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ABSTRACT

We present a maximum a posteriori solution to the problem
of obtaining a high-resolution image from a set of degraded
low-resolution images of the same scene. The proposed algo-
rithm has the advantage that no prior knowledge of blurring
functions is required and it can handle unknown misregistra-
tions between the input images. An efficient implementation
scheme of alternating minimizations is presented together
with experiments that demonstrates the performance of the
algorithm.

I. I NTRODUCTION

Image fusion is one of quickly developing advanced meth-
ods used in processing of remotely sensed images. The term
fusion means in general an approach to extraction of infor-
mation spontaneously adopted in several domains. The goal
of image fusion is to integrate complementary multisensor,
multitemporal and/or multiview information into one new
image containing information the quality of which cannot
be achieved otherwise. The term “quality” depends on the
application requirements.

In remote sensing, image fusion has been mainly used to
achieve high spatial and spectral resolutions by combining
images from two sensors, one of which has high spatial
resolution and the other one high spectral resolution. Typically,
a multispectral satellite image (like SPOT XMS for instance)
is fused with a high-resolution panchromatic image (SPOT
Panchro) or with an aerial image. Most fusion methods are
based on image decomposition into low-pass and high-pass
bands and on combining the low-pass band of the multispectral
image with the high-pass band(s) of the panchromatic image
[1]–[5]. Similar effect can be achieved by transforming the
multispectral image into IHS coordinates and replacing inten-
sity component by the panchromatic image [6], [7].

In this paper, we consider a different problem formulation.
Assuming two or more low-resolution images from the same
sensor (or from different sensors of the same type) are
available, our goal is to obtain fused image of higher spatial
resolution than the resolution of the input channels. Contrary
to the previous case, this task is more complicated because
we do not have the high-resolution information in any form.
This problem appears in remote sensing very often. Due to the
physical limitations of the sensors (see, for instance, [8] for
detailed explanation) and imperfect observational conditions,
the acquired images represent only a degraded versions of the

original scene, where mainly the high-frequency information is
suppressed, degraded or missing. Fusion of the low-resolution
images together is an effective means of breaking the sensor
limits and of removing the degradation introduced by atmo-
spheric turbulence, sensor motion, and other factors.

We should point out that this problem appears also outside
the area of remote sensing (it has attracted the attention of pro-
ducers of low-resolution cameras and videos, among others)
and has lead to developing techniques known asmultichannel
blind deconvolutionand superresolution imaging, see [9]–
[16] for a survey and other references. However, a common
weakness of the previous techniques is that they need too much
a priori information which is not realistic in practice. For
instance, they require a knowledge of a shape and size of the
blurring function, availability of a high-resolution reference
frame, or accurate geometric alignment (registration) of the
input channels.

In this paper we present a fusion method based on a
stochastic approach. The optimal solution is defined as a
maximum a posteriori (MAP) estimate and is found by an
alternating minimization (AM) algorithm. The main feature of
the new fusion method is that it does not require any knowl-
edge of the blurring functions and the input channels might
be mutually shifted by an unknown vector. Allowing only
translational between-channel misregistration is not a serious
limitation. Larger and more complex geometric distortions can
be suppressed (usually just up to a small between-image shift)
by a proper registration method (there have been hundreds of
them investigated, see [17] for a survey).

II. MAP ANALYSIS

Let us assume that thek-th acquired low-resolution image
(channel)zk can be modelled by blurring the ”ideal” image
u and shifting the result by an unknown vector(ak, bk) = tk,
i.e.,

zk(x + ak, y + bk) = (u ∗ hk)(x, y) + nk(x, y), (1)

wherehk is an unknown PSF having a character of a low-pass
filter, and nk denotes additive noise. This model is a very
realistic description of many low-resolution satellite sensors
[8]. In the discrete domain, this degradation model takes the
form

zk = TkHku + nk , k = 1, . . . , K,

where zk, u, and nk are discrete lexicographically ordered
equivalents of image functionszk, u, and nk, respectively.



Tk is a translation operator shifting an image bytk pixels,
i.e. a linear filter with the delta function at the positiontk.
One can readily see that the matrix productTkHk = Gk

defines convolution with a maskgk that is a shifted version of
a maskhk (discrete representation ofhk). By concatenating
the channels, the previous equation can be rewritten in two
equivalent forms

z = Gu + n = Ug + n , (2)

where z ≡ [zT
1 , . . . zT

K ]T , G ≡ [GT
1 , . . . ,GT

K ]T ,
n ≡ [nT

1 , . . . ,nT
K ]T , g ≡ [gT

1 , . . . ,gT
K ]T , andU is a block-

diagonal matrix withK blocks each performing convolution
with the imageu.

Adopting a stochastic approach, the problem of image
fusion can be formulated as an MAP estimation. We assume
that the imagesu, g and z are random vector fields with
given probability density functions (pdf)p(u), p(g) andp(z),
respectively, and we look for such realizations ofu and
g which maximize thea posteriori probability p(u,g|z).
According to the Bayes rule, the relation betweena priori
probabilities p(u), p(g) and the a posteriori probability is
p(u,g|z) ∝ p(z|u,g)p(u)p(g). The conditional pdfp(z|u,g)
follows from (2) and from our assumption of white Gaussian
noise, i.e.

p(z|u,g) ∝ exp
{
−1

2
(z−Gu)T Σ−1(z−Gu)

}
,

whereΣ is the noise diagonal covariance matrix with{σ2
k}K

k=1

on the corresponding positions on the main diagonal. If the
same noise varianceσ2 is assumed in each channel,Σ−1

reduces to a scalarσ−2.

A. A priori distribution of the original image

A general model for the prior distributionp(u) is a Markov
random field which is characterized by its Gibbs distribution
given byp(u) ∝ exp(−F (u)/λ), whereλ is a constant andF
is called theenergy function. One can find various forms of the
energy function in the literature, however, the most promising
results have been achieved for variational integrals. The energy
function then takes the form

F (u) =
∫

φ(|∇u|) , (3)

whereφ is strictly convex, nondecreasing function that grows
at most linearly. Examples ofφ(s) are s (total variation),√

1 + s2−1 (hypersurface minimal function) orlog(cosh(s)).
Nonconvex functions may behave an unpredictable manner
but since they often provide better results for segmentation
problems, forms, such aslog(1+s2), s2/(1+s2) or arctan(s2)
(Mumford-Shah functional), are often used as well. The energy
function based on the variational integral is highly nonlinear
and to overcome this difficulty we follow a half-quadratic
scheme described in [18] which introduces an auxiliary vari-
able. A special attention must be paid to the discretization
of the image gradient∇u and relaxation ofφ. In addition,
we confine the distribution to an amplitude constraint set

Cu ≡ {u|α ≤ u ≤ β} with amplitude bounds derived from
the input images, typicallyα = 0 andβ = 255. We thus define
the prior distribution as

p(u) =

{
1
Z exp

{
− 1

2σ2
u
uT L(v)u

}
if u ∈ Cu ,

0 otherwise,

where Z is the partition function,σ2
u denotes the image

variance,uT L(v)u represents the discretization of (3) andv is
the auxiliary variable introduced by the half-quadratic scheme,
which is calculated as

v(x, y) =
φ′(|∇u(x, y)|)
|∇u(x, y)| . (4)

Matrix L(v) is a positive semidefinite block tridiagonal matrix
constructed byv that performs shift-variant convolution with
v.

B. A priori distribution of the blurs

The shape of the prior distributionp(g) can be derived from
the fundamental multichannel constraint stated in [9], [10]. Let
Zk denote the convolution matrix with the degraded imagezk.
If noise nk is zero and the original channel masks{hk} are
weakly coprime, i.e. their only common factor is a scalar, then
all solutions{ĝk} to

Ziĝj − Zj ĝi = 0 , 1 ≤ i < j ≤ K (5)

have the following forms. LetSg denote the sum of the
maximum blur size and the maximum shift between the
channels. IfSg is known the solution equals{αgk} for any
scalarα. If Sg is not known, it must be first estimated and two
distinct situations arise. IfSg is underestimated, zero vector
is the only solution of (5). IfSg is overestimated, then the
space of all solutions of (5) contains the correct masks{gk}
and the dimensionality of this solution space is proportional
to the degree of the overestimation. After further stacking the
system of equations (5), we obtain

Zĝ = 0 , (6)

where ĝ ≡ [ĝT
1 , . . . , ĝT

K ]T . If the noise termnk is present,
it follows from (2) that the left-hand side of (6) equals a
realization of a Gaussian process of zero mean and covariance
C = GΣGT , whereG takes the form ofZ in (6) with Zi

replaced byGi.
It is desirable to include also other prior knowledge

about the blurs, such as positivity or constant energy.
We therefore define a set of admissible solutions as
Cg ≡ {g|gk(x, y) ≥ 0 ∧∑

x,y gk(x, y) = 1, k = 1, . . . ,K}
and propose the following prior distribution:

p(g) =

{
1
Z exp

{− 1
2g

TZTC−1Zg
}

if g ∈ Cg ,

0 otherwise.

The inverse of the matrixC is not trivial and the matrix
is constructed by the blursg that are to be estimated. To
overcome this difficulty, we approximateC by a diagonal
matrixD such thatdiag(D) = diag(C), wherediag(·) denotes



the main diagonal of the matrix. The elements ofD take
the form σ2

i ‖gj‖2 + σ2
j ‖gi‖2 for 1 ≤ i < j ≤ K. The

value of ‖gi‖2 is not known in advance, but a good initial
approximation can be given. Sinceg ∈ Cg, 1Q

Sg
≤ ‖gi‖2 ≤ 1

and we use the bottom limit for‖gi‖2.

C. AM-MAP algorithm

The MAP estimation is given by

{û, ĝ} = arg min
u∈Cu,g∈Cg

{
(z−Gu)T Σ−1(z−Gu)

+
1
σ2

u

uT L(v)u + gTZTD−1Zg
}

. (7)

Such problems can be solved by means of genetic algorithms,
e.g. simulated annealing. In this paper we have adopted an
approach of alternating minimizations overu and g. The
advantage of this scheme lies in its simplicity. Each term in
(7) is convex and the derivatives w.r.t.u and g can be eas-
ily calculated. The proposed AM–MAP algorithm alternates
between two steps

1. u = (GT Σ−1G +
1
σ2

u

L(v))−1GT Σ−1z ∧ u ∈ Cu,

2. g = (UT Σ−1U + ZTD−1Z)−1UT Σ−1z ∧ g ∈ Cg .

In step 1 the flux variablev is updated according to (4).
Inversion of the matrix in step 1 cannot be carried out directly
because of the matrix size. Instead, we use the method of
conjugate gradients to find the solution. BothUT Σ−1U and
ZTD−1Z have the size squared proportional to the blur size
and can be constructed directly without building the individual
matricesU andZ that have much larger size.

One must supply the blur size to the algorithm. An impor-
tant feature is that an accurate estimation is not necessary; we
must only guarantee that the blur size is not underestimated.
In addition, the noise covarianceΣ and the image variance
σ2

u are obligatory in the algorithm. However, if noise has the
same varianceσ2

n in every channel, the MAP expression (7) is
simplified and only the signal to noise ratioσ2

u/σ2
n is required.

III. E XPERIMENTAL RESULTS

Experiments were carried out on two simulated scenarios,
seemingly acquired at different time instances. For instance,
one can imagine they were captured by a low-resolution sensor
similar to AVHRR.

As the input for the first simulation (playing the role of the
”ideal” image), the300×300 SPOT HRV image covering the
north-western part of Prague (Czech capital) was used (see
Fig. 1(c)). We chose this image as a typical representation
of urban areas. To simulate two low-resolution acquisitions,
the image was blurred by two randomly generated5 × 5
motion masks, corrupted by Gaussian additive noise of SNR =
50 dB, and mutually shifted by 5 pixels in both directions (see
Figs. 1(a) and 1(b)). The AM-MAP algorithm was initialized
with the overestimated blur size15× 15. Fig. 1(d) depicts the
fused image.

The second experiment was conducted in a similar way
but on a image showing agricultural areas; see Fig. 2(c).
The parameters of the simulation were the same except this
time the AM-MAP algorithm was initialized with the less
overestimated blur size12 × 12. The fused images is shown
in Fig. 2(d).

The fused images are by visual comparison much sharper
than the input channels and are fully comparable to the
”ideal” images, which demonstrates excellent performance of
the method. The degree of overestimation does not have a
serious impact on the quality of the fused image.

IV. CONCLUSIONS

We have developed an iterative fusion algorithm that recov-
ers a high-resolution image from misaligned and blurred input
channels. The fusion problem is formulated as the MAP esti-
mation with the prior probabilities derived from the variational
integral and from the mutual relation of coprime channels.
The presented experiments indicate that this approach provides
high-quality fused images, fully comparable to the ”ideal”
ones. We envisage that the possible future extension of the
proposed method is to include resolution enhancement of
the fused image, i.e. solve the super-resolution and blind
deconvolution problems simultaneously.
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Fig. 2. AM-MAP fusion of agricultural-area images: (a)-(b) simulated low-resolution images; (c) ”ideal” image for comparison; (d) result of fusing (a) and
(b). The fused image is of smaller size since only the overlap areas of the input images can be fused.


