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Abstract. We present a maximum a posteriori solution to problems of
accurate registration of blurred images and recovery of an original un-
degraded image. Our algorithm has the advantage that both tasks are
performed simultaneously. An efficient implementation scheme of alter-
nating minimizations is presented. A simulation and a real-data experi-
ment demonstrate the superb performance of the algorithm.

1 Introduction

Imaging sensors and other devices have their physical limits and imperfections,
therefore, an acquired image represents only a degraded version of the original
scene. Two main categories of degradations are recognized: color (or brightness)
degradations and geometric degradations. The former degradations are caused
by such factors as wrong focus, motion of the scene, media turbulence, noise,
and limited spatial and spectral resolution of the sensor; they usually result in
image blurring. The latter degradations originate from the fact that each image
is a 2-D projection of 3-D world. They cause deformations of object shapes and
other spatial distortions of the image.

Since the geometric and color degradations are in principle inevitable in
real applications, analysis and interpretation of degraded images represents the
key problem. Image fusion provides a solution to this problem and consists of
two steps. First the geometric deformations are removed by means of image
registration, and second, the color (intensity) information is combined. If we
can model the color deformation by convolution, the second step corresponds to
a multichannel blind deconvolution (MBD) problem. In this paper, we address
the problem of registration of blurred images (channels) from the perspective of
image fusion.

Image registration is a process of transforming two or more images into a
geometrically equivalent form. It eliminates degradation effects caused by the
geometric distortion. For images which are not blurred, the registration has
been extensively studied in the recent literature (see [1] for a survey). However,
blurred images require special registration techniques. They can be, as well as
the general-purpose registration methods, divided into two groups – global and
landmark-based techniques. Regardless of the particular technique, all feature



extraction methods, similarity measures, and matching algorithms used in the
registration process must be insensitive to image blurring.

Global methods do not search for particular landmarks in the images. They
try to estimate directly the between-channel translation and rotation. Myles and
Lobo [2] proposed an iterative method working well if a good initial estimate of
transformation parameters is available. Zhang et al. [3] proposed to estimate the
registration parameters by bringing the channels into a canonical form. Since
blur-invariant moments were used to define the normalization constraints, nei-
ther the type nor the level of the blur influences the parameter estimation.
Kubota et al. [4] proposed a two-stage registration method based on hierarchi-
cal matching, where the amount of blur is considered as another parameter of
the search space. Zhang and Blum [5] proposed iterative multiscale registration
based on optical flow estimation in each scale, claiming that optical flow estima-
tion is robust to image blurring. All global methods require a considerable (or
even complete) spatial overlap of the channels to yield reliable results, which is
their major drawback.

Landmark-based blur-invariant registration methods have appeared very re-
cently, just after the first paper on the moment-based blur-invariant features [6].
Originally, these features could only be used for registration of mutually shifted
images. The proposal of their rotational-invariant version [7] in combination with
a robust detector of salient points [8] led to registration methods that are able
to handle blurred, shifted and rotated images [9].

Although the above-cited registration methods are very sophisticated and can
be applied almost to all types of images, the result tends to be rarely perfect. The
registration error is usually few pixels for blurred images. However, the second
step of image fusion (MBD in our case) requires perfectly aligned channels.
Current MBD methods, see e.g. [10–13], are not sufficiently robust to handle
the registration error. In the field of super-resolution image reconstruction, a
few techniques, such as [14], were proposed that simultaneously estimate motion
vectors and reconstruct the image, but they are not blind or assume the same
parametrized blur in the channels. The first step towards more robust MBD
was given in [15], which deals with blind deconvolution of translated channels
degraded by different but simple motion blurs.

In this paper, we propose a novel technique that can be applied after removing
large between-channel misregistrations and which then performs image fusion in
one step, i.e. fine registration and blind deconvolution simultaneously. Image
blurring can be arbitrary and is unknown, while the geometric misregistrations
are supposed to be also unknown but limited to “small” translations. In the next
section, we formulate the solution as a maximum a posteriori estimator (MAP)
and use an alternating minimization (AM) algorithm to find the solution. We
derive a priori probabilities of the original image and the blurs from properties
of bounded variation functions and the multichannel framework, respectively.
Experimental results are given in Section 3. Finally, Section 4 concludes the
paper.



2 MAP analysis

Let us assume that the k-th acquired image (channel) zk can be modelled by
blurring the ”ideal” image u and shifting the result by few pixels

zk(x + ak, y + bk) = (u ∗ hk)(x, y) + nk(x, y), (1)

where vector (ak, bk) = tk represents the unknown translation of the k–th chan-
nel, hk is the unknown blur mask with a characteristic of a low-pass filter, and
nk denotes additive noise. In the discrete domain, this degradation model takes
the form:

zk = TkHku + nk , k = 1, . . . , K,

where zk, u, and nk are discrete lexicographically ordered equivalents of the
image functions zk, u, and nk, respectively. Tk is a translation operator shifting
the image by tk pixels, i.e. a linear filter with the delta function at the position
tk. One can readily see that the matrix product TkHk = Gk defines convolution
with a mask gk that is a shifted version of a mask hk (discrete representation of
hk). This degradation model closely resembles the model used in super resolution
except that a subsampling operator is not present in our case. By concatenating
the channels, the previous equation can be rewritten in two equivalent forms

z = Gu + n = Ug + n , (2)

where z ≡ [zT
1 , . . . , zT

K ]T , G ≡ [GT
1 , . . . ,GT

K ]T , n ≡ [nT
1 , . . . ,nT

K ]T ,
g ≡ [gT

1 , . . . ,gT
K ]T , and U is a block-diagonal matrix with K blocks each per-

forming convolution with the image u.
We adopt a stochastic approach and follow the MAP formulation proposed

in our previous work [16]. The conditional pdf p(z|u,g) follows from (2) and
from our assumption of white Gaussian noise, i.e.

p(z|u,g) ∝ exp
{
−1

2
(z−Gu)T Σ−1(z−Gu)

}
,

where Σ is the noise diagonal covariance matrix with {σ2
k}K

k=1 on the correspond-
ing positions on the main diagonal. If the same noise variance σ2 is assumed in
each channel, Σ−1 reduces to a scalar σ−2.

A general model for the prior distribution p(u) is a Markov random field
which is characterized by its Gibbs distribution given by p(u) ∝ exp(−F (u)/λ),
where λ is a constant and F is called the energy function. One can find vari-
ous forms of the energy function in the literature, however, the most promising
results have been achieved for variational integrals. The energy function then
takes the form

F (u) =
∫

φ(|∇u|) , (3)

where φ is strictly convex, nondecreasing function that grows at most linearly.
Examples of φ(s) are s (total variation),

√
1 + s2 − 1 (hypersurface minimal



function) or log(cosh(s)). The energy function based on the variational integral
is highly nonlinear and to overcome this difficulty we follow a half-quadratic
scheme described in [17]. In addition, we confine the distribution to an amplitude
constraint set Cu ≡ {u|α ≤ u ≤ β} with amplitude bounds derived from the
input images, typically α = 0 and β = 255. The prior distribution then takes
the form

p(u) =

{
1
Z exp

{
− 1

2σ2
u
uT L(v)u

}
if u ∈ Cu ,

0 otherwise ,

where Z is the partition function, σ2
u denotes the image variance, uT L(v)u rep-

resents the discretization of (3) and v is the auxiliary variable introduced by the
half-quadratic scheme, which is calculated as v(x, y) = φ′(|∇u(x, y)|)/|∇u(x, y)|.

The shape of the prior distribution p(g) can be derived from a fundamental
multichannel constraint stated in [10]. Let Zk denote the convolution matrix
with the degraded image zk. If noise nk is zero and the original channel masks
{hk} are weakly coprime, i.e. their only common factor is a scalar, then the blurs
{gk} satisfy

Zigj − Zjgi = 0 , 1 ≤ i < j ≤ K (4)

provided that the blur size is large enough to accommodate the maximum orig-
inal blur size and the maximum shift between the channels. After stacking the
system of equations (4), we obtain

Zg = 0 , (5)

where g ≡ [gT
1 , . . . ,gT

K ]T . If the noise term nk is present, it follows from (2) that
the left-hand side of (5) equals a realization of the Gaussian process of zero mean
and covariance C = GΣGT , where G has the form of Z in (5) with Zi replaced
by Gi.

It is desirable to include also other prior knowledge about the blurs, such as
positivity or constant energy. We therefore define a set of admissible solutions
as Cg ≡ {g|gk(x, y) ≥ 0 ∧ ∑

x,y gk(x, y) = 1, k = 1, . . . , K} and propose the
following prior distribution:

p(g) =

{
1
Z exp

{− 1
2g

TZTC−1Zg
}

if g ∈ Cg ,

0 otherwise .

The matrix C is constructed by the blurs g, that are to be estimated, and its
inversion is not trivial. To overcome this difficulty, we approximate C by a di-
agonal matrix D such that diag(D) = diag(C), where diag(·) denotes the main
diagonal of a matrix. The elements of D take the form σ2

i ‖gj‖2 + σ2
j ‖gi‖2 for

1 ≤ i < j ≤ K. The value of ‖gi‖2 is not known in advance, but a good initial
approximation can be calculated. Since g ∈ Cg, 1Q

Sg
≤ ‖gi‖2 ≤ 1 and we use

the bottom limit for ‖gi‖2.



The MAP estimation is then given by

{û, ĝ} = arg min
u∈Cu
g∈Cg

{
(z−Gu)T Σ−1(z−Gu)+

1
σ2

u

uT L(v)u+gTZTD−1Zg
}

.

(6)

Such problems can be solved by means of genetic algorithms or simulated an-
nealing. In this paper we have adopted an approach of alternating minimizations
(AM-MAP) over u and g. The advantage of this scheme lies in its simplicity.
Each term in (6) is convex, the derivatives w.r.t. u and g can be easily calculated
and we alternate between two simple linear equations.

One must supply the blur size to the algorithm. An important feature, which
makes the proposed method particulary appealing, is that an accurate estimation
is not necessary; we must only guarantee that the blur size is not underestimated.
In addition, the noise covariance Σ and the image variance σ2

u are obligatory in
the algorithm. If noise has the same variance σ2

n in every channel, the MAP
expression (6) is simplified and only the signal to noise ratio σ2

u/σ2
n is required

in the algorithm.

3 Experimental results

To illustrate the performance of the AM-MAP registration and fusion method,
we conducted two experiments: one with synthetic data and one with real data.

In the first experiment, we created two degraded images depicted in Fig. 1(a).
This was done by convolving the original image with two different 5 × 5 blurs,
adding noise of SNR = 50 dB and shifting one of the blurred images by 5 × 5
pixels. The AM-MAP algorithm was initialized with the overestimated blur size
12× 12. The fused image and the estimated blur masks are shown in Fig. 1(b).
Reconstructed blurs are properly shifted and de facto perform registration. The
fused image is by visual comparison much sharper than the input channels and
no artifacts are visible.

In real applications one cannot expect that translation is the only geometric
deformation that may occur. As mentioned in the introduction, the registration
methods suitable for blurred images must be first applied in such cases. How-
ever, precise registration is seldom achieved. If our fusion algorithm is used, one
can reduce the effort to reach accurate registration. Fast registration that re-
moves only the major geometric degradation will suffice. To test this issue and
applicability of the proposed algorithm, we conducted the experiment with real
data.

We photographed a house facade (relatively planar scene) under low-light
conditions with a standard 3 Mp digital camera. Three photos (see Fig. 2) were
taken from the same spot with the camera held in hand and set to ISO 100. The
first two have a long exposure time of 1/4 s which was necessary for the given
light conditions. Both images exhibit strong blurring due to the hand motion. We
slightly tilted the camera before the second image was taken. The third photo was



(a)

2 4 6 8 10 12

2

4

6

8

10

12

2 4 6 8 10 12

2

4

6

8

10

12

(b)

Fig. 1. AM-MAP image fusion: (a) two blurred and mutually shifted images of size
230× 260 pixels; (b) fused image and estimated translated blur masks.

acquired with a shorter exposure time of 1/100s to avoid the blurring effect but at
the cost of low contrast. Due to the finite quantization step of the digital camera,
some details in the image (compare for example sphinx’s face) are irrecoverably
lost. This image was used only for comparison purposes. Image fusion proceeded
as follows. The two degraded images in Figs. 2(a) and 2(b) were first registered
with a landmark-based method. Rough registration was performed by means
of three control points and an affine mapping function. We could do better
and decrease, but never completely cancel, a relatively large registration error
(≈ 10 pixels), if more control points and/or a more complex mapping were used.
Since the goal was to test the robustness of our method, inaccurate registration
was sufficient. The roughly registered images then served as inputs to the AM-
MAP fusion algorithm. We estimated the blur size to be 15 × 15 pixels, which
was done by first inspecting the blurred letters (see Fig. 3) in the photos and
then multiplying the size by two to accommodate possible misregistration. The
algorithm was restarted with different signal to noise ratios and provided the best
results according to our visual assessment for σ2

u/σ2
n = 2000, which corresponds

to SNR between 30 and 40 dB. The fused image and the estimated blurs after 20
iterations are shown in Figs. 2(d). On closer inspection, details in Fig. 3 reveal
that the fused image is not as sharp as the short-exposure photo but the overall
impression of the image is very pleasing.

4 Conclusions

We have developed an iterative fusion algorithm that performs simultaneously
registration and restoration of translated blurred images. The fusion problem
is formulated as the MAP estimation with the prior probabilities derived from
the variational integral and from the mutual relation of coprime channels. We
envisage that possible future extensions of the proposed method are to include
space-variant deconvolution (the blur mask may depend on the position in the
image) and resolution enhancement of the fused image (super-resolution).
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Fig. 2. Real data experiment: A house facade was photographed with a standard digital
camera under low-light conditions. All photos were taken with the hand-held camera
and downscaled by four. (a)-(b) Two images acquired with a correct but long exposure
time of 1/4 s. The images exhibit high contrast but severe blurring is evident due to
the hand motion. (c) Image acquired with a short exposure time of 1/100 s. This image
is sharp but too dark. The two top images were roughly registered and then fused with
the AM-MAP algorithm. (d) Result of image fusion.

Fig. 3. Close-ups: (top) detail of the blurred image in Fig. 2(a); (middle) detail of the
sharp image in Fig. 2(c); (bottom) detail of the fused image in Fig. 2(d).
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