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Abstract

We present a computer simulation of low-energy electronic excitations that are created in atomic collision cascades

initiated by the impact of energetic particles onto a solid surface. In order to render a chemically inert system, the self-

bombardment of a silver (1 1 1) surface with Ag atoms is simulated. In the model, the atomic motion following the

particle impact is described by a classical molecular dynamics approach. The transfer of kinetic into electronic exci-

tation energy is described in terms of a friction-like electronic energy loss experienced by every moving atom in the

solid, thus leading to a space and time dependent density of electron–hole pair excitation energy generated in the course

of the collision cascade. This energy is assumed to spread around the point of original excitation with a diffusion

coefficient D and to equipartition in the Ag sp band according to a Fermi distribution characterized by an electronic
temperature Teðr; tÞ. It is shown that for reasonable values of D the electronic energy deposited at the surface can be
substantial, thus leading to transient electronic surface temperatures reaching several thousands of Kelvin which, for

instance, can influence the ionization probabilities of sputtered atoms.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

After the impact of a fast atomic particle upon

the surface of a solid, rapid movements of particles

in the impact zone in the solid follow and a colli-

sion cascade is created. It is well known that the

atomic motion in the solid can be analyzed in de-
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tail because the interatomic forces can be modeled

quite realistically and the atomic particles obey in

good approximation the laws of the classical

mechanics. In principle, this task can be performed

in statistical terms using analytical solutions of

Boltzmann transport equations [1] or by numerical

computer simulations using the Monte Carlo
method [2]. Alternatively, one can follow the

individual trajectories of all atoms by solving the

corresponding set of classical equations of motion

of all atoms involved in the process. Within the

laws of classical mechanics, the latter method,
ved.
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called molecular dynamics (MD), is a precise

simulation of the particle motion in collision cas-

cades and, hence, gives invaluable microscopic

information on particle dynamics which cannot
yet be obtained from experiments [3,4].

In practically all MD implementations that

have appeared so far, the electrons in collision

cascades are assumed to play only a passive role as

a medium which causes a slowing down of the

atomic particles [5]. This electronic energy loss is

normally included in an MD calculation as a

friction force proportional to the velocity of the
moving atom. In the calculation of the atomic

motion, any possible electronic excitation caused

by this friction is generally ignored because it does

not influence the atom kinetics. Moreover, at least

in a metallic substrate one can expect that any

excitation in the electronic system dissipates rap-

idly in the bulk of the solid, thus making its

effective magnitude relatively small.
In some instances, however, even a weak exci-

tation may have strong effects. When atoms are

emitted (‘‘sputtered’’) from the surface as a con-

sequence of the collision cascade, their charge and

excitation state is determined either by the escap-

ing particles’ rapid non-adiabatic passage through

the surface barrier or by the electronic excitation

in the solid which is transferred adiabatically to
the particle. In this context, the term ‘‘surface

barrier’’ denotes the region at and above the sur-

face where the particle is still in an electronic

interaction with the solid. In some cases, like in

scattering of relatively fast projectiles that only

shortly interact with the surface, the non-adiabatic

processes are known to be dominant. In sputtering

or multiple scattering events, however, the elec-
tronic excitation processes undergone by the sub-

strate may play the decisive role in determining the

charge and excitation states particularly of slow

emitted particles.

In fact, one of the prevailing theoretical models

describing the ionization probability of a sputtered

atom uses the surface electron temperature Te as a
key parameter [6]. It is important to note that this
temperature is assumed to describe the local state

of an electron gas that – due to the short, sub-

picosecond time scale on which collision cascades

generally proceed – is not in thermal equilibrium
with the atomic motion. The magnitude of Te,
which is an extremely critical parameter of the

model since it enters the ionization probability

exponentially, has only been crudely estimated [7].
Moreover, the localized nature of the impact

process introducing kinetic energy into the system

will cause Te to vary as a function of time and
position within the surface region disturbed by a

collision cascade. So far, this time and space

dependence has not been accounted for. It is the

purpose of the present paper to quantitatively

estimate the amount of electronic excitation which
is produced in such a cascade and how it distrib-

utes within the affected volume in the solid.

Unfortunately, a rigorous calculation of the

electronic excitation – i.e. the ab initio solution of

the Schr€odinger equation of the complete system
including the electronic degrees of freedom – is

prohibitively complex and therefore still not

practically possible. We therefore employ a num-
ber of severe semiclassical approximations in

modeling the excitation processes. One of these

approximations is to treat the electronic sub-sys-

tem of the solid as a quasi-free electron gas, whose

excitation state may be described by an electronic

temperature Te [7]. The second approximation is
concerned with the process by which the kinetic

energy originally imparted into the solid is coupled
to and converted into electronic excitation energy.

In principle, three different schemes can be used to

include the excitation processes into the MD sim-

ulation of collision cascades. First, Garrison and

coworkers [8–10] as well as Shapiro et al. [11,12]

have invoked collisional excitation processes that

are based on electron promotion in close binary

encounters. This treatment has recently been uti-
lized to describe the excitation of d-holes, thus

leading to the emission of highly excited metasta-

ble atoms in sputtering [13,14]. However, the

underlying physics require fairly energetic colli-

sions which are rare in a collision cascade and lead

to only few relatively large singular excitations.

Second, concepts of electron–phonon interac-

tion have been employed to describe the energy
transfer between atoms and electrons in the low-

energy limit. In fact, these processes have been

shown to largely dominate the energy loss experi-

enced by the moving nuclei in the late stages of a
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collision cascade, where the average kinetic energy

is below 1 eV/atom and the atomic motion can be

assumed to follow thermal equilibrium dynamics

[15–18]. Moreover, it has been demonstrated that
the description of effects like ion beam mixing or

defect production ultimately requires the inclusion

of electron–phonon coupling as an important

cooling mechanism of the thermal spike [18]. The

energy transfer can in this regime be described by a

two-temperature model [16] as is also used to de-

scribe lattice heating occurring after rapid elec-

tronic excitation, for instance during electronic
sputtering processes prevailing at very high pro-

jectile impact energies [19] or during laser ablation

[20].

Due to the strong atomic disorder that is gen-

erally produced in an energetic collision cascade,

however, the concept of phonons becomes ques-

tionable in the liquified region affected by such a

cascade. Moreover, the scope of the present study
is focused on relatively short time scales where

collisional sputtering occurs. The relevant times

are of the order of sub-ps and therefore too short

to establish local thermal equilibrium. As a con-

sequence, a two-temperature model as used to

describe the thermalization of a cascade [15] can-

not be applied in this time range. Moreover,

average energies well above 1 eV/atom are re-
quired in the cascade to permit the sputter ejection

of atoms. In this energy regime, the energy transfer

between moving atoms and electrons is dominated

by the electronic stopping power of individual

atoms in uncorrelated motion [17]. Since the ori-

ginal motivation of this paper concerns the

description of mechanisms leading to the excita-

tion or ionization of sputtered particles, we employ
this concept to describe the kinetic excitation of

the electronic system. For the sake of simplicity,

the electronic stopping power will be treated in the

frame of the dielectric function theory originally

formulated by Lindhard and Scharff [21]. In that

way, the MD simulation naturally delivers the

source term heating the electron gas as a function

of location and time within the cascade volume.
The temporal and spatial spread of the low-energy

electronic excitations generated this way will be

treated by means of a simple diffusive approach

similar to that used in other work describing
electronic relaxation in collision cascades [15] or

during laser ablation [22].
2. Description of the simulation

2.1. Molecular dynamics

The classical MD simulation of the atomic

motion has been described in detail earlier [23]. In

short, the solid is modeled by an fcc microcrystal

containing 2300 atoms in nine layers. The kinetics
of the system are followed by solving the classical

equations of motion for all atoms, the driving

forces being derived from a parametrized interac-

tion potential that depends solely on the relative

atom positions. The potential function used is the

MD/MC-CEM many-body potential designed by

DePristo and coworkers [24] which was fit to the

bulk properties of solid silver. This potential is
known to allow a reasonable description of sput-

tering yields, mass and energy distributions of sil-

ver particles released from a silver surface under

bombardment with a number of different projec-

tiles [25]. In order to eliminate the influence of

chemical effects as much as possible, self-bom-

bardment conditions were employed where the

projectile hitting the surface is also composed of
the same atoms as the solid. Since the CEM po-

tential provides a realistic behavior at low inter-

atomic distances, it can be directly applied to

describe the interaction between the projectile and

the substrate atoms as well. As mentioned above

and discussed in more detail below, the energy loss

experienced by a moving atom due to its interac-

tion with the electron system of the solid is intro-
duced into the simulation by a friction term

proportional to the velocity of the atom. Open

boundary conditions are used so that atoms

emitted from the bottom and the sides of the

crystal are allowed to take their energy with them.

The simulations described here were performed

for an Ag atom with a kinetic energy of 5 keV

normally incident onto an Ag(1 1 1) surface. In
order to gain information about averaged quanti-

ties that can be compared to experimental data, a

total of 1225 trajectories were run with different

impact points, i.e. locations at the surface towards
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the projectile was aimed. These impact points were

uniformly distributed over the irreducible region

determined by the symmetry of the (1 1 1) surface.

The calculated average sputtering yield amounts to
about 16 atoms/projectile, a value which is in

reasonably good agreement with experimental

data collected for the self-sputtering of polycrys-

talline silver (�13 atoms/projectile [26]). More-
over, the simulated mass distribution of sputtered

particles (atoms and clusters) closely resembles

that measured experimentally [23]. We therefore

conclude that the dynamics of the collision cascade
initiated by the projectile impact are described

reasonably well by the simulation.
2.2. Excitation: principle

The electronic system in our model is repre-

sented by valence conduction electrons and inner

shell electrons are neglected. The reason is that the
inner shell electrons are not likely to be excited in

low-energy cascades, particularly not at the later

temporal stage, and their contribution to the

charge state formation of emitted atoms is not

important in the studied cases.

We thus assume that the Ag crystallite is

embedded into an electron gas which is charac-

terized by the Fermi energy eF and by the electron
mean-free path k. According to the prevailing
theory of the electronic stopping power developed

by Lindhard and Scharff [21], the energy loss per

unit traveled distance of the particle moving with

the kinetic energy Ek is given by

dEk

dx
¼ �Kv; ð1Þ

where v is the velocity of the particle and the
coefficient K is a parameter depending upon the
solid in which the particle is moving. The corre-

sponding time derivative of Ek is given by

dEk

dt
¼ �Kv2 ¼ �AEk; ð2Þ

where A is a constant equal to ð2=MÞK and M
denotes the mass of the moving particle. From (2)
we obtain the expression for the time derivative of

the particle velocity, which yields friction in the

molecular dynamics simulation, as
dv
dt

¼ �A
2
v: ð3Þ

Probably the most appropriate theoretical

description of the friction in the free electron gas

of our model is due to Trubnikov and Yavlinski

[27] but the Lindhard–Sharff–Schiøtt (LSS) in-

elastic loss model gives quantitatively similar re-
sults and is easier to handle numerically. In our

paper we therefore use the LSS formula [21] for

evaluating the constant A. The resulting value is
A ¼ 2:88� 1012 s�1 (8.75 · 10�5 a.u.) for an Ag
atom moving in Ag metal.

The question remains whether the Lindhard

theory, which has originally been formulated for

the stopping of keV atoms in matter, is in principle
applicable to the case of low-energy recoil atoms

with kinetic energies in the 10 eV range as are

frequently found particularly in the later stage of a

collision cascade. In order to examine this point in

some detail, we compare the LSS stopping cross

section obtained for H in Al with recent ab initio

MD calculations simulating the penetration of a

low-energy H atom into the surface of an Al
crystallite [28]. Comparing the total energy loss

transferred into electronic excitation with the total

kinetic energy as a function of time, it is found that

the prediction of (2) is quantitatively fulfilled even

in the kinetic energy regime of 1.5 eV and below.

This finding provides a strong indication that the

LSS formula can be applied without large errors

even at low energies as considered here.
It should also be mentioned at this point that

the (Lindhard) stopping power has been shown to

significantly underestimate the energy transfer in

the so-called electron phonon interaction (EPI)

regime of a thermal spike at very low average ki-

netic energies [16,17]. As shown in [17], the friction

formulae (1) and (2) are also applicable in the EPI

regime with, however, modified coefficients K and
A. In that sense, the electronic excitation calculated
in the present paper must be regarded as a lower

limit. As mentioned in the introduction, however,

the present study concentrates on a relatively short

time scale (<1 ps), where the average energy is still

large enough to permit collisional sputter ejection

of surface particles. In this regime, we expect the

electronic stopping power (ESP) to still dominate
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over EPI processes (which come into play at larger

times) and assume the error introduced by the

neglection of EPI to be small.

The amount dEðr; tÞ of the electronic excitation
energy Eðr; tÞ that is transferred into the electronic
system within dt by the ith particle moving with
the kinetic energy Ei

kðtÞ at the point ri and at the
time t is from (2) given by AEi

kðtÞ, and hence

dEðr; tÞ
dt

¼ A
X
i

Ei
kðtÞ � dðri � rÞ ¼ AEkðr; tÞ: ð4Þ

The energy Eðr; tÞ, which is essentially the energy
of electron–hole pairs in the metal excited by the

moving particle, is rapidly carried away from the

excitation spot by the motion of electron–hole
pairs. This motion may be described approxi-

mately by a diffusion process characterized by a

diffusion coefficient

D ¼ 1
3
kvF; ð5Þ

where k is the elastic mean-free path of the elec-
trons and vF denotes the Fermi velocity.
As discussed in [29] and also in detail below, we

disregard in collision cascades the energy transfer

from electrons to the lattice as a second order ef-

fect. In this case, the spatial and temporal devel-

opment of Eðr; tÞ is described by

oEðr; tÞ
ot

� Dr2Eðr; tÞ ¼ dEðr; tÞ
dt

� �
s

; ð6Þ

where the term on the right hand side is the source

term, equal to (4) in our case.
Eq. (6) describes the development of Eðr; tÞ in

time and space but does not give any information

how the energy is distributed between the energy

levels of the solid. As the electronic energy equi-

partition is not known, we assume, in analogy with

others [15,16,30,31], that Eðr; tÞ rapidly thermalizes
in the s–p conduction band at the electronic tem-

perature Te. This assumption can be qualitatively
justified by the fact that the excitation mechanism

considered here produces a large amount of low-

energy excitations, the distribution of which will be

relatively close to a Fermi distribution to begin

with. In fact, recent ab initio simulations of H

atoms penetrating into an Al metal surface reveal
transient excitation energy distributions that are

close to exponential [28].

It should be noted that this situation is funda-

mentally different from laser excitation studies
where one single, usually large energy excitation is

produced per absorbed photon which then decays

to ultimately form a quasi-thermal distribution of

many low-energy excitations. Since relaxation

times for the latter process have been measured to

lie in the picosecond range [32], it is evident that

thermalization of the low-energy excitation distri-

bution produced here must proceed on a faster
time scale. We therefore describe the excitation

state of the electron system by a position and time

dependent electron temperature Te which is esti-
mated from the electronic specific heat [33]

ce ¼
p2

2
� ne � kB

Te
TF

¼ C � Te ð7Þ

(kB: Boltzmann constant, ne: electron density, TF:
Fermi temperature) of the conduction electrons of
the solid as

Teðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

C
Eðr; tÞ

r
: ð8Þ

Therefore, once Ekðr; tÞ is known from the molec-
ular dynamics simulation, we can obtain from (6)

and (8) the values of Teðr; tÞ at any point r and time
t. The numerical implementation of this concept is
described in the following section.

2.3. Excitation: numerical implementation

As mentioned in the previous chapter, we as-

sume for the cascade simulation that the crystal-

lites are embedded in a homogenous infinite

electron gas. This approximation simplifies the

calculation, but because the excitations can spread

in all directions it also slightly underestimates the

density of excitations. The proper extension to the

half-space problem by inclusion of the surface is
planned for a next more refined analysis. The ac-

tual numerical calculation of the excitation energy

density in our case is done as follows:

The space of the crystallite is divided into small

cubic elementary cells with a dimension of 2 · 2 · 2
�A3. The coordinates of the centers of the cells are
denoted by the vectors rm where the index m
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specifies the cell. For the given system there are

4000 of such cells. For each time from t ¼ 0 (the
impact time of the primary particle onto the sur-

face) to t ¼ 750 fs, the summed kinetic energy
Ekðrm; tÞ of atoms within each cell is calculated.
For each time tn, where tn runs from t ¼ 0 to 750 fs
in intervals Dt ¼ 2:5 fs, the values of Ekðrm; tnÞ are
stored in the memory of the computer as a matrix.

There are 750/2.5¼ 300 different times tn and 4000
rm elements in space. We take first the matrix ele-

ments Ekðrm; t0Þ, and according to (4) multiply
them by A and Dt to obtain the excitation energy
densities at ðrm; t1Þ. The density AEkðrm; t0Þ can be
treated, in this discrete representation, as a point

source term in the diffusion equation (6). Already

during the time interval Dt the excitation diffuses
rapidly around rm and thermalizes. The solution of

(6) for the point source is the Green’s function that

has the well known gaussian form [34]. For the

first timestep, the excitation energy density Eðrk; t1Þ
at a general point rk is then given by

Eðrk; t1Þ ¼ ADt
X
m

Ekðrm; t0Þ �
1

ð4pDðt1 � t0ÞÞ3=2

� exp � rm � rkj j2

4D t1 � t0ð Þ

 !
; ð9Þ

where the sum is over all rm. Thus, according to

(9), the matrix Eðrk; t1Þ is actually the convolution
of Ekðrm; t0Þ with the diffusion gaussian term as the
convolution function.

If the diffusion coefficient D is time-indepen-
dent, the values of Eðrk; t2Þ that are due to
Ekðrm; t0Þ can be obtained from (9) simply by
substituting t1 by t2, ultimately leading to the
general description at arbitrary position and time

Eðrk; tiÞ ¼ ADt
Xi�1
n¼0

X
m

Ekðrm; tnÞ �
1

ð4pDðti � tnÞÞ3=2

� exp �jrm � rkj2

4Dðti � tnÞ

 !
: ð10Þ

If D is allowed to vary as a function of time, a
more complicated formalism must be used. For

instance, if D changes from D1 in the interval be-
tween t1 and t0 to D2 in the time interval between t2
and t1 we must substitute, in the calculation of
Eðrk; t2Þ, the diffusion coefficient D2 by an effective
coefficient D0

2

D0
2 ¼ D2 þ

t1
t2
ðD1 � D2Þ: ð11Þ

More generally, the constant value of D in (10)
must be replaced by its average value in the time
interval ti � tn. The simplicity of (11) is due to the
gaussian form of the convolution function.

The final values of Eðrk; tiÞ, for any time ti, are
obtained by summing over all contributions to

Eðrk; tiÞ from Ekðrm; tpÞ for tp < ti. The calculation
of the contributions to Eðrk; tiÞ due to different
Ekðrm; tpÞ follows the prescription given by (9) and
(11).
3. Results and discussion

In this section, we will describe first calculations

to test the application of the concepts developed

above. In order to assess the magnitude of the

electron temperature developing in particle impact
induced collision cascades, the simulations are

performed for the impact of 5-keV Ag atoms onto

an unreconstructed Ag(1 1 1) surface. First, nor-

mal MD simulations are performed without the

inclusion of the electronic excitation for a set of

1225 trajectories in order to obtain information

about statistical quantities like the average sput-

tering yield as well as the influence of different
impact points on the intensity of the collision

cascades. Then, two particular trajectories are

chosen to be treated with the much more time

consuming excitation code. The first, which will in

the following be referred to as no. 952, exhibits a

total sputtering yield of 16 atoms/projectile that is

very close to the average yield. From visualization

of a number of simulations, we infer that this
trajectory constitutes a normal case which is typi-

cal for the system and kinetic impact energy

studied. The second, which will be called no. 207,

leads to one of the highest sputtering yields (48

atoms/projectile), ejects the largest clusters and

therefore represents an exceptional case where

extremely large action is generated within the

solid. By investigating these two cases separately,
it should be possible to gain insight into the
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‘‘normal’’ behavior of collision cascades as well as

the relatively rare events where many atoms are set

in motion, thus leading to a high kinetic energy

density in the cascade volume.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

traj. 952

interatomic distance (A)

7 fs
171 fs
318 fs
623 fs
1043 fs

Fig. 1. Pair correlation function of interatomic distances within

the investigated Ag crystallite as a function of time after the

impact of a 5-keV Ag atom.
3.1. Diffusion coefficient

As outlined above, the central parameter of the

model describing the transport of electronic exci-

tation is the diffusion coefficient D. In the Ag
conduction band the Fermi energy is calculated as

5.48 eV, corresponding to a Fermi velocity of
vF ¼ 1:39� 108 cm/s. For a crystalline solid, the
value of D can be estimated from (5) using the
electron mean-free path k, which under non-equi-
librium conditions characterized by an electron

temperature Te and a lattice temperature Tl is given
by [22,35,36]

k ¼ vF
aT 2e þ bTl

: ð12Þ

For silver, the constants in (12) are estimated as

a ¼ 1:2� 107 K�2 s�1 and b ¼ 1:2� 1011 K�1 s�1

[35]. It should be noted that some controversy

exists in the literature concerning the appropriate

temperature dependence of k. For instance, in their
description of electron–phonon interaction in

energetic displacement cascades, Flynn and Aver-
back [18] have disregarded the role of electron–

electron collisions altogether by omitting the first

term in the denominator of (12). On the contrary,

Koponen et al. [15,16] have argued that the influ-

ence of electron–phonon scattering should be ne-

glected in a two-temperature model, since it is

explicitly included in the electron–phonon cou-

pling term. This would result in the omission of the
second term in the denominator of (12). In the

scope of the model presented here, we feel that

both electron–electron and electron–phonon scat-

tering processes should be included in the deter-

mination of the electron mean-free path, thus

leading to (12). The same formula has been

extensively employed in two-temperature model

descriptions of laser induced excitation processes
[22,36].

At room temperature (Te ¼ Tl ¼ 300 K), the
mean-free path resulting from (12) is of the order

of several tens of nanometers. Since we will later
show that lattice ‘‘temperatures’’ of the order of

several thousands of Kelvin are rapidly reached in

the collision cascade, we assume a diffusion coef-

ficient of D � 20 cm2/s for the hot but still crys-
talline lattice, which corresponds to value of

k � 4:2 nm.
In the course of the developing collision cas-

cade, the solid is rapidly disordered and finally

completely amorphized. It is clear that the elec-

tronic energy transport properties must be altered

by such a transition. In order to illustrate the time

scale on which amorphization proceeds, Fig. 1
shows the pair correlation function, i.e. the dis-

tribution of interatomic distances within the sim-

ulated Ag crystallite, at various times after the

projectile impact. It is apparent that the long range

order is essentially lost within 300 fs, leaving only

the short range order which is typical for an

amorphous or liquid material. This result is prac-

tically identical for both investigated trajectories
and can therefore be regarded as typical for a

collision cascade.

The loss of crystallographic order will ulti-

mately lead to a reduced value of the electron

mean-free path and, hence, of the diffusion coeffi-

cient D. This phenomenon has been first discussed
in [18], where it was pointed out that k can become
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smaller than the cascade diameter and assume

values of only few �A for liquid metals. In order to
estimate the magnitude of the effect, we assume for

the amorphized system an electron mean-free path
of the order of one interatomic distance, which

with (5) leads to an altered diffusion coefficient of

the order of 0.5 cm2/s. Therefore, the value of D
will generally decrease with time as the dynamic

disorder increases in the course of the time devel-

opment of the collision cascade. Currently we are

unable to describe this decrease quantitatively and

we therefore resort to a simple approximation. In
order to acknowledge the temporal variation of

D, we assume a linear dependence between both
limiting values within the first few hundred fs after

the projectile impact and a constant value of 0.5

cm2/s at later times. The resulting electron energy

densities and temperatures will be compared to

those calculated under the assumption of a fixed

diffusion coefficient of 20 or 0.5 cm2/s, respectively.

3.2. Application on Ag

Using the formalism described above, the elec-

tronic excitation energy density has been calcu-

lated as a function of time and space for two

example collision cascades referred to as trajecto-

ries 952 and 207 which lead to average and high
sputter yields, respectively. In both cases, the

cascade was initiated by the normal incidence of a

5-keV Ag onto an Ag(1 1 1) surface onto two

different impact points. As outlined in the previous

subsection, the diffusion coefficient D was chosen
to decrease linearly from 20 cm2/s at t ¼ 0 to 0.5
cm2/s at t ¼ 300 fs and stay constant thereafter.
The results are exemplified in Fig. 2, which shows
temporal snapshots of the two-dimensional spatial

distribution of (a) the total kinetic energy density

and (b) the electronic excitation energy density at

the surface, i.e. in the uppermost cell layer of the

model. For further details, the complete simula-

tion can be viewed electronically (http://www.ilp.

physik.uni-essen.de/wucher/). Although the com-

plete three-dimensional distribution is available
from the simulation, the surface distributions were

chosen for visualization since more than 90% of

the sputtered particles originate from the topmost

layer and therefore their excitation and ionization
probabilities are determined by the electron tem-

perature at this location. Both the direct correla-

tion between kinetic and electronic energies as

described by (4) and the smearing of the electronic
excitation due to diffusive transport are clearly

visible.

Of note are the different scales of the energy axis

on both plots in Fig. 2. In order to allow a better

comparison, we average both quantities over the

entire surface of our model crystallite and plot the

resulting time dependence of the kinetic and elec-

tronic surface energy density in Fig. 3. It is seen
that the electronic excitation energy rises quickly

within the first few 10 fs, exhibits an intermediate

plateau and then rises again and stays practically

constant for the ps time scale on which sputtered

atoms leave the surface. The second rise observed

at approximately 300 fs is connected to the de-

crease of the energy diffusion coefficient used in the

simulation. The kinetic energy density at the sur-
face, on the other hand, shows large fluctuations in

the beginning – which are due to the projectile

crossing the surface cell layer – and then also levels

at a fairly constant value.

Probably the most important information ex-

tracted from Fig. 3 is the fact that at all times the

kinetic energy density is significantly larger than

the electronic excitation energy density. This
finding is important since it demonstrates that the

neglect of energy flow from the electron gas to the

lattice in our model is probably justified. In order

to further substantiate that statement, we convert

both quantities into temperatures using a lattice

specific heat of 3
2
nkB and (8) for Te. The constant C

in (7) and (8) was evaluated as C ¼ 3:9� 10�10 eV/
A3 K2 using the electron density ne ¼ 5:85� 1022
cm�3 and Fermi temperature TF ¼ 6:4� 104 K of
silver ([33]). The results are plotted in Fig. 4. Note

that the lattice ‘‘temperature’’ determined this way

has no real physical meaning since the particle

kinetics within the collision cascade do not neces-

sarily follow Maxwell–Boltzmann statistics. More-

over, no correction for possible collective motion

velocity components (which for a real temperature
determination would have to be subtracted from

the individual particle velocities in a cell [36]) has

been performed. Nevertheless, it is evident that –

although the specific heat of the electron gas is

http://www.ilp.physik.uni-essen.de/wucher/
http://www.ilp.physik.uni-essen.de/wucher/


Fig. 2. Snapshots of the two-dimensional spatial distribution of (a) the total kinetic energy density and (b) the electron temperature at

the surface for three different times after the projectile impact. The data were calculated for a particular collision cascade described as

trajectory 207 in the text. In order to illustrate the observed variation, the gray scale code was for each individual image chosen such as

to extend over the observed range between minimum and maximum values.
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much lower than that of the lattice – the electron

temperature never significantly exceeds the lattice

‘‘temperature’’. Therefore, also a two-temperature
model as used frequently to describe lattice heating

by electronic excitation [30] would predict negli-
gible energy flow back from the electron system

into the lattice dynamics.

It is of course essential to investigate how
the particular choice of the diffusion coefficient

D influences the simulated results. In order to
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visualize the surface distribution of the calculated
electronic energy density and electron tempera-

ture, we plot radial distributions that are obtained

in the following way. First, the surface electron

energy density is averaged over four cells that are

located in the directions parallel to the crystallite

edges at a certain radial distance r from that cell
containing the impact point. The resulting surface

energy density calculated for a constant diffusion
coefficient as a function of time after the projectile

impact is depicted in Fig. 5. The data have been
calculated for trajectory 952, the corresponding

curves for trajectory 207, however, look very

similar. In order to illustrate the influence of en-

ergy transport, different values of the diffusion

coefficient were used spanning the range from an

unrealistically low value of 0.1 cm2/s to D ¼ 20
cm2/s which is assumed to be appropriate for the
crystalline solid. It is seen that the magnitude of

the electronic excitation roughly scales with the

inverse of D. Moreover, the surface energy density
rapidly goes through a maximum at very short

times below 50 fs which is produced by the large

energy loss of the projectile crossing the surface

layer and then decays again. Note that although

the figure seems to suggest that a ‘‘steady state’’ is
reached after about 1 ps, it is clear that in the limit

of large time the electronic interaction must dissi-

pate in the bulk of the solid and, hence, the exi-

tation energy density must go to 0.

Second, the average energy density is converted

into surface electron temperature by means of (8).

Again, the results are plotted as a function of time

after the projectile impact for different values of r.
Fig. 6 shows such a plot calculated for trajectories

207 and 952 for the case of a constant diffusion

coefficient of D ¼ 20 and 0.5 cm2/s, respectively.
As outlined in Section 3.1, these values are as-

sumed to correspond to an ordered and to a
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completely amorphized crystal, respectively, and

the results must therefore be regarded as limiting

cases. It is seen that the projectile induced maxi-

mum Te is most pronounced directly at the impact
point. If heat diffusion is fast, the curves at larger

radial distance completely track with that for

r ¼ 0, thus indicating that the electron excitation is
distributed homogeneously across the cascade

volume. If diffusion is slow, on the other hand, it is

clearly visible that the temperature rise at larger

distance r is slower and the maximum is less
pronounced than at r ¼ 0. At times exceeding
approximately 500 fs, all curves are found to
merge to a ‘‘steady state’’ surface temperature, the

inverse of which is found to linearly increase with

increasing D. Note that the results calculated for
both trajectories are almost identical, thus indi-
cating that the details of the particular collision

cascade are not important. This finding is under-

standable due to the large number of collisions

involved in such a cascade. The time dependence

of Te can be compared to the temporal evolution of
particle emission which has been included in the

figure for both trajectories. It is evident that the

majority of sputtered particles leave the surface at
times later than 100 fs, thus making the sharp peak
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of Te at times below 100 fs practically unimportant
for the determination of their charge or excitation

states.

As already stated in Section 3.1, the temperature
evolution depicted in Fig. 6 is not realistic since the

diffusion coefficient will probably vary as a function

of time due to collision induced atomic disorder. In

order to arrive at a more realistic description of the

transport of electronic energy within a collision

cascade, we therefore invoke a time dependent D
that is assumed to vary linearly from the crystal
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plained in the text.
limit at t ¼ 0 to the amorphous limit at t ¼ tam and
remains constant thereafter. The resulting time

evolution of the surface electron temperature is

depicted in Fig. 7 for two different values of the
amorphization time tam. It is seen that the decrease
of D during the cascade evolution leads to an in-
crease and a second maximum of the electron

temperature, which roughly occurs at 1:5tam.
This finding is particularly interesting, since the

electronic excitation at the surface is now largest

during the time period where most of the sputtered
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a time dependent electron energy diffusion coefficient D as ex-
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particles are emitted (cf. Fig. 6). Moreover, the

absolute values of the electron temperature are

predicted to be of the order of 2000 K, a value

which is sufficient to significantly influence the
ionization and excitation probability of sputtered

particles. More quantitatively, a simple estimate of

the ionization probability using the ionization en-

ergy of Ag atoms (7.6 eV), the work function of

silver (4.5 eV) and an image charge shift of about

1 eV in connection with an electron temperature

of 2000 K yields values of the order of several

10�6 [37]. This is lower than the experimentally
observed ionization probability of sputtered Ag

atoms which has been measured to be of the order

of 10�4 [38]. The apparent discrepancy may have

several reasons. First, it is conceivable that

the confinement and thus the concentration of

electron–hole pairs in the dynamic collision cas-

cade – during which the solid is in a highly non-

equilibrium state – is larger than predicted by the
diffusion equation, thus leading to higher values of

Te. Also the highly localized 4d holes created in Ag
during ion bombardment [14] may play a role in

the localization of excitation in the cascade. An-

other possibility is that the source term in (6) is

considered to represent a lower limit and may be

larger in the low-energy ion region than predicted

by the LSS formula due to increasing contribu-
tions from electron–phonon coupling.

Finally, it should be noted that figures similar

to Fig. 4 have been published by Koponen and

Hautala [15] who employed a two-temperature

model to describe the thermalization of a high-

energy collision cascade. There are, however, a few

fundamental differences which should be discussed

in more detail. First, the electronic system treated
in [15] is assumed to start with a high electron

temperature which then decreases with time. This

assumption clearly neglects the details of the short-

term processes heating the electron gas which we

are aiming at in the present study. Second, the data

in [15] indicate that Te remains essentially constant
in the time range studied here, whereas our simu-

lations predict a strong variation depending on the
particular choice of the diffusion coefficient D.
These differences are in part due to the different

impact energy ranges explored in both studies

(�100 keV in [15] versus keV here), but also reflect
the fact that the model described in [15] has been

designed to describe the long-term temporal evo-

lution of a collision cascade rather than the details

of kinetic excitation during the first few hundred fs
after the projectile impact.
4. Conclusion

A computer simulation model of the electron

excitation in collision cascades in solids bom-

barded keV atomic particles has been developed.
The model uses molecular dynamics for the sim-

ulation of atomic movements which excite the

electrons and uses an approximate semiclassical

approach for the description of spatial and tem-

poral developments of the excitations. In this ap-

proach the excitations are characterized by the

energy density of electron–hole pairs. The energy

in the conduction band rapidly diffuses in space
and thermalizes, creating a local electronic tem-

perature Te in the sp band. It is shown that the
calculated surface temperature Te can reach values
of several thousands of Kelvin, thus showing that

the electronic excitation process discussed here can

influence the formation of slow ions and excited

atoms emitted from solids during sputtering.

It is clear that the model presented here repre-
sents only a first step towards a microscopic

understanding of the electronic excitation pro-

cesses occurring in a collision cascade. On our way

towards a more quantitative description, further

studies will utilize the full four-dimensional Teðr; tÞ
profile in order to calculate the excitation and

ionization probabilities of individual sputtered

atoms. Moreover, a more appropriate description
of the lattice order dependent diffusion coefficient

is certainly needed for further improvement.
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