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Relevant theory is summarized in the article

M. Kárný, J. Kraćık, I. Nagy, P. Nedoma
When Has Estimation Reached A Steady State?

read the article and examples

1 Basic stopping techniques

Each learning process contains a transient period followed by a stacionary part. The stopping rules determine
when the stationary part begins. It means that a stopping statistic Q is computed and compared with a
threshold value. If Q is below it, the estimation already has reached the stationary part.

1.1 Learning with normal ARX factors

The estimation of an ARX factor is discussed.

The function stopstac supports application of stopping rules. It is called as:

[Fac,Q] = stopstac(Fac, dvect) % stopping criterion
where
- Fac is the recursively updated factor;
- Q is the stopping statistics;
- dvect is data vector used for updating of Fac. When missing, the data vector is extracted from signal
database using Fac.str.
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Figure 1: Factor estimation with stopping rules

Example: dynamic factor of the 2nd order is estimated and the stopping rule applied. Results are in the
Fig. 1. The left part shows trajectory of estimation of the first two regression coefficients, the right part
contains the trajectory of the stopping statistics. The theshold value is ploted by dotted line.

The treshold for stopping used is 0.0025.

1.2 Stopping based on a statistics

An ”indirect” reasoning about stationarity of a process is based on a statistics computed. This statistics is
feeded into a factor estimation. The stationarity of the factor estimation implies the process stationarity.

In learning with a mixture, the statistics used is posterior data likelihood.

Example: dynamic factor of the 2nd order is estimated and the stopping rule applied. Results are in the
Fig. 2. The trajectories of data pdf and the stopping statistics are in the lower part of the figure.

1.3 Estimation of credibility intervals

The use of stopping rules speeds substantionaly the mixture estimation. To be sure that this promising result
is not random, the estimation should be repeated independently and credibility interval for the moments of
stopping computed.

This is done by the function credits: For it, the estimation previously done is repeated on independent
realizations. With each run, the time needed to reach a stationary state is recorded and Algorithm ?? is used
for checking the need for a further realization. The repetition was stopped when the test statistics reached
the threshold level 0.5%. The function credits makes the estimation of credibility intervals. It computes the
stopping statistics and stops processing when the stationary behaviour is reached:

[Cl,Cu,Chat,flag,Q] = credits(C, beta, threshold)

where

Cl lower credibility bound
Cu upper credibility bound
Chat center of the credibility interval
flag stopping flag 1 - stop, 0 - do not stop data acqusition
Q value of the stopping statistics
C vector of independent realizations
beta credibility level in (0,1)
threshold upper bound on relative error
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Figure 2: ARX mixture estimation with stopping rules
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Figure 3: ARX mixture estimation with stopping rules

Example follows. Repetitive simulation-estimation runs are done. The process is stoped using the posterior
data log-likelihood.

Example: Repetitive simulation and estimation of a mixture is done. The stopping times are collected and
credibility intervals displayed. Results are in the Fig. 3.

2 Model characteristics via extended simulations

Estimated model characteristics are often obtained by repeated simulations. This is usually time-consuming
task. Function simeval is designed to collect basic confidence intervals and to record repeated trajectories
effectively.

Two benefits of the using simeval are:
• individual simulation runs are stopped when stationary state is reached (the function stopstac is used);
• the repetitive simulation runs are finished when stacionarity is reached (the function credits is employed);
• MEX function solution makes experiments in acceptable computing time.

The function simeval makes the simulations:

[res, tstop] = simeval(Sim, chns, maxrep, maxdat, threshold)

The arguments are:
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outputs
res cell vector containing results
tstop stop time of individual trajectories
inputs
Sim simulator or a task
chns list of relevant channels or Facs - cell array of factors
maxrep maximum number of simulation runs
maxdat maximum length of trajectories
threshold threshold value for stopping

The processing results are held in a cell vector. Each cell contains results related to an individual channels.
The result fields are:

stats confidence interval for range and increments
tra trajectories of individual simulation runs

Note: the confidence intervals are presented as (low border - mean - high border). The evaluation is done
by the function credit.

2.1 Examples of SISO model evaluation

The example shows application of the function simeval and presentation of results. Overshoots of a SISO
model in open loop are analyzed. The processing steps are:

• Data are generated
• Model is estimated.
• The characteristics of the model are obtained via simulation with the function stopstac. • Various

vharacteristics are evaluated.

Results are in Fig. 4.

2.2 Examples of MIMO model evaluation

The example shows application of the function simeval to an MIMO model in open loop. Two models of
the previous section are coupled. Results are in Fig. 5.

3 Stopping rules in estimation

The estimation function with stopping rules are:

mixestimps projection method
mixestims quasi-Bayes estimation
mixestpbs iterative projection
mixestqbs iterative quasi-Bayes
mixest iterative estimation

3.1 Stopping rule in projection and Quasi-Bayes estimation

The function prototypes are:
[Mix, tstop, Q] = mixestimps(Mix, frg, maxdat, Mixa)
[Mix, tstop, Q] = mixestims(Mix, frg, maxdat, Mixa)

The arguments that are different from the versions without stopping:
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Figure 4: Model evaluation via simulation (SISO)
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Figure 5: Model evaluation via simulation (MIMO)
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Figure 6: Stopping rules in quasi-Bayes estimation

tstop stopping time
Q value of statistics used for stopping
maxdat maximum length of data

An example of stopping rules in quasi-Bayes estimation compares esult of estimation without and with
stopping. Results are in Fig. 8

3.2 Stoping rules in iterative estimation

The function prototypes are:
[Mix, tstop, Q] = mixestimps(Mix, frg, maxdat, Mixa)
[Mix, tstop, Q] = mixestims(Mix, frg, maxdat, Mixa)

Results of comparison of all estimation functions are shown in the Fig. 7.

Example: Data are generated, mixestims is called in the a cycle of TIME, intermediate results are
stored and displayed in Fig. 8. The core of processing:

for TIME=maxtd+1:maxdat
[Mix, tstop, Q] = mixestims(Mix);
...
if tstop, break; end

end

3.3 Stopping rules in repeated quasi-Bayes estimation

The function mixestims:
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Figure 7: Comparison of estimation functions
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Figure 8: Stopping rules in quasi-Bayes estimation

[Mix, mixlls, tstops, nrep] = mixestqbs(Mix0, frg, maxdat, niter, threshold)

Note: the input argument threshold should not be used.

The arguments that differ from mixestqb:

tstops stopping times
nrep resulting number of repetitions
maxdat maximum length of data
threshold threshold for stopping

Example: Data are generated, mixesqb and mixestqbs is called and results displayed in Fig. 11.

4 Stopping rules in initialization

The initialization can be done with stopping rules in estimation. It means, that the function mixinit accepts
the code of estimation function ′P ′ and ′Q′.

A case study follows. The iterative projection method is used for estimation. The results of each iteration
is displayed in the Fig. ??.

For comparison, the results obtained without stopping rules are in Fig. ??.

Another benchmark example is initialization of a static mixture of many components. The results are in
Fig. 12.
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Figure 9: Stopping rules in repetitive quasi-Bayes estimation
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Figure 10: Iterations of initialization with stopping
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Figure 11: Iterations of initialization without stopping
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Figure 12: Iterations of initialization without stopping
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