atmospheric turbu-
lence, relative motion between a camera and an object or an
out-of-focus camera. Restoration of the degraded images
is generally necessary before any further image processing
or segmentation can take place. We talk about multichan-
nel blind restoration, when several blurred versions of one
scene are obtained through different acquisition channels
and the task is to recover the original image from the blurred
images solely without any knowledge of the channel prop-
erties. Examples of such multichannel (MC) measurements
are common, e.g., in remote sensing and astronomy, where
the same scene is observed at different times through the
time-varying inhomogeneous atmosphere; in confocal mi-
croscopy, where images of the same sample are acquired at
different focus depth; or in broadband imaging through a
physically stable medium but which has a different transfer
function at different frequencies.

Intuitively, one may expect that the blind restoration
problem is greatly simplified by the availability of differ-
ent channels. In the noise–free environment, channel blurs
can be precisely recovered if a mild assumption of channel
coprimeness is satisfied, i.e. a sufficient diversity of channel
blurs is assured. Harikumar et al. [5, 4] and independently
Giannakis et al.[3] proposed two solutions to the MC prob-
lem: direct estimation of blurs from degraded images and
construction of restoration FIR filters from degraded im-
ages. Both approaches are vulnerable to noise corruption
and may brake down even at moderate noise levels. Using
a special matrix constructed by the degraded images, Pai
et al. [6, 7] proposed a multichannel restoration algorithm,
that directly recovers the original image from the null space
or from the range of the matrix. In the noisy case, this algo-
rithm performs better than Harikumar’s approach.

The mentioned algorithms lack robustness, assume cor-
rect size of blurs and perfect spatial alignment (registration)
of channels. These assumptions are seldom true in real
applications and have not yet been considered in previous
works dedicated to multichannel restoration.

In this paper, we address the issues of robustness, blur
size, and misalignment. An alternating minimization (AM)
algorithm as a solution to a maximum a posteriori (MAP)
estimator is given here. The estimator is based on the to-
tal variation integral in the MC setting. We examine the
minimization algorithm for its ability to alleviate the blur-
oversized problem and show that the channel misalignment
can be perfectly neutralized by properly oversizing the blur
support.

2 Problem formulation

We first define the single-input multiple-output degrada-
tion model in the discrete domain N2 as follows. Each im-
age function has a finite rectangular support and can be ex-
pressed as a column vector by concatenating its columns.
In this manner, let the vector u denote the original (in-
put) image of size Su ∈ N2. The input image propagates



through K different channels that behave as linear filters
(matrices Hk) with finite impulse responses (masks) hk,
k ∈ {1, . . . ,K}. Let the maximum support size of the
masks be Sh ∈ N2. In each channel, the image is further
degraded with additive white Gaussian noise (AWGN) nk
of variance σ2 and shifted by tk ∈ N2, where St ∈ N2

denotes the maximum observed shift. On the output, we
receive degraded and shifted images zk. Using the above
vector-matrix notation, the whole degradation model can be
then expressed as

zk = TkHku + nk , k = 1, . . . ,K,

where Tk is a translation operator shifting an image by tk
pixels, i.e. a linear filter with the δ–function at the position
tk. It is easy to verify that the matrix product TkHk = Gk

defines convolution with a mask gk that is a shifted version
of the mask hk with the maximum support size Sg = Sh +
St. By concatenating the channels, the previous equation
can be rewritten in two equivalent forms

z = Gu + n = Ug + n , (1)

where z ≡ [zT1 , . . . zTK ]T , G ≡ [GT
1 , . . . ,G

T
K ]T , n ≡

[nT1 , . . . ,n
T
K ]T , g ≡ [gT1 , . . . ,g

T
K ]T , and U is a block-

diagonal matrix with K blocks each performing convolu-
tion with the image u.

Adopting a stochastic approach, the problem of image
restoration can be formulated as an MAP estimation. We
assume that the images u, g and z are random vector fields
with given probability density functions (pdf) p(u), p(g)
and p(z), respectively, and we look for such realizations
of u and g which maximize the a posteriori probability
p(u,g|z). According to the Bayes rule, the relation between
a priori probabilities p(u), p(g) and the a posteriori prob-
ability is p(u,g|z) ∝ p(z|u,g)p(u)p(g). The conditional
pdf p(z|u,g) follows from (1) and from our assumption of
AWGN, i.e.,

p(z|u,g) ∝ exp

{
− 1

2σ2
(z−Gu)T (z−Gu)

}
. (2)

A space of bounded variation (BV) functions is widely
accepted as a proper setting for real images. This has
been proved many times by demonstrating very good
anisotropic denoising properties of the total variation semi-
norm TV (u) =

∫
|∇u(x)|dx that is well defined only in the

BV space. Since the variational integral is highly nonlinear
and not continuous at ∇u(x) = 0, a special attention must
be paid to its discretization and several relaxed linearization
schemes were proposed. Following the half-quadratic reg-
ularization scheme in [1] that introduces an auxiliary vari-
able, we can express the a priori distribution of the original
image as

p(u, v) ∝ exp

{
−1

2
uTL(v)u

}
, (3)

where v is the auxiliary variable similar to Geman’s line
process [2] and which is defined as

v(x) =

{
1/|∇u(x)| if |∇u(x)| > ε

1/ε otherwise,

where ε is a relaxation parameter. Matrix L(v) is a
block tridiagonal matrix constructed by v that performs
shift-variant convolution with v. In relatively flat regions,
|∇u(x)| ≤ ε, L(v) becomes the Laplacian operator. In re-
gions with high image gradient, |∇u(x)| > ε, uTL(v)u
calculates the TV semi-norm of the image u.

The prior distribution p(g) can be derived from the fun-
damental multichannel constrain stated by Harikumar [5, 4]
and Giannakis [3]. Let Zk denote the convolution matrix
with the degraded image zk. If noise nk is zero and the orig-
inal channel masks {hk} are “weakly coprime”, i.e. their
only common factor is a scalar constant, then

Zigj − Zjgi = 0 , 1 ≤ i < j ≤ K . (4)

If both the maximum size of blurs and the shift between
the channels, Sg, are known, the solution is {αgk} for any
scalar α. If Sg is not known, it must be first estimated and
two distinct situations arise. If Sg is underestimated, zero
vector is the only solution of (4). If Sg is overestimated,
then the space of all solutions of (4) contains the correct
masks {gk} and the dimensionality of this solution space is
proportional to the degree of the overestimation. The sys-
tem of equations in (4) can be expressed as one equation

Zg = 0 , (5)

where

Z ≡
(
ZT1 . . . ZTK−1

)T
,

Zi ≡




0 . . . 0
...

. . .
...

0 . . . 0
︸ ︷︷ ︸

i−1 blocks

Zi+1 . . . −Zi . . .
...

. . .
...

...
ZK . . . . . . −Zi




︸ ︷︷ ︸
K−i+1 blocks

for i = 1, . . . ,K−1. If the AWGN noise term np is present,
it follows from (1) that the left-hand side of (5) is not zero
but equals to a realization of a Gaussian process with zero
mean and covariance C given by

C = σ2GGT , (6)

where

G ≡
(
GT1 . . . GTK−1

)T
,

Gi ≡




0 . . . 0
...

. . .
...

0 . . . 0
︸ ︷︷ ︸

i−1 blocks

Gi+1 . . . −Gi . . .
...

. . .
...

...
GK . . . . . . −Gi




︸ ︷︷ ︸
K−i+1 blocks



for i = 1, . . . ,K− 1. Finally, the prior pdf p(g) is given by

p(g) ∝ exp
{
−1

2
gTZTC−1Zg

}
. (7)

Our numerical experiments have shown that the covariance
matrix C can be approximated by a constant diagonal matrix
(2σ2/K)‖g‖2I = (2σ2/K)‖h‖2I, which greatly simpli-
fies the calculation and does not inflict the restoration. Here
‖ · ‖ denotes the l2 norm.

Combining (2), (3) and (7), we get

p(u,g|z) ∝ exp

{
−1

2

( 1

σ2
(z−Gu)T (z−Gu)

+ uTL(v)u + gTZTC−1Zg
)}

and the MAP estimation is equivalent to minimizing an en-
ergy functional

E(u,g) =
1

σ2
(z−Gu)T (z−Gu) + uTL(v)u+

gTZT C−1Zg . (8)

Such problems can be solved by means of genetic al-
gorithms, e.g., simulated annealing. However, we have
adopted a simple approach of alternating minimizations of
E over u and g which, in case of constant C, leads to two
linear equations:

(UTU + σ2ZTC−1Z)g = UT z

(GTG + σ2L(v))u = GT z
(9)

Each minimization step is a solution to a simple convex
problem (but not necessarily strictly convex, especially,
when g is oversized). The conjugate gradient (CG) method
is used to solve the second equation in (9) because the matri-
ces are extremely large and direct solution methods cannot
be applied here. E as a function of both variables u and
g is, however, not convex. Therefore, we cannot guaran-
tee, in general, that the global minimum is reached by the
AM–MAP algorithm. Nevertheless, our experiments have
shown good convergence properties when the correct mask
size was used. We also assume that the noise variance σ2 is
known. If this is not the case, the noise variance can be as-
sessed by standard noise estimation methods or an approach
of “trial and error” can be considered. The impact of wrong
σ2 can be easily observed. If the parameter is too small,
i.e. we assume less noise, the restoration process begins to
amplify noise in the image. If the parameter is too big, the
restoration process starts to segment the image.

3 Shift-invariant restoration

To assess the quality of restoration, we use the percent-
age mean square error of the estimated image û with respect

to the original image u defined as

PMSE(u) ≡ 100
‖û− u‖
‖u‖ .

The first experiment demonstrates the capability of the
AM–MAP algorithm to recover the original image from
two degraded and shifted versions thereof, when the maxi-
mum shift between any two channels is known. The stan-
dard 128 × 128 “Lena” image is degraded with two 5 × 5
blurs. One blurred image is shifted by 10 × 20 pixels and
then both images are cropped to the same size; see Fig. 1.
The AM algorithm is initialized with the correctly estimated
blur size 15 × 25. The restored image and blurs are shown
in Fig. 2. The blurs are perfectly recovered and properly
shifted. The restored image matches the original one, show-
ing only minor artifacts close to the borders where only data
from one channel were available. The same experiment is
conducted again but Gaussian noise SNR = 30 dB is added
to the blurred and shifted input images in Fig. 1. (Recall
that SNR decreases as noise variance increases.) Obtained
results in Fig. 3 illustrate satisfying restoration.

We also compare the performance of Pai’s method [7]
with our algorithm for different levels of noise. The Pai ap-
proach directly recovers the original image by calculating
the maximum singular vector of a special matrix. The QR
decomposition is necessary for the construction of this ma-
trix and the power method (or any other iterative method
for eigenvector computation) is used to find the maximum
singular vector, i.e the original image. Although the Pai
method is not iterative in its definition, it requires numerical
iterative methods and thus approaches the complexity of our
inherently iterative algorithm. We use four randomly gener-
ated 3× 3 blurs to obtain four blurred “Lena” images. The
images are then mutually translated so that centers of the
images are in corners of a 5×5 square. Noise is added with
SNR = 10, 20, 30, 40 and 50 dB, respectively. The maxi-
mum shift and the size of blurs are assumed to be known and
therefore both methods are initialized with the correct blur
size 8 × 8. For each SNR, the experiment is repeated with
different blurs 10 times and stopped after 50 iterations in the
AM–MAP case. The mean PMSE and standard deviation
is calculated over these 10 estimated images and plotted in
Fig. 4. Clearly, the AM–MAP performs better than the Pai
method for every SNR.

In the next experiment, we evaluate the performance of
the AM–MAP algorithm with respect to the channel mis-
alignment. Degraded images are prepared in similar fashion
as in the previous experiment but this time the maximum
translation between any two channels varies from 0 to 5× 5
pixels to simulate inaccurate registration. For each shift,
the algorithm is repeated 10 times with different blurs and
is every time initialized with the blur size 8× 8. The calcu-
lated mean PMSE and standard deviation is given in Figs. 5
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Figure 1. The “Lena” image degraded with
two 5 × 5 blurs (bottom). Mutual translation
between the images is 10× 20 pixels.
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Figure 2. Perfect noise-free AM–MAP restora-
tion: (a) recovered “Lena” image, (b) recov-
ered blurs and 10× 20 shift between channels
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Figure 3. Noisy AM–MAP restoration (30dB):
(a) recovered “Lena” image, (b) recovered
blurs and 10× 20 shift between channels
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Figure 4. Comparison of the AM–MAP algo-
rithm (solid) and the Pai method (dashed):
Mean PMSE and standard deviation (vertical
abscissae) of the restored images over 10 dif-
ferent degradations and for different SNR.

and 6. For low SNR’s around 10 and 20 dB, PMSEs are al-
most constant, which demonstrates a very good stability of
the algorithm with respect to the mask overestimation. In
the case of high SNR’s, see Fig. 6, we can observe a steady
growth of the restoration error as the shift increases and then
a dramatic performance gain for shift 5. This sharp error de-
crease is due to much better convergence of the algorithm
if the blur size is correctly estimated, which, in our case,
corresponds to shift 5. Results for low SNR’s in Fig. 5 do
not exhibit such dramatic performance gains as the impact
of noise prevails over the blur size overestimation.

Finally, to demonstrate the applicability of the AM–
MAP algorithm, we have performed an experiment with
real data. This experiment was motivated by many prac-
tical situations where we have to handle images degraded
by random vibration blur. This problem appears frequently
in industrial visual inspection when the camera is mounted
on a vibrating machine or when a stationary camera mon-
itors vibrating environment. A text label (a part of a stan-
dard newspaper page) was attached to a vibrating machine.
The label was monitored under poor light conditions by a
standard digital camera mounted on a tripod. The camera
exposure time was set at 1/15s which was comparable to
the period of irregular vibrations of the machine. Three
cropped images of the label acquired with the camera were
used as the input channels of AM–MAP; see Fig. 7. Note
strong shift blurs due to the machine movement and clear
spatial misalignment of the channels. The AM–MAP algo-
rithm was initialized with the blur size 10 × 10, σ2 = 0.01
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Figure 5. AM-MAP algorithm performance
on misaligned channels: Mean PMSE and
standard deviation (vertical abscissae) of re-
stored images over 10 different degradations
for a different degree of channel misalign-
ment and SNR.
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Figure 6. AM-MAP algorithm performance on
misaligned channels: Mean PMSE of restored
images over 10 different degradations for a
different degree of channel misalignment and
SNR.



Figure 7. Real data experiment: Three con-
secutive acquisitions of a text label attached
to a vibrating machine. The images are
cropped to 100 × 200 size. Shift blurs and
spatial misalignment of the images are clearly
visible.

and ‖h‖2 = 0.25. The reconstructed label and the corre-
sponding blur masks after 20 iterations are shown in Fig. 8.
Observe that the restoration is slightly less successful at the
image borders, especially close to the top edge, where only
data from the third channel were available. We may con-
clude that the restoration was successful (the text is clearly
readable) and that the spatial misalignment inherent to this
type of problems poses no threat to proper functionality of
the algorithm. Let us recall that no assumption about the
shape of the blurring functions and no preprocessing of the
input images were employed.

4 Conclusion

We have developed the iterative algorithm for MC blind
deconvolution that searches for the MAP estimator. The
prior density functions were derived from the variational in-
tegral defined on bounded variation functions and from the
mutual relation of weakly coprime channels. The restora-
tion is regularized with an anisotropic term for edge preser-
vation and performs well on heavily degraded images with
high SNR and shows better performance then the most re-
cent multichannel method. We have also shown that the in-
accurate registration of channels can be alleviated by prop-
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Figure 8. Real data experiment: Recon-
structed part of the label and the correspond-
ing blurs (magnified) using the AM–MAP algo-
rithm. The irregular vibration of the machine
is well preserved in the blurs.

erly overestimating the size of blurs. All previously pub-
lished MC blind deconvolution methods assumed perfectly
registered channels. To our knowledge, this is the only
method dealing explicitly with misregistration of images in
the multichannel framework and providing a successful so-
lution to this problem.
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