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1 Introduction

Adaptive LQG controllers that minimize approximately quadratic criterion
while using recursively estimated linear Gaussian models become a standard
in academic environment [1, 2, 3]. The version with controlled autoregressive
models (ARX) belongs among the most successful ones as confirmed by their
full scale applications [4, 5, 6]. At the same time, their potential is far from
being adequately exploited. Man-power expensive commission is one of the
main reasons of this undesirable state. This fact – that applies also to
other adaptive controllers like GPC, MUSMAR etc. [3, 7] – stimulated an
extensive project [8, 9, 10]. It aims at creating a complete computer support
of the commission. At present, a full solution for single-input single-outputs
systems is implemented in software system DESIGNER. It covers (i) data-
preprocessing; (ii) quantification of prior information [?]; (iii) selection of the
model structure [11]; (iv) off-line estimation [12] that serves for initialization
of the on-line estimation as well as an alternative in the stabilized forgetting
used for parameter tracking [13]; (v) estimation of the forgetting factor;
(vi) tuning of kernels in the optimized quadratic loss so that user’s aims
and restrictions are met; this also provides off-line prediction of closed-loop
behavior [14].

This paper proposes a correct combination of steps (ii) and (iii). The
summary of steps (ii) - (iv) serves also to the companion paper [15], that
provides a novel solution of the most difficult step (vi). Thus, in addition to
particular improvements, the paper pair informs on the ”technology used”
within the DESIGNER.

Review of necessary results is given in Section 2 leading to the addressed
problem formulation and its conceptual solution. Mapping of processed
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knowledge on so called fictitious data is contained in Section 3. The results
are elaborated to ARX model in Section 4, illustrated in Section 5 and
complemented by remarks of Section 6.

The paper is relatively self-containing. The readers less familiar with
the adopted Bayesian set up are referred to [12].

2 Problem formulation and solution

Here, the essence of the addressed problem and its conceptual solution are
described after technical preliminaries. The used ARX model belongs to
the exponential family. Its formal handling is very simple when its member-
specific details are left aside. This motivates us to present all elements
within it.

2.1 Basic notation and operations

The following notation is used throughout the text.

Symbol Meaning

≡ equality by definition
x∗ a set of x-values
x̊ the number of elements in the vector or sequence x

f(·|·) conditional probability (density) functions (p(d)f)
E , var, cov expectation, variance and covariance, respectively

d(t) the sequence (d1, . . . , dt)
S, K model structure and knowledge item, respectively
t discrete-time, always the last subscript after ;

τK discrete time of fictitious data expressing knowledge K
i the subscript of the entry di;t of a data item dt

I, tr, ′ unit matrix, trace and transposition, respectively
bψL a non-numerical index ψ of a variable L
V, ν statistics describing conjugate pdf to exponential family
¯ bar distinguishing (flat) pre-prior pdf
b∆ mark of increments of statistics obtained from data only

Note that pdfs are distinguished by the identifiers in their arguments. No
formal distinction is made between random variable, its realization and ar-
gument of pdfs. The correct meaning follows from the context.
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The following elementary operations of non-negative pdfs are used [12]

Normalization
∫
f(a) da ≡

∫
a∈a∗

f(a) da = 1, (1)

Chain rule f(a, b|c) = f(a|b, c)f(b|c),

Marginalization f(a|c) =
∫
f(a, b|c) db,

Bayes rule f(a|b, c) =
f(b|a, c)f(a|c)∫
f(b|a, c)f(a|c) da

∝ f(b|a, c)f(a|c).

Bayesian paradigm we exploit operates on the joint pdf of all uncertain
variables encountered. It composes this pdf from its elements and derives
its particular marginal or conditional versions using (1). It inserts in them
the measured realization of any variable that is at disposal.

Here, sequence of multi-variate data d(̊t) = (d1, . . . , d̊t), unknown, finite-
dimensional parameters ΘS and unknown structures S of an adequate model
are considered. The joint pdf is composed as follows

joint pdf︷ ︸︸ ︷ prior pdf | S︷ ︸︸ ︷ prior on S︷ ︸︸ ︷ parameterized model︷ ︸︸ ︷
f(d(̊t),ΘS ,S) = f(ΘS |S) × f(S)×

t̊∏
t=1

d̊∏
i=1

f(di;t|di+1;t, . . . , dd̊;t, d(t− 1),ΘiS)

ΘS ≡ (Θ1S , . . . ,Θd̊S). (2)

2.2 Estimation and prediction in exponential family

The parameterized model in (2) of a fixed structure S is the central modelling
element. Within the control context, when the amount of observed data is
permanently increasing, the following models are predominantly used.

Agreement 2.1 (Exponential family) The i-th parameterized model be-
longs to the (dynamic) exponential family iff it can be written in the form

f(di;t|di+1;t, . . . , dd̊;t, d(t− 1),ΘiS) = f(di;t|ψiS;t,ΘiS) (3)

= A(ΘiS) exp [〈B(ΨiS;t), C(ΘiS)〉] ,

where Ψ′
iS;t = [di;t, ψ′iS;t] is data vector, given by a finite dimensional

regression vector ψiS;t, depending on di+1;t, . . . , dd̊;t and on d(t − 1); it is

assumed that the values of all data vectors ΨiS;t−1, i = 1, . . . , d̊, can be re-
cursively updated using the newest data item dt only,
A(·) is a non-negative scalar function defined on Θ∗

iS ,

3



〈·, ·〉 is a functional that is linear in the first argument,
B(·), C(·) are either vector or matrix functions of compatible, finite dimen-
sions. They are defined on Ψ∗

iS;t and Θ∗
iS , respectively.

Practical significance of the exponential family becomes obvious when sum-
marizing the corresponding estimation and prediction, [12].

Proposition 2.1 (Estimation and prediction in exponential family)
Let the parameterized model have the form (3) and the parameters ΘS =
Θ(S̊) be a priori independent, i.e. f(ΘS) =

∏d̊
i=1 f(ΘiS). Let, moreover, the

conjugate prior pdfs f(ΘiS) [16]

f(ΘiS) ∝ AνiS;0(ΘiS) exp[〈ViS;0, C(ΘiS)〉]χΘ∗
iS

(ΘiS) ≡ GΘiS (ViS;0, νiS;0) (4)

are used. The conjugate pdfs have the parameterized-model-induced func-
tional form G. They are determined by the prior finite-dimensional statistic
ViS;0, by the prior sample counter νiS;0 and indicator χΘ∗

iS
(ΘiS) of the set

Θ∗
iS .

Then, the parameters ΘiS are independent a posteriori and the respective
posterior pdfs f(ΘiS |d(t)) preserve the functional form of the prior pdfs

f(ΘiS |d(t)) =
AνiS;t(ΘiS) exp[〈ViS;t, C(ΘiS)〉]χΘ∗

iS
(ΘiS)

I(ViS;t, νiS;t)
=
GΘiS (ViS;t, νiS;t)
I(ViS;t, νiS;t)

I(ViS;t, νiS;t) =
∫
AνiS;t(ΘiS) exp[〈ViS;t, C(ΘiS)〉]χΘ∗

iS
(ΘiS) dΘiS . (5)

The involved statistics ViS;t, νiS;t can be updated recursively

ViS;t = ViS;t−1+B(ΨiS;t), νiS;t = νiS;t−1+1 with a priori chosen ViS;0, νiS;0.
(6)

The predictive pdf, modelling evolution of the i-th data entry (i-th channel),
is given by the formula

f(di;t|di+1;t, . . . , dd̊;t, d(t− 1),S) =
I(ViS;t−1 +B(ΨiS;t), νiS;t−1 + 1)

I(ViS;t−1, νiS;t−1)
. (7)

The overall predictive pdf, given by the structure S, is product of pdfs (7)
over i. The joint pdf of data conditioned by the structure S is

f(d(̊t)|S) =
d̊∏
i=1

Li(d(̊t),S) with Li(d(̊t),S) =
I(ViS ;̊t, νiS ;̊t)
I(ViS;0, νiS;0)

(8)

called partial likelihood. Li(d(̊t),S) expresses descriptive abilities of the
model having the structure S judged with respect to i-th channel.
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Thus, the estimation and prediction can be performed for respective is,
channel-wise. We can focus the attention on a fixed channel and drop the
index i remembering that a scalar variable is predicted.

The estimation and prediction reduce to algebraic operations with the
finite-dimensional statistic VS;t and of the sample counter νS;t. Moreover, a
single type of the integral I(VS , νS) has to be evaluated.

The need to get the complete recursion explains the requirement for the
possibility to update data vector ΨS;t recursively. Note that this requirement
excludes use of models with unknown moving average noise.

We inspect influence of particular knowledge items K ∈ K∗ = {1, . . . , K̊}
on descriptive abilities of the adopted model. The notation L(d(̊t),S,K)
stresses the use of the prior pdf f(ΘS |K). Similarly, L(d(̊t),S,K(K̊)) denotes
the joint predictive pdf obtained when using the prior pdf f(ΘS |K(K̊)) that
includes all knowledge items available.

We need the following proposition (the fixed index S is dropped).

Proposition 2.2 (Weighted geometric mean of conjugate pdfs) Let
f(Θ), baf(Θ) be a pair of pdfs conjugated to the parameterized model in the
exponential family, i.e. f(Θ) ∝ GΘ(V, ν) and baf(Θ) ∝ GΘ

(
baV, baν

)
.

Then, their geometric mean fλ ∝ fλ baf1−λ, weighted by the factor λ ∈
[0, 1], is the conjugated pdf fλ(Θ) ∝ GΘ(Vλ, νλ) whose statistics are

Vλ = λV + (1− λ) baV, νλ = λν + (1− λ) baν. (9)

This proposition serves for tracking of slow parameter changes using the
stabilized forgetting [13]. There, f(Θ) ≡ f(Θ|d(t)) is the posterior pdf of
Θ based on data d(t) measured up to the moment t when the forgetting is
applied. The externally supplied alternative pdf baf(Θ) describes possible
changes of estimated parameters before measuring next data. The weight λ
called forgetting factor is interpreted as the probability that the parameters
do not change. The usual exponential forgetting is obtained by taking the
completely flat alternative baf(Θ) ∝ 1. Use of the pre-prior pdf f̄(Θ) ∝
GΘ(V̄ , ν̄) as the alternative pdf baf(Θ) is more wise.

Mostly, f̄(Θ) is a flat pdf that respects just finiteness of Θ values. It
conservatively guarantees that the forgotten posterior pdf does not move on
the area of improbable infinite values of Θ.

The geometric mean of pdfs serves us also for finding a representant
f(Θ|d(̊t),K(K̊)) of several pdfs f(Θ|d(̊t),K), K ∈ K∗, each including a piece
of prior knowledge K about Θ. For the measured data d(̊t) and no prejudice,
the degree of belief to each of them coincides with the posterior probability

5



f(K|d(̊t)) ∝ L(d(̊t),K). The representant f(Θ|d(̊t),K(K̊)), called merger and
motivated in [?], is chosen as the weighted geometric mean

f(Θ|d(̊t),K(K̊)) ∝
K̊∏

K=1

[
f(Θ|d(̊t),K)

]f(K|d(̊t))
(10)

= GΘ

 K̊∑
K=1

f(K|d(̊t))VK;̊t,
K̊∑

K=1

f(K|d(̊t))νK;̊t

 .
2.3 Structure estimation in nested exponential family

For a fixed functional form of the exponential family, the model structure S
is determined by the allowed entries of the regression vector. By collecting
the potential entries into the richest regression vector ψR;t, the estimation
of the model structure can be formulated as a selection of indices in it. They
mark those entries that should be used in the proper regression vector ψS;t.
There are 2ψ̊R of such options. This number is usually excessive one and pre-
vents the straightforward Bayesian structure estimation through judging the
posterior probabilities of competing structures f(S|d(̊t)) ∝ L(d(̊t),S)f(S)
These posterior probabilities qualify a posteriori the discrete pointers S that
have the prior pf f(S).

The accumulation of VS ;̊t makes the main computational burden related
to the structure estimation. The current implementation in the system
DESIGNER [17] relies on nesting of competitive structures S in the richest
one R. The model, given by the data vectors ΨS;t, is called nested in the
richest one ΨR;t if there is a linear nesting mapping NS such that, cf. (3),

B(ΨS;t) = NS [B(ΨR;t)]. (11)

This notion and Proposition 2.1 imply the following statement.

Proposition 2.3 (Nesting in exponential family) Let the parameter-
ized model with the richest structure belong to the exponential family (3)
f(dt|ψR;t,ΘR) = A(ΘR) exp[〈B(ΨR;t), C(ΘR)〉]. Let us consider another
model f(dt|ψS;t,ΘS) = A(ΘS) exp[〈B(ΨS;t), C(ΘS)〉]. Let NS be a time-
invariant, linear nesting mapping such that B(ΨS;t) = NS [B(ΨR;t)]. Let us
assume that VS;0 = NS [VR;0] .

Then, the V -statistics of the posterior pdfs of both models are related by
the nesting mapping VS ;̊t = NS [VR;̊t] and the posterior probability on the
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structure S is given by the formula

f(S|d(̊t)) ∝
I(NS [VR;̊t], νS ;̊t)
I(NS [VR;0], νS;0)

f(S). (12)

Thus, for the nested models and nested prior statistics, it is sufficient to
collect the V -statistic for the richest structure. It helps but only partially.
Full evaluation of the pf values (12) on the complete set of 2ψ̊R competitive
structures is still impossible. Thus, maximum a posteriori probability (MAP)
estimate of S has to be searched for. The non-normalized values of the pf
(12) evaluated during the search provide useful partial information on highly
probable structures. The following conceptual search algorithm is used [11].

Algorithm 2.1 (SEN: MAP structure estimate of nested model)
Initial phase

• Collect the real-data-dependent increment b∆VR;̊t of the V -statistic
corresponding to the richest structure of the data vector ΨR;t

b∆VR;̊t =
t̊∑
t=1

B(ΨR;t). (13)

• Select the prior statistic VR;0 so that VS;0 are nested in it ∀S ∈ S∗.

• Specify prior pf f(S) of competitive structures, often as uniform one.

Search phase is run until the pre-specified number of restarts is reached.

1. Initialize the current guess of the structure.

Empty, richest and user-specified structures of regression vectors are
used. These options are complemented by structures selected randomly
among a priori possible ones.

2. Do while the value of the posterior partial likelihood increases.

(a) Make full search for the best structure within a neighborhood of
the current guess of the structure, i.e. maximize within it the
posterior partial likelihood

L(d(̊t),S)f(S) =
I
(
NS

[
b∆VR;̊t + VR;0

]
, t̊+ νR;0

)
I (NS [VR;0], νR;0)

f(S).

The neighborhood consists of all structures gained by:
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• adding a single entry to the current guess of the structure,
• removing a single entry from the current guess of the structure,
• considering structures nested in those named above.

(b) Take the maximizer as a new current guess of the structure.

2.4 Quantification of prior knowledge

Parameter and structure estimation are sensitive to the information content
of the learning data. As a rule, the available data are poorly informative.
Then, prior knowledge has to be used. In the Bayesian set up, it is feeded
through the prior pdf. Here, we outline the way how it can be constructed.
The following conditions are specific for technological applications.

⊕ Groups of widely accessible knowledge types exist.
⊕ Experimental data d(̊t) measured on the modelled system are available.
⊕ Admissible prior pdfs are restricted to conjugate ones, thus the prior
knowledge is to be translated into values of the prior statistics V, ν.
	 The person feeding the prior knowledge does not care about the proba-
bilistic tool set exploited.
	 No supervisor for knowledge elicitation and judgement of the expert com-
petence is at disposal.
	 Knowledge items processed are expected to be repetitive, not fully consis-
tent and differing in precision and nature. Mutual dependencies of knowl-
edge items are unknown.

The following quantification algorithm respects these conditions [?].

Algorithm 2.2 (Quantification of prior knowledge)
Initiation phase

• Select the i-th parameterized model (2) of a fixed structure S in the
exponential family you deal with.

• Collect the real-data-dependent increment b∆VS ;̊t of the V -statistics
according to (13) for R = S.

• Split the existing knowledge into internally consistent knowledge items.

• Select the pre-prior pdf f̄(ΘS) ∝ GΘS (V̄S , ν̄S) on unknown parameters
ΘS that expresses the common knowledge available.

• Initialize the auxiliary scalar normalization factor s = 0.

Quantification phase runs for the internally consistent knowledge items K ∈
K∗.
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• Translate the knowledge item K into the fictitious-data d(̊τK) depen-
dent increments b∆VS ;̊τK, b∆νS ;̊τK of the pre-prior statistics V̄S , ν̄S
so that VSK;0 = b∆VS ;̊τK + V̄S and νSK;0 = b∆νS ;̊τK + ν̄S reflect the
processed knowledge item, i.e. f(ΘS |K) ∝ GΘS (VSK;0, νSK;0).

• Evaluate the descriptive abilities gained by exploiting this knowledge
on real data d(̊t) and update the normalization factor s

L(d(̊t),S,K) =
I
(
b∆VSK;̊t + VSK;0, t̊+ νSK;0

)
I(VSK;0, νSK;0)

, s = s+ L(d(̊t),S,K).(14)

Merging phase combines particular knowledge items into the merger (10)

f(ΘS |d(̊t),K(K̊)) ∝ f(d(̊t)|ΘS)
K̊∏

K=1

[f(ΘS |K)]f(K|d(̊t),S) (15)

f(K|d(̊t),S) =
L(d(̊t),S,K)

s
.

It gives f(ΘS |d(̊t),K(K̊)) ∝

GΘS

 b∆VS ;̊t +
K̊∑

K=1

f(K|d(̊t),S)VSK;0, t̊+
K̊∑

K=1

f(K|d(̊t),S)νSK;0

 .
︸ ︷︷ ︸

VSK(K̊);0

︸ ︷︷ ︸
νSK(K̊);0︸ ︷︷ ︸

VSK(K̊);̊t

︸ ︷︷ ︸
νSK(K̊);̊t

It remains to specify the meaning of internally consistent knowledge item
and to show how to construct the increments of statistics on fictitious data.
These aspects are covered in Section 3.

2.5 Addressed problem and its conceptual solution

The problem, we are facing, stems from the fact that usually the prior
sufficient statistic VSK;0 expressing the piece of knowledge K within the
structure S is not nested in the statistics corresponding to that with the
richest data vector. In other words, the efficient nested structure estimation
Algorithm 2.1 cannot be directly used whenever a non-trivial prior knowledge
is to be exploited. This fact was overlooked in our former implementations
and publications and caused worse estimation results than expected.

Knowing the problem, the remedy is rather straightforward. The follow-
ing conceptual algorithm is used.
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Algorithm 2.3 (Structure estimation with prior knowledge)
Initial phase

• Select the parameterized model in the exponential family and the richest
structure of the underlying regression vector ψR.

• Select the pre-prior pdf f̄(ΘR) ∝ GΘR(V̄R, ν̄R) on unknown parameters
ΘR that express the common knowledge available while requiring that
the same knowledge is expressed for all nested structures of interest.

Structure estimation with nested prior knowledge

• Apply the algorithm SEN 2.1 in order to find a pre-selected number
S̊ of structures S ∈ S∗ = {1, 2, . . . , S̊} having the highest posterior
probabilities when using the restricted prior knowledge described by the
pdf f̄(ΘR).

Inclusion of prior knowledge for promising structures S ∈ S∗

1. Apply Algorithm 2.2 for the fixed structure S to get the statistics of
the best merger VSK(K̊);τ , νSK(K̊);τ , τ ∈ {0, t̊}, cf. (15).

2. Evaluate descriptive abilities of the best merger, within the given struc-
ture S, cf. (15),

L(d(̊t),S) =
I
(
VSK(K̊);̊t, νSK(K̊);̊t

)
I
(
VSK(K̊);0, νSK(K̊);0

) .
3. Provide Ŝ ∈ Arg maxS∗ L(d(̊t),S)f(S) as the structure estimate and

its statistics VŜK(K̊;̊t, νŜK(K̊;̊t as initial conditions for the subsequent
on-line estimation and as the alternative pdf needed in the stabilized
forgetting.

3 Fictitious data

Here, the construction of the common information basis, i.e. fictitious data,
is recalled and refined [?]. It allows us to cope with knowledge items of a
different nature in a unified way.
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3.1 Internally consistent fictitious data blocks

Some information sources provide knowledge pieces K in form of data blocks
d(̊τK). They include obsolete or interpolated data measured on the system
in question or data measured on a similar system, data from identification
experiments violating usual working conditions – like measurement of step
response – and data gained from a realistic simulation.

The data block d(̊τK) expressing the knowledge piece K is called inter-
nally consistent iff f(ΘS |K) coincides with a flattened version of the posterior
pdf f(ΘS |d(̊τK)) ∝ GΘS (VS ;̊τK , νS ;̊τK). Let us describe it in a detail.

The posterior pdf is obtained by the Bayes rule applied to the pre-prior
pdf f̄(ΘS) ∝ GΘS (V̄S , ν̄S) with the stabilized forgetting. The forgetting
is used in order to counteract mismodelling. The pre-prior pdf is used as
the alternative pdf. Thus, the adequate forgetting factor λ is to be chosen
only. A comparison of descriptive abilities of the posterior pdfs obtained
for various forgetting factors serves well to this purpose. It is done any-
way during merging of individual knowledge pieces. Thus, it suffices to take
pdfs f(ΘS |d(̊τK)), λ) ∝ GΘS (VSλ;̊τK , νSλ;̊τK) gained for different λ as differ-
ent knowledge pieces. It is done from now on and the reference to λ is
suppressed.

Mismodelling or obsolete nature of the fictitious data blocks imply that
the pdfs

f(ΘS |d(̊τK)) = GΘS (VS ;̊τK , νS ;̊τK) ≡ GΘS

(
b∆VS ;̊τK + V̄S ,

b∆νS ;̊τK + ν̄S
)
(16)

reflect system properties approximately only. Consequently, these pdfs have
to be adequately flattened before merging such a piece of knowledge. This
is of an extreme importance as, for instance, simulators may provide a huge
amount of data that may over-fit the posterior pdfs at wrong positions. The
geometric mean serves well for flattening of these pdfs, cf. (16),

f(ΘS |K) ∝ [f(ΘS |d(̊τK))]ΛSK
[
f̄(ΘS)

]1−ΛSK (17)
∝ GΘS

(
ΛSKVS ;̊τK + (1− ΛSK)V̄S ,ΛSKνS ;̊τK + (1− ΛSK)ν̄S

)
= GΘS

(
ΛSK b∆VS ;̊τK + V̄S ,ΛSK b∆νS ;̊τK + ν̄S

)
.

The scalar ΛSK ∈ [0, 1], called flattening factor, is selected to maximize the
descriptive ability, i.e.

ΛSK = arg max
Λ∈[0,1]

I
(
b∆VS ;̊t + Λ b∆VS ;̊τK + V̄S ; t̊+ Λ b∆νS ;̊τK + ν̄S

)
I
(
Λ b∆VS ;̊τK + V̄S ; Λ b∆νS ;̊τK + ν̄S ,

) . (18)
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The values of the flattening factor ΛSK are structure-dependent. Thus, the
optimized flattening spoils possible nesting of b∆VS ;̊τK .

3.2 Construction of fictitious data

Here, we focus on those prior knowledge items that do not have directly the
form of data blocks but can be interpreted as the expected system response on
a pre-specified stimulus. Static gain, a point on frequency response, time-
constants serve as their prominent examples. Such a knowledge item K
is always uncertain to some degree. It can be interpreted as a collection of
partial characterizations of the several predictors. Each of them is expressed
in terms of its prior pdf f(ΘS |τK)

f(dτK |ψS;τK) =
∫
f(dτK |ψS;τK ,ΘS)f(ΘS |τK) dΘS (19)

for respective regression vectors ψS;τK , τK = 1, . . . , τ̊K. Mostly, the τK-th
part of the knowledge piece K can be expressed as initial moments of the
pdf (19). Formally,

h(ψS;τK) =
∫
H(dτK , ψS;τK)f(dτK |ψS;τK) ddτK . (20)

h(ψS;τK) and H(ΨS;τK) = H(di;τK , ψS;τK) are known vector functions of the
indicated arguments. When there is no pdf f(ΘS |τK) fulfilling (19), (20),
then this information source is inconsistent and has to be split into several,
internally consistent, knowledge sources. Then, the restrictions (19), (20)
do not determine fully the constructed pdf f(ΘS |τK). Pragmatic reasons
make us to search within the class of conjugate pdfs. Moreover, it is rea-
sonable to construct such a pdf f(ΘS |τK) that reflects just the knowledge
item expressed by (19), (20). Thus, it makes sense to choose such a pdf
f(ΘS |τK) that is the nearest one to the flat pre-prior pdf f̄(ΘS). The choice
is made among those meeting (19), (20). The Kullback-Leibler distance
[18] D(f ||f̄) =

∫
f(ΘS |τK) ln

[
f(ΘS |τK)/f̄(ΘS)

]
dΘS is used as an adequate

proximity measure.
Both the found f(ΘS |τK) and pre-prior pdf f̄(ΘS) belong to the same

conjugate class. Thus, their ratio can be interpreted as a product of the pa-
rameterized model at some fictitious data vectors, leading to the statistics
increments b∆VS;τK ,

b∆νS;τK . The knowledge item K is supposed to be inter-
nally consistent. Consequently, fictitious data vectors obtained for various
τK should be processed by using the Bayes rule. The result is then scaled
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in the same way as the consistent data block, Section 3.1. Thus, f(ΘS |K)
has the form (17) with statistics

b∆VS ;̊τK =
τ̊K∑
τK=1

b∆VS;τK ,
b∆νS ;̊τK =

τ̊K∑
τK=1

b∆νS;τK , where (21)

GΘS =
(
b∆VS;τK + V̄S ,

b∆νS;τK + ν̄S
)

are pdfs minimizing the Kullback-
Leibler distance to GΘS

(
V̄S , ν̄S

)
under restrictions (19), (20). The factor

ΛSK results from the maximization (18).
Specific optimization steps are elaborated for the ARX model in the next

section.

4 Application to normal ARX model

The system DESIGNER, in which the presented results are predominantly
used, relies on the normal ARX model and its variants. This makes us to
specialize the general solution to this case.

4.1 Estimation and prediction with normal ARX model

The normal ARX model belongs to the exponential family with the following
correspondence to its general form (3)

f(d|ψ,Θ) = Nd(θ′ψ, r) = A(Θ) exp[〈B(Ψ), C(Θ)〉] with (22)
Θ = [θ, r] = [regression coefficients, noise variance], A(Θ) = (2πr)−0.5

〈B,C〉 = tr[B′C], B(Ψ) = ΨΨ′, C(Θ) = (2r)−1[−1, θ′]′[−1, θ′].

This correspondence determines the conjugate prior (4) in the form known
as the Gauss-inverse-Wishart (GiW ) pdf [19]

GΘ(V, ν) = r−0.5(ν+ψ̊+2) exp
{
− 1

2r
tr
(
V
[
−1, θ′

]′ [−1, θ′
])}

. (23)

The (Ψ̊, Ψ̊)-dimensional extended information matrix V can be chosen sym-
metric and must be positive definite. Otherwise, the function GΘ(V, ν) can-
not be normalized to a pdf. Thus, we can use the numerically advantageous
L′DL decomposition of this matrix [20]

V = L′DL, L = lower triangular with unit diagonal, D = diagonal

L =

[
1 0

bdψL bψL

]
, D = diag

[
bdD, bψD

]
, bdD = scalar. (24)
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Proposition 4.1 (Basic properties and moments of the GiW pdf)
The conjugate GiW pdf has the following alternative expression

GΘ(L,D, ν) =
r−0.5(ν+ψ̊+2)

I(L,D, ν)
exp

{
− 1

2r

[(
θ − θ̂

)′
C−1

(
θ − θ̂

)
+ bdD

]}
θ̂ = bψL−1 bdψL = least-squares (LS) estimate of θ (25)

C = bψL−1 bψD−1
(
bψL′

)−1
= LS covariance factor

bdD = LS remainder.
The normalization integral is

I(L,D, ν) = Γ(0.5ν) bdD−0.5ν
ψ̊∏
j=1

bψD−0.5
jj 20.5ν(2π)0.5ψ̊ with (26)

Γ(x) =
∫ ∞

0
zx−1 exp(−z) dz <∞ for x > 0.

Thus, it is finite iff ν > 0 and V is positive definite ⇔ Djj > 0, j = 1, . . . , Ψ̊.
Under this condition, the normalization integral I is positive.

The GiW pdf has the following moments

E [r|L,D, ν] =
bdD

ν − 2
= r̂, var[r|L,D, ν] =

2r̂2

ν − 4
E [θ|L,D, ν] = bψL−1 bdψL = θ̂ (27)

cov[θ|L,D, ν] =
bdD

ν − 2
bψL−1 bψD−1

(
bψL′

)−1
= r̂C.

Proposition 2.1 specializes to the following normal variant.

Proposition 4.2 (Estimation & prediction with ARX model) Let the
normal ARX model (22) be considered, together with the conjugate GiW

prior pdf GΘ(L0, D0, ν0) (25) and the alternative pdf GΘ

(
baL, baD, baν

)
in

the stabilized forgetting with the forgetting factor λ ∈ [0, 1].
Then, the posterior pdf is the GiW pdf GΘ(Lt, Dt, νt) and its sufficient

statistics evolve according to the recursions

L′tDtLt =

 Lt−1

Ψ′
t

baL


′

︸ ︷︷ ︸
L′

diag

 λDt−1

λ

(1− λ) baD


︸ ︷︷ ︸

D

 Lt−1

Ψ′
t

baL


︸ ︷︷ ︸

L

(28)

νt = λ(νt−1 + 1) + (1− λ) baν, L0, D0, ν0 given a priori.

14



The rectangular matrix L′ is mapped on [L′t, 0] by the regular matrix T that
diagonalizes the (Ψ̊, Ψ̊)-left upper corner in T −1diag[D, 1](T ′)−1.

The predictive pdf is known as the Student pdf. For any data vector
Ψ = [d, ψ′]′, its values can be found numerically as the ratio (7).

4.2 Internally consistent fictitious data blocks

Processing of internally consistent data blocks coincides with Bayesian esti-
mation of the ARX normal model. The one-to-one mapping of the extended
information matrix V on the LS quantities, Proposition 4.1, implies that its
updating is equivalent to recursive least squares [12]. It is equipped with
tracking ability through the stabilized forgetting. Numerically, its L′DL de-
composition is evaluated by using an efficient, rank-one updating [20] that
creates the mapping T , see Proposition 4.2.

For the assumed positive definite V̄S and ν̄S > 0, Proposition 4.1 implies
that the partial likelihood is continuous and bounded function for Λ ∈ [0, 1].
Thus, the maximizer (18) exist. It can be simply found by using, for instance,
golden-section based maximization.

4.3 Construction of fictitious data

The most common case of prior knowledge type is solved here as the practi-
cally used example of its quantification. Specifically, initial moments of the
predictive pdfs f(dτK |ψτK) are assumed to be given for a fixed regression
vector ψτK (index of the fixed structure S is suppressed)

d̂τK =
∫
dτKf(dτK |ψτK) ddτK (29)

bdrτK =
∫

(dτK − d̂τK)2f(dτK |ψτK) ddτK .

It corresponds to the knowledge h(ψτK) =
[
d̂τK ,

bdrτK

]
, H(dτK , ψτK) =[

dτK , (dτK − d̂τK)2
]

in (20). For the ARX model, the restriction on the con-
structed prior pdf (29) becomes, Proposition 4.1,

d̂τK = θ̂′τKψτK ,
bdrτK = r̂τK(1 + ζτK), ζτK = ψ′τKCτKψτK , (30)

where θ̂′τK , r̂τk, CτK are LS equivalents of the statistics VτK resulting from
the minimization of the KL distance to the pre-prior pdf.

Typically, the expert provides the range
[
dτK , dτK

]
of the response dτK on

the stimulus coded in ψS;τK . Then, neglecting a small asymmetry of the Stu-

dent pdf, we choose d̂τK = 0.5
(
dτK + dτK

)
and bdrτK =

[
0.5
(
dτK − dτK

)]2
.
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The pre-prior pdf used in the minimization is assumed in the form

f̄(Θ) = GΘ(I,diag[ bdε, ε [1, . . . , 1]︸ ︷︷ ︸
ψ̊

], ν̄). (31)

It is given by positive scalars bdε, ε, ν̄. Such a pdf expresses the common
knowledge that the parameters are finite and, importantly, this knowledge
is preserved for all nested structures.

Using Proposition 4.1 for the pre-prior pdf (31), the optimized Kullback-
Leibler distance is (the subscript τK is also temporarily suppressed whenever
possible)

2D(f ||f̄) = ω(ν) + εtr [C]− ln |C| − ν̄ ln (1 + ζ) + ν̄ ln(r̂)

+
ν

(ν − 2)r̂

[
εθ̂′θ̂ + bdε

]
, (32)

where ω(ν) includes all terms depending on ν only. The optimization of this
function with respect to ν is rather involved and, importantly, its results do
not have an intuitive support. This makes us to minimize the function (32)
with respect to the remaining arguments only and interpret the results as
updating of V̄ by a rank-one b∆V matrix defined by a fictitious data vector
Ψ. Then, the restrictions (30) determine even b∆ν uniquely.

Proposition 4.3 (Optimal fictitious data vector) The LS quantities θ̂,
C, r̂ minimizing the function (32) under the restrictions (30) are obtained
by the least-squares-type updating of the pre-prior statistics (31) using the
fictitious data vector

Ψ′
τK =

[
d̂

(
ρ√
x

+
√
x

)
,
√
xψ′

]
, ρ =

ε

ψ′ψ
. (33)

The weight x > 0 is determined by the following formulas

q =
ντK

ντK − 2
(αρ+ β), α =

d̂2

bdr
, β =

bdε
bdrτK

> 0 (34)

b = ρ+ 1− q + ν̄, c = ρ(−ν̄ + q) + q, x = 0.5
(
−b+

√
b2 + 4c

)
.

The corresponding ντK is specified by the implicit formula

ντK = 2 + (1 + ρ+ x)
(

β

ρ+ x
+
αρ

x

)
. (35)

The coupled equations (34) (35) have a unique solution in the meaningful
domain x > 0, ντK > 2.
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Proof: The minimization of the function (32) with respect to θ̂ gives directly

θ̂ =
d̂ψ

ψ′ψ
(36)

irrespective of other variables. Inserting this θ̂ into the optimized function (32)
and using the second restriction in (30) for expressing r̂ = bdr/(1 + ζ), we get
the following function minimized with respect to C

2D(f ||f̄) = ω(ν) + εtr [C]− ln |C| − ν̄ ln (1 + ζ) + (1 + ζ)q

q =
ν

ν − 2

[
ρ
d̂2

bdr
+

bdε
bdr

]
, ρ =

ε

ψ′ψ
.

︸︷︷︸
α

︸︷︷︸
β

Taking its derivatives with respect to C and using the identity ∂ ln |C|
∂C = C−1,

we get the necessary condition for minimum

C−1 = εI + xψψ′ with x = − ν̄

1 + ζ
+ q. (37)

This implicit definition, ζ = ψ′Cψ, is resolved using the formula (εI+xψψ′)−1 =
ε−1[I − xψψ′

ε+xψ′ψ ]. It gives the equation x = −ν̄(ρ+x)
ρ+x+1 + q, that converts into the

quadratic one for x, x2 + [ρ+ 1− q + ν̄]︸ ︷︷ ︸
b

x− [ρ (−ν̄ + q) + q]︸ ︷︷ ︸
c

= 0. For ν suffi-

ciently close to 2 (from right), we get c > 0 and the equation has the unique

positive (meaningful) solution x = 0.5
(
−b+

√
b2 + 4c

)
.

The found form of the updating of the pre-prior covariance factor C̄ = ε−1I
(37) implies that the fictitious regression vector corresponding to the τK-th part
of the knowledge item is simply ψτK =

√
xψ. The derived formula for θ̂ (36) is

obtained if we take fictitious output dτK = d̂√
x

(ρ+ x).
The least-squares remainder, Proposition 4.1, that corresponds to this up-

dating has the value bdD = bdε+ d̂2ρ(ρ+x)
x . At the same time, the estimate of the

noise variance meeting the given restrictions has the form r̂ =
bdD
ν−2 =

bdr(ρ+x)
1+ρ+x .

Thus, the found results can be interpreted as updating by the fictitious data
vector ΨτK = [dτK , ψ

′
τK ]′ iff we take

ντK − 2 = (1 + ρ+ x)
(

β

ρ+ x
+
αρ

x

)
.

Inserting the relationship between x and q from (37), we can express the
searched ντK − 2 occurring in the above equation as a function of x. It gives a
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third order algebraic equation for x. It has always real solution. Standard but
lengthy analysis shows uniqueness of the solution in the meaningful domain.

4.4 Practical examples of prior knowledge

Here, we list common prior pieces knowledge available and ways of the
data vectors Ψ′

i =
[
d̂i, ψ

′
i

]
construction (fixed subscripts τK,S are still sup-

pressed). The multi-variate data items dt and the common case of the
state in the phase form [d′t−1, . . . , d

′
t−δ̊, 1] of the order δ̊ are considered. The

structure of the data vector is described by the index i, pointing to i-th
output channel, and by the list li of indices (j, δ) with j ∈ {1, . . . , d̊} and
δ ∈ {0, . . . , δ̊}. The indices say that the data on the j-th channel dj;t−δ are
in the constructed regression vector ψi.

In all cases discussed below, the entries of ψi that are not explicitly
mentioned are set to zero.

The knowledge of the static gain d̂i = ĝ of the i-th channel on stimulus
from the j-th channel is expressed by setting di;t−δ = ĝ and dj;t−δ = 1 for
all delays δ in the list li.

It is shown in [21] that the knowledge of a point of the frequency response
on the j-th channel – given by the module â(ω) and phase φ(ω) shift at fre-
quency ω – is determined by a pair of data vectors with di;δ = â(ω) sin(φ(ω)+
δω), dj;δ = sin(δω) and di;δ = â(ω) cos(φ(ω)+δω), dj;δ = sin(δω). The range
of a(ω) = [a(ω), a(ω)] can often be well specified. The uncertainty in the
phase φ(ω) is simply reflected by considering a relatively coarse grid within
the uncertainty range and processing each case as an individual data item.
The subsequent merging (15) cares about the proper weighting.

Knowledge of cut-off frequency is a special case of frequency knowledge
with practically zero amplitude, i.e. the amplitude range is given by the
point estimate of the standard deviation of the noise. Introduction of this
knowledge for several frequencies higher than the cut-off one excludes iso-
lated pass through the zero level. Again, it generates several competitive
knowledge items balanced by the merging.

The knowledge of a range of the dominant time constant is implemented
by modelling lower and upper envelope on the impulse response generated
by the first order models with time constants equal to the specified bounds
on the time constant. Data are filled from the average trajectory into Ψi

while distance of envelopes determine the variance bdr.
Envelope of measured data, obtained from a periodic measurement, is

handled in the same way.
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Smoothness of the step response [22] can be respected by enforcing its
second order difference to be close to zero.

Note, that the lengths of the samples in ”simulated”responses have to
be limited so that stationary values are not repeated too much. Otherwise,
the assumption on internal consistency, i.e. applicability of the Bayes rule,
would be violated.

4.5 Overall algorithm for normal ARX model

Here, we put the algorithmic element together for the normal ARX model.
The recommended options correspond with the pre-processed data d(̊t) with-
out outliers, suppressed measurement noise and data scaled so that their
means are approximately zero and variances are about one. The evalua-
tion is organized so that computation resources are preserved as much as
possible.

The explicit reference is made here to the channel treated (subscript i).

Algorithm 4.1 (Structure estimation with prior pdf)
Initial phase

• Select the grids on:
forgetting factors {λ}, used for processing of internally consistent data
blocks,
phases {φ(ω)} that complete definitions of the frequency response,
frequencies {ωc} that guarantee that frequency response is close to zero
above the cut-off frequency.

• Select the number of repetitive starts in the nested structure estimation
algorithm SEN 2.1.

• Select the order δ̊R of the richest data vector ΨR;t = [d′t, . . . , d
′
t−δ̊R

, 1]′

that includes all potential entries when predicting all modelled entries
di;t, i = 1, . . . , d̊, of the data item dt.

• Specify statistics L̄R = I, D̄R = diag[ bdε, ε

ψ̊R︷ ︸︸ ︷
[1, . . . , 1]] and ν̄ determin-

ing the flat pre-prior pdf on the richest possible parameterization.

Requirements on finiteness of the a priori assigned expectation of r and
need for a flat pdf f̄(r) hint to use ν̄ = 3, see (27). For this choice,
bdε is the variance of the unpredictable part of the modelled data. It
is sufficient to consider a few categories of the noise-to-signal ratio.
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For instance, the values (0.1%, 1%, 5%, 10%, 50%) correspond with
bdε = (1e− 6, 1e− 4, 2.5e− 3, 1e− 2, 0.25).

For stable systems, that are predominantly treated, the auto-regression

coefficients do not cross the value γ =

(
δ̊R

0.5̊δR

)
. The regression

coefficients are, as a rule, much smaller. Properties of the GiW pdf
imply that ε ≈ 25 bdε/γ2 is an appropriate conservative option.

• Select the number S̊, say several tens, of competitive structures to be
refined by using prior information.

• Use the available real data dt, t = 1, . . . , t̊ to update L′DL decomposi-
tion of the increment of the extended information matrix corresponding
to the richest data vectors ΨR;t, see (13),

b∆L′R;t
b∆DR;t

b∆LR;t =

[
b∆LR;t−1

Ψ′
R;t

]′
diag

[
b∆DR;t−1

1

] [
b∆LR;t−1

Ψ′
R;t

]
b∆νR;t = b∆νR;t−1 + 1, with b∆LR;0 = I, b∆DR;0 = 0, b∆νR;0 = 0.

• Evaluate the L′DL decomposition of the extended information matrix
corresponding to the richest data vectors ΨR;t, i.e. add the statistics
of the pre-prior pdf

L′R;̊t
DR;̊tLR;̊t =

[
b∆L′R;̊t

I

]′
diag

[
b∆DR;̊t

D̄R

] [
b∆LR;̊t

I

]
.

• Set the channel index i = 1.

Cycle over indices i of the modelled entries in data records

• Set the auxiliary description of the structure Ŝ = ∅, L̂i = −∞ needed
for the MAP estimation.

Structure estimation with nested prior knowledge

• Select the factors of the pre-prior and posterior extended information
matrices, L̄iR, D̄iR, LiR;̊t, DiR;̊t, as well as of the increment b∆LiR;̊t,
b∆DiR;̊t, corresponding to the i-th predicted data entry di;t and the
richest regression vector ψiR;t.

They are nested in LR;̊t, DR;̊t, L̄, D̄, and b∆LR;̊t,
b∆DR;̊t. The L′DL

decompositions spoiled by this selection have to be recovered using the
rank-one corrections [20].
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• Apply the algorithm SEN (2.1) giving L′DL factors of the pre-prior
extended information matrices L̄iS , D̄iS and their data-dependent in-
crements b∆LiS ;̊t,

b∆DS ;̊t. They correspond to the most probable struc-
tures S ∈ S∗ found when just the nested pre-prior knowledge is used.

• Select S ∈ S∗.

Inclusion of prior knowledge for promising structures

• Select a knowledge item K in the list K∗i = {1, . . . , K̊i} available for
the i-th channel.

• Set the normalization factor needed in merging s = 0.

Processing of knowledge items

• Do if the individual knowledge item K has to be converted into ficti-
tious data vectors

– Set LiS;0 = L̄iS , DiS;0 = D̄iS , νiS;0 = ν̄.

– For τK = 1, . . . , τ̊K
∗ Generate data reflecting τK-th part of the knowledge item K

given by d̂iS;τK, bdriS;τK and ψiS;τK, cf. (29).
∗ Evaluate fictitious data vectors ΨiS;τK and its νiS;τK, cf. (33),

Ψ′
iS;τK =

[
d̂iS;τK

(
ρiS;τK√
xiS;τK

+
√
xiS;τK

)
,
√
xiS;τKψ

′
iS;τK

]
.

∗ Update

L′iS;τKDiS;τKLiS;τK =

[
LiS;τK−1

Ψ′
iS;τK

]′
diag

[
DiS;τK−1

1

] [
LiSτK−1

Ψ′
iS;τK

]
νiS;τK = νS;τK−1 + b∆νiS;τK .

• Run the estimation with the stabilized forgetting for the selected forget-
ting factors λ and with the alternative pdf given by L̄iS , D̄iS , ν̄ if the
knowledge item K is formed by an internally consistent data block.

Store the results into b∆LiS ;̊τK, b∆DiS ;̊τK and b∆νS ;̊τK
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• Select the flattening factor ΛiSK maximizing the partial likelihood

Li(d(̊t),S,K) =

I
(
ViSK;̊t, t̊+ ΛiSK b∆νiS ;̊τK + ν̄iS

)
I
(
ΛiSK b∆L′iS ;̊τK

b∆DiS ;̊τK
b∆LiS ;̊τK + L̄′iSD̄iSL̄iS ,ΛiSK b∆νiS ;̊τK + ν̄iS

)
ViSK;̊t = b∆L′

iS ;̊t
b∆DiS ;̊t

b∆LiS ;̊t + ΛiSK b∆L′iS ;̊τK
b∆DiS ;̊τK

b∆LiS ;̊τK + L̄′iSD̄iSL̄iS

s = s+ Li(d(̊t),S,K)

Notice that b∆L′
iS ;̊t

, b∆DiS ;̊t and L̄′iS , D̄iS , ν̄iS depend only on the struc-
tural indices i,S and not on K.

• Take a new knowledge item K, if the list SKi is not exhausted, and go
to Processing of knowledge items. Otherwise continue.

• Set LiSK(K̊) = I, DiSK(K̊) = D̄iS , νiSK(K̊) = ν̄iS .

• Select K ∈ K∗i . Evaluation of the merger within the structure S

• Update

fi(K|d(̊t),S) =
Li(d(̊t),S,K)

s
, L′

iSK(K̊)
DiSK(K̊)LiSK(K̊)

= L′
iSK(K̊)

DiSK(K̊)LiSK(K̊) + fi(K|d(̊t),S) b∆L′iS;;̊τK
b∆DiS ;̊τK

b∆LiS ;̊τK

νiSK(K̊) = νiSK(K̊) + fi(K|d(̊t),S) b∆νiS ;̊τK .

• Select a new K if their list {1, . . . , K̊i} is not exhausted and go to
Evaluation of the merger within the structure S. Otherwise continue.

• Evaluate partial likelihood expressing assigned to the structure S

Li(d(̊t),S) =
I
(
b∆L′

iS ;̊t
b∆DiS ;̊t

b∆LiS ;̊t + L′
iSK(K̊)

DiSK(K̊)LiSK(K̊), t̊+ νiSK(K̊)

)
I
(
L′
iSK(K̊)

DiSK(K̊)LiSK(K̊), νiSK(K̊)

) .

• Set Ŝ = S, L̂i = Li(d(̊t),S) and store the statistics corresponding to
the posterior pdf b∆L′

iŜ ;̊t
b∆DiŜ ;̊t

b∆LiŜ ;̊t + L′
iŜK(K̊)

DiŜK(K̊)LiŜK(K̊) and

t̊+ νiŜ if Li(d(̊t),S) > L̂i.
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• Select a new structure S if the list S∗ of the most probable ones is
not exhausted and go to the Inclusion of prior knowledge for promising
structures. Otherwise continue.

• Offer the structure Ŝ as the recommended one for i-th channel with
the corresponding stored posterior statistics.

• Increase i and go to Cycle over indices i of modelled data entries if i ≤ d̊.
Otherwise stop.

The algorithm provides also, till unavailable, estimate of the best order
in factorization (2). It must, however, be complemented by a check against
incorrect dependence loops.

It is important that the algorithm can cope with problems having d̊ of
the order several tens.

5 Illustrative example

Contribution of prior knowledge to structure estimation results is illustrated
on single-input single-output simulated system. It corresponds to two-
dimensional dt = [yt, ut]′. The system input ut is generated as white normal
noise with variance 0.3. The modelled system output yt is simulated by the
ARX model determined by the “objective parameter” boΘ =

[
boθ, bor

]
. It is

usually written in form of the difference equation driven by the normalized
white normal noise et ∼ Net(0, 1)

yt = boa1yt−1 + boa2yt−2 + bob0ut + bob1ut−1 +
√

boret

= [1.81, 0.8187, 0.0438, 0.00468]︸ ︷︷ ︸
boθ′

′
[yt−1, yt−2, ut, ut−1]︸ ︷︷ ︸

ψt

+
√

0.001︸ ︷︷ ︸√
bor

et

⇔ f
(
yt|ut, d(t− 1), boΘ

)
= f

(
yt|ψt, boΘ

)
= Nyt

(
boθ′ψt,

bor
)
.

The “real” data d(̊t) = d(300) were “measured” on this system (MATLAB
simulation with the seed of normal generator equal to 1).

The SEN algorithm 2.1 was applied with the richest structure of the
phase form given by the order δ̊R and the recommended nested pre-prior
pdf were used. The number of restarts was 10 and S̊ = 10 of the best
structures were stored giving the significant entries marked by * and the
related posterior pfs
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S a1 a2 a3 b0 b1 b2 f(S|d(300))
1 * * 0.6935
2 * * * 0.2572
3 * * * 0.0185
4 * * * 0.0111
5 * * * * 0.0077
...

...
...

The correct structure was assigned the 5th largest probability. Inclusion of
the prior knowledge K = 1 ≡ static gain is in range [1.0310 1.0518] made
the largest pf f(S = 2|d(300),K = 1) corresponding to the second order
model with non-zero b1.

. . . . . . . . . ..
The following analysis is based on data sample only and on the prior

knowledge about the system:

1. the system static gain is in the range

2. the dominant time constants in ranges:
λ1 = [0.8254 0.8421]; λ2 = [1.1237 1.3734]

The conclusion are:

• the SEN algorithm of nested structure estimation does not discover
the dependency of output on input;

• the ”true” structure (appears among ”best” structures with a low
probability (the last in the table above).

In this case, dependency of output on input is discovered. The prior
knowledge of static gain carries the information about dependency but not
about dynamics - it can explain the absence of the b0 in the result.

Now, the knowledge of the time constants is applied. The prior knowl-
edge carries the information about dependency and system dynamics. This
time, the ”true” structure a1, a2, b0, b1 is discovered.

A range of prior knowledge and their combinations were tested in the
task of the structure estimation. The experiments show that use of prior
pdf is not a magic tool that can solve any problem – it only slightly enlarges
the range of successful solutions.

CCC>> MK: information on some improvement to former version, some
information on weights <<CCC
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6 Concluding remarks

Significance of the inclusion of prior knowledge into black-box models is
still underestimated. The theory and algorithms presented in this paper
solve this problem to a significant extent. The available practical experience
confirms that the use of even vague knowledge may decide on the success or
failure of structure estimation and consequently on the success or failure of
the controller design.

A wider and more precise use of the prior knowledge is especially im-
portant in the context of the prior design of the advanced controller with
incomplete knowledge [15].

The theory and algorithms have been elaborated for the LQG-type-
design set up. The same problems are met out of this class and the adopted
methodology may serve to them, too.

The problem of the joint processing of the prior knowledge and structure
estimation is solved here for the exponential family but elaborated for the
ARX models only. It determines a direction of a further development: the
controlled-Markov-chain case should be elaborated, too. It would strengthen
dynamic modelling of systems with dynamic discrete data.
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2000 project”, in International Conference on Control ’98, London,
September 1998, pp. 1450–1455, IEE.
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