
Functions by category

Design base by category

Cryptonyms by category

Functions by name: a b c d e f g i k l m n p r s t u
a
algen
aloptim
arx2arx
arx2ful
arxc2can
arxc2fac
arxc2mix
b
betaln
bmtbinit
c
can2arxc
can2fac
can2marg
canarxls
cellcat
chnconst
chnget
chnset
com2can
com2com
com2pro
comarx
comarxls
comdel
commerge
complot
comunpk
contents
credit
credits
d
datagrid
dataplot
datascan
defaults
dial1
dial2
dial3
dydrs
e

equal
estfrg
f
fac2arxc
fac2ls
fac2marg
facarx
facarxls
facchng
facdpred
facflat
facfrg
facgmean
facmark
facmerge
facpred
facsort
facstr
facupdt
facupdtp
facupred
facvll
filoutm
fixerr
fullscreen
g
gauss1
gaussn
genmixe
genmixe1
genmixi
genstr
gentab
getdvect
getflds
getth
i
inisyn
isdimeq
isstatic
iterplot
k
kldcom
kldiscom
kldisdir
kldist
kldistc
l
ld2ld
ld2ls

ld2ud
ld2v
ldchng
ldinv
ldperm
ldupdt
ldupdtp
linplot
loglik
ls2ld
ltdl
m
mix2arxc
mix2mix
mix2mix0
mix2mixm
mix2pro
mixbrow
mixconst
mixcopy
mixcut
mixdfms
mixdump
mixest
mixestbb
mixestbq
mixestem
mixestfe
mixestim
mixestimp
mixestims
mixestmt
mixestpb
mixestqb
mixestqbs
mixflat
mixflatv
mixfrg
mixgmean
mixgrid
mixinit
mixmaxtd
mixmesh
mixplot
mixplotc
mixpro
mixreorg
mixscan
mixshow
mixsimul

mixstats
mixstrid
mixupdt
mixupdtp
mversion
n
noise
p
perm
preaux
preaux1
preinit
preproc
prestep
prior
pristr
pristrd
pro2pre
pro2str
prodini
profix
profixn
profixn1
protest
prt
prtstr
psi
r
randnm
randun
relep
relepn
resizefig
restore
ricexp
ricpen
ricpenu
ricshift
s
scalepri
setaxis
setdbg
setfig
sigscan
sim2pdf
simeval
soptim
statgrid
statmesh
statplot

statsim
stopstac
straux1
streq
strmax
student
synmixi
t
target
tukinit
u
ud2ld
udform
udinv
udupdt
ufcgen
utdu
utinv

User’s Functions

Constructors
Fac = facarx(ychn, str) build ARX factor
Fac = facarxls(ychn, str) build ARX LS factor
Com = comarxls(ychns, str) build matrix ARX LS component
Com = comarx(ychns, str) build matrix ARX component
Mix = mixconst(Facs, coms, dfcs) build ARX or ARX LS mixture
Mix = mixconst(Coms, dfcs) build mixture of any type

Initialization of estimation
Mix = ... initialization of mixture estimationa

mixinit(Mix0,frg,ndat,niter,opt,belief)
Mix = comdel(Mix, com) cancel specified component
Mix = commerge(Mix, Mix0, com) merge mixture components
Mix = mixcut(Mix) cancel components that explain low amount of data
Mix0 = genmixe(ncom,ychns,str,ndat)generate initial mixture

aestimation options: ”p’, ’q’, ’b’, ’f’, ’m’ ’n’+ number of iteration steps; belief expresses user’s belief into the
regressor specified

Estimation operations

Mix = ...
mixest(Mix0, frg, niter, opt) iterative mixture estimationb

Mix = mixestim(Mix0, frg, ndat) quasi-Bayes mixture estimation
Mix = mixestim(Mix0, frg) recursive quasi-Bayes mixture estimation
Mix = mixestimp(Mix0, frg, ndat) projection based quasi-Bayes estimation
Mix = mixestimp(Mix0, frg) projection based recursive quasi-Bayes estimation
Mix0 = mixflat(Mix) mixture flattening
Mix = mixstats(Mix, ndat) compute estimation statistics
Mix = mixstats(Mix) compute statistics recursively
Mix0 = genmixe(ncom, ychns, str) generate initial mixture for estimation

bopt - options: ’q’, ’b’, ’f’,’m’ for quasi-Bayes, batch Bayes, forgetting branching and estimation with fixed
covariances

Prediction operations

pMix = mix2mixm(Mix, pchns) build marginal predictor
pMix = mix2pro(Mix, pchns, cchns) build/re-build mixture projector
pMix = profix(pMix, psi0, pre) build mixture prediction from projector
pMix = ...
mixpro(Mix0,pchns,cchns,psi0,pre) build mixture projectiona

[pMix, weights] = ...
profixn(pMix, psi0, pre, nstep) prediction n-steps ahead b

se = relep(Mix, ndat) prediction errors norm
se = relepn(Mix, nstep) multistep prediction error norm

adefaults: pchns - [1,2], cchns - no, psi0 - substituted from DATA, no data scaling
bthe weights are data dependent even for static mixtures

Visualization a

adefaults: see Prediction operations. The functions allows definition of grid densities and ranges

mixplot (Mix,pchns,cchns,psi0,pre) mixture plot (shaded)
mixplotc(Mix,pchns,cchns,psi0,pre) mixture plot (contours, components)
[x,y,z] =...
mixgrid(Mix,pchns,cchns,psi0,pre) coordinates for mixture plot
[x,y,z] = datagrid(Mix) coordinates for data plot
datascan(chns) scan data for 2 dim clusters
mixmesh(Mix,pchns,cchns,psi0,pre) mixture mesh plot
mixscan(Mix,chns,pre) scan mixture for 2 dim. clusters
setaxis(list, ax) set global axis in subplotsa

sigscan(chns) scan signal
fullscreen set fullscreen for current plot
resizefig() set plot position

alist is list of subplots, ax a scaling see axis function

Interactive visualization
mixshow(Mix) interactive plot of mixture
mixbrow(Mix) interactive display of mixture attributes
setdbg(’function’) interactive setting of ”dbstop”

Data preprocessing

pre = preproc(pre) preprocess data
pre = preinit(pre) initialize preprocessing
pre = prestep(pre) preprocessing step

Structure estimation
Mix = ...
mixstr(Mix,Mix0,belief,nruns) estimate mixture structure
MAPstr = ... estimate structure of a factor
facstrid(Fac,Fac0,belief,nbest,nruns)

Mixture simulation

mixsimul(Sim, ndat) batch mixture simulation
mixsimul(Sim) recursive mixture simulation
Sim = statsim((ndat, ncom, cove) create static mixture with components on unit circle

Basic conversion functions
LD = ltdl(V) decompose positive definite matrix to L’DL
Mix = mix2mix(Mix, form) convert mixture to a specified forma

Com = com2com(Com, form) convert component into a specified form
X = arx2arx(X) convert between ARX and ARX LS representations

a”form” is a coding summarized in ”Codes”

Design of advisory system

[aMix, aMixu] = ...
inisyn(Mix,Mixu,pochn,uchn) initialize advisory design for normal mixture
[aMix, aMixu] = ...
inisyn(Mix,Mixu,Chns) call with channel descriptions
aMix = ...
aloptim(aMix,aMixu,ufc,nstep,chis) make academic advisory design for normal mixture
ufc = ufcgen(Mixc, Mixc0) vector of unstable components
aMix = ...
soptim(aMix,aMixu,ufc,nstep,chis) perform simulaneous advisory design
aMix = algen(aMix,aMixu,ufc) compute of probabilistic weights for advisory design
[Mixu, ychns] = target(Chns) create user’s target mixture
Mix = mixcopy(Mix1, Mix2) copy of ARX or ARX LS statistics

Channel descriptions

Chns = chnconst(chns) build channel descriptions
Chns = chnset(Chns,chns,fld, val) set channel descriptions field
val = chnget(Chns,chns,fld) get values of channel descriptions fields

General purpose functions

prodini standard Mixtools session beginning
prt(X) debugging prints
is = equal(X1,X2, eps) test of equivalence up to a small difference
str = genstr(order, nchn, td) generation of model structure of given order
is = streq(str1, str2) compare two structures
is = isstatic(Mix) test whether mixture is static
is = isdimeq(X1,X2) test of equality of dimensions
is = streq(str1,str2) test of equality of dimensions
mversion display current Mixtools version

Dialog functions

dial1, dial2, dial3 dialogue units for case studies

Design Base

Estimation related operations

[Mix,faclls] = mixupdt(Mix,flag,weight) one step of mixture update
Mix = mixupdt(Mix, flag) mixture update by projection
Mix = mixestpb(Mix,frg,ndat,niter) iterative estimation by projection
Mix = mixestqb(Mix,frg,ndat,niter) iterative quasi-Bayes mixture estimation
Mix = mixestbq(Mix,frg,ndat,niter) iterative batch quasi-Bayes mixture estimation
Mix = mixestbb(Mix,frg,ndat,niter,nstep) iterative estimation by forgetting branching
Mix = mixestmt(Mix0,frg,ndat,niter)quasi-Bayes iterative estimation with fixed variances
Mix = mixestem(Mix0, ndat, niter)estimation by EM algorithm
Mix = mixfrg(Mix ,frg) mixture forgetting
[Mix0,handle] = ...
mixflatv(Mix,niter,ndat,frg) mixture flattening with variable rate
[Mix0,handle] = mixflatv(Mix,handle) a

athe first call in initialization, the second one in iterations

Auxiliary estimation operations

Mix = mixgmean(weights,Mix1,...) geometric means of mixtures
dvec = getdvect(Fac) get data or regression vector
Mix = facupdt(Mix, facs, weights) factor update
lls = facdpred(Mix) compute trial factor predictions
[s,s0] = mixdfms(Mix) sum degrees of freedom of the mixture
Mix0 = mix2mix0(Mix) create initial mixture mimic to a mixture
lls = loglik(LD,dfm,LD0, dfm0) increment of loglikelihood
Sim = sim2pdf(Sim, ndat) convert simulator to estimator

Prediction related operations

Facs = fac2marg(Facs, pchns)) convert factor into data-marginal factor
Com = com2pro(Facs, pchns, cchns) convert ARX LS component to predictor
[typ, ychns,...] = comunpk(...) get information about component

Preprocessing

Pre = preaux1(method, time, Pre) auxiliary function for data pre-processing

Design of advisory system

Com = arx2ful(Com, str) weights needed for advisory system design
Com = canarxls(ychns, str) build matrix ARX LS component
pMix = facchng(pMix, com, Fac) auxiliary changes of mixture factors
Mix = pro2str(Mix, str) additional pointers to external structure
... = ricexp(....) auxiliary function for computing of expectation
... = ricpen(....) auxiliary function for computing of penalisation
... = ricpenu(....) computing of penalisation in simultal design
... = ricshift(....) shift of matrices and vectors
aMix = synmixi(Mix, uchn, strc) convert mixture to control form aMix

Kullback-Leibler distance

dist = kldist(fac, Mix, Mix0) distance of a factor in parameter space
dist = kldist(0, Mix, Mix0) distance of all factors
dist = kldist(Mix, Mix0) distance of all components
[d1,d2,d3,d4] = kldist(Mix1, Mix2) distance of mixtures a

dist = kldiscom(Mix, ndat) distance of components in data space
dist = kldcom(Mix, Mix0) KL distance of components from initial ones
kld = kldisdir(s, s0) Kulback-Leibler distance of Dirichlet pdfs
kld = kldistc(Mix) KL distance of components in normal mixture

a distances: d1 - overall distance, d2 - distances of factors, d3 - distance of components, d4 - distance of
component weights

Conversion functions
Conversion of an array of ARX components to the mixture and back

Sim = arxc2mix(Coms, dfcs) convert ARX components to simulator
Coms = mix2arxc(Mix) convert normal mixture into array of ARX components
Facs = arxc2fac(Com) convert ARX component to ARX LS factors
Com = fac2arxc(Facs) convert ARX LS factors to ARX component

Conversions of L’DL decompositions

V = ld2v(LD) convert L’DL decomposition to original matrix
LD = ld2ld(L, D) replace diagonal unit of L by D
[L,D]= ld2ld(LD) extract D from diagonal LD and replace it by D
LD1 = ldchng(LD, str, LD1, str1)change part of L’DL decomposition

Conversion of L’DL to LS representations and back

[Eth,Cth,cove,dfm] = fac2ls(Fac) convert ARX factor to least square representation
LD = ls2ld(Eth,Cth,cove,dfm) convert Eth, Cth, cove, dfm into LD
[Eth,Cth,cove]=ld2ls(LD,dfm,nychn)convert L’DL into Eth, Cth, cove

Subselection from an L’DL decomposition

LD = ld2ld(LD,str1,str2) marginal L’DL decomposition a

LD = ldperm(LD, i) permute L’DL decomposition: i-th row to 1st row
astr1 is source and str2 target LD structure, str2 has to be contained in str1

Operations over triangular matrices

UD = ld2ud(LD) convert decomposition L’DL to U’DUa

UD = utdu(X) upper triangular U’DU sym. matrix decomposition
UD = ld2ud(LD) convert decomposition L’DL to U’DU
LD = ud2ld(UD) convert decomposition U’DU to L’DL
LDi = ldinv(LD) invert L’DL decomposition
ut = udinv(ut) invert upper triangular matrix
LD = ldupdt(LD , dvect, weight) update L’DL decomposition by weighted data vector
UD = udupdt(UD , dvect, weight) update U’DU decomposition by weighted data vector
[Eth, cove] = udform(Eth, cove) restore matrix factorized ARX component

athe decomposition U’DU, U is upper triangular with unit diagonal, V = U’DU. ”UD” is the upper triangular
matrix with ”D” on diagonal

Factorized matrix ARX and matrix LS components

Can = arxc2can(Com) convert ARX LS to matrix factorized ARX component
Com = can2arxc(Can, n) a convert ”Can” into matrix ARX LS component
Can = can2marg(Can) permute matrix factorized ARX component

a”n” is number of marginal channels

Visualisation
statmesh(Mix) interactive mesh plot of static mixture or data
statplot(Mix) plot components of static mixture components
[x,y,z] = statgrid(Mix) coordinates grid for 3-D display
complot(Mix, com) plot of component of a mixture
iterplot(Mix0, Mix, iter) plot initial and resulting mixture of an iteration step
setfig(number) set figures windows
fixerr(Mix) interactive set TIME for plots

Dump/restore of a MATLAB array

mixdump(Mix, filename,...) dump MATLAB object to disk
Mix = restore(filename,...) restore dumped MATLAB object

General purpose functions

val = defaults(’item’) get values from database of defaults
e = noise(etyp) generate a random number with a ”etyp” distributiona

val = gauss1(dvect,Eth,cove) value of one-dimensional Gaussian pdf
val = gaussn(dvect,Eth,cove) value of Gaussian pdf
setfig(n) set figures windows
val = getflds(cell vect, ’field’) get fields from a cell-vector of structures
val = betaln(p,q) logarithm of Euler’s beta function
fac = facsort(Facs) sort factors of a component

agenerators have mean 0 and covariance 1 (with exception of Cauchy); the etyp is: 1 - Gaussian, 2 - uniform,
3 - lognormal, 4 - Cauchy

algen

ALGEN compute probabilistic weights for academic advisory design,

aMix = algen(aMix, ufc)

aMix : advised mixture of the type ARX LS enriched on the following control states:
strc : common control structure
ufc : normalised vector qualifying components:

dangerous component (0), not dangerous (positive number)
kc : lift of quadratic forms
UDc : cell vector of u’du decompositions of KLD kernels
udca : u’du decomposition of average KLD kernel in UDc
kca : average lift of quadratic forms kc
dfcs : degrees of freedom of components (weights)

aMixu : desired mixture of the type ARX LS with control states
ufc : normalised vector qualifying components

Design : J. Bohm
Updated : June, 2002
Project : ProDaCTools, IST-1999-12058
See also : udupdt, getdvect

aloptim

ALOPTIM perform academic advisory design for normal mixture

[aMix] = aloptim(aMix, aMixu, ufc, nstep, chis)
[aMix] = aloptim(aMix, aMixu, ufc, nstep) chis = 1
[aMix] = aloptim(aMix, aMixu, ufc) nstep = [200, 1]

aMix : advised mixture of the type ARX LS enriched on following control states:
strc : common control structure
ufc : normalised vector qualifying components:

dangerous component (0), not dangerous (positive number)
kc : lift of quadratic forms
UDc : cell vector of u’du decompositions of KLD kernels
udca : u’du decomposition of average KLD kernel in UDc
kca : average lift of quadratic forms kc

aMixu : desired mixture (user’s target) of the type ARX LS with control states
ufc : vector qualifying components: 0 - dangerous component, (1) - not
nstep : parameters [ns1,per] determining design horizon, i.e. horizon = ns1*per;

ns1 : number of block repetition
per : horizon of a block

if nstep is defined by parameter nsl only then per is set to 1
chis : indicates strategy chosen: chis=1 for receding horizon (default) and chis=-1 for IST

Design : J. Bohm
Updated : June, 2002
Project : ProDaCTools, IST-1999-12058
See also : udupdt, getdvect

arx2arx

conversion between ARX and ARX LS representations
X = arx2arx(X)

X: factor, component, mixture: recognised by the associated type
(types are described in the Guide)

Design : P. Nedoma
Updated: June 2001
Project: ProDaCTools

arx2ful

re-build the matrix ARX LS component
Com1 = arx2ful(Com, str)

Com1 : rebuilt component
Com : component to be rebuilt
str : structure of the rebuilt component

Design : P. Nedoma
Updated: April 2002
Project: ProDaCTools

arxc2can

conversion of matrix ARX LS component to the factorized LS form
Can = arxc2can(Com)

Can : factorized ARX LS component
Com : matrix ARX LS component

Design : P. Nedoma
Updated: March 2001
Project: ProDaCTools

arxc2fac

conversion of matrix ARX LS component to ARX LS component
Facs = arxc2fac(Com)

Facs : ARX LS component, i.e array of ARX LS factors
Com : matrix ARX LS component

Design : P. Nedoma
Updated: September 2001
Project: ProDaCTools

arxc2mix

convert array of ARX components into mixture
Sim = arxc2mix(Coms, dfcs)

Sim : resulting mixture
Coms : components that create mixture
dfcs : degrees of freedom determining component weights

Design : P. Nedoma
Updated: October 2000
Project: ProDaCTools

betaln

logarithm of Euler’s beta function

value=betaln(p,q)

value : value of the beta function
p,q : positive argumens of the beta function, order does not matter

Designed: MK
Updated : July 02
Project : ProDaCTool
See also: gammaln

bmtbinit

initialization of mixture estimation by BMTB algorithm
Mix1 = bmtbinit(Com, ndat, delta)

Mix1 : estimated mixture
Com : initial cell-vector of static components

(default: 10 components)
ndat : size of data sample (default: length of global DATA)
delta : ratio of window size with respect to +- std of data

(default: 0.8)

Design : I. Nagy
Updated: May 2002
Project: ProDaCTools

can2arxc

convert matrix factorized ARX LS component into matrix ARX LS component
Com = can2arxc(Can)

Com : matrix factorized ARX LS component
Can : matrix ARX LS component

Design : P. Nedoma
Updated: November 2002
Project: ProDaCTools

can2fac

convert matrix factorized ARX LS component to ARX LS component

Facs = can2ls(Can,eps)
Facs = can2ls(Can) eps = 1e-16

Can : matrix factorized ARX LS component
Facs : ARX LS component
eps : thrshold determining the nonzero regression coefficient

Design : P. Nedoma
Updated: December 2002
Project: ProDaCTools

can2marg

re-organize matrix factorized component for prediction
Can = can2marg(Can, pchns)

Can : re-organized factorized matrix ARX LS component
Can : source, factorized matrix ARX LS component
pchns : marginal (predicted) channels

Design : P. Nedoma
Updated: March 2001
Project: ProDaCTools

canarxls

build matrix ARX LS component
Com = comarxls(ychns, str)

Com : built ARX LS component
ychns : modelled channels
str : model structure

Autor : P. Nedoma
Updated: May 2000
Project: ProDaCTools

cellcat

concatenate complex cell lists
F = cellcat(F0)

F : cell vector of structures
F0 : cell vector containing cell vectors and structures

Design : P. Nedoma
Updated: February 2002
Project: ProDaCTools

chnconst

build channels description
Chns = chnbldl(chns)

Chns : channel description: cell vector of individual
channel descriptions, for theri structure see chnbldl

chn : channels (vector of positive integers

Design : P. Nedoma, M. Novak
Updated : March 2003, MK July 2004
Project : post-ProDaCTool

Problem: is this still valid?
See also: chnbldl, chnget, chnset

chnget

get values of channel descriptions fields
values = chnget(Chns, chns, field)

values: returned values in the form required for chnset
Chns : channels description: cell vector of structures

1 2 3 4 5 6 7 8 9 10
chn name oitem raction prty type drange prange irange scale

chns : list of channels inspected, when empty all channels are considered
field : field of the channel description

Design : P. Nedoma
Updated : July 2002, MK July 2004
Project : post-ProDaCTools
See also: chnconst, chnset

chnset

set channel descriptions field
Chns = setchns(Chns, chns, field, val)

Chns : updated channels description, cell vector of structures
1 2 3 4 5 6 7 8 9 10 11 12
chn name oitem raction prty type drange prange irange scale prior reference

chns : list of channels, if empty all channels
or defined from connection ????

field: field of the channel description
val : values to be set

Agregate setting for prior and scale: ????
Chns = setchns(Chns, field, val) ????

Design : P. Nedoma, M.Novak
Updated : March 2003, MK July 2004
Project : post-ProDaCTools
See also: chnconst, chnget

com2can

convert ARX LS component into matrix factorized ARX LS component
[Can, ok] = com2can(Facs)

Can : matrix factorized component
ok : 1: the factors were already in the form required

: 0: a real transformation was made
Facs : factorized component of the type 12 or 112

Design : P. Nedoma
Updated: November 2002
Project: ProDaCTools

com2com

convert component to a specified form
Com1 = com2com(Com, form)

Com1 : the resulting component having the type form
Com : component to be converted
form : coded component form:

11 - ARX
12 - ARX LS
13 - matrix ARX
14 - matrix ARX LS
+ 100 for predictor component

Design : P. Nedoma
Updated: June 2001
Project: ProDaCTools

com2pro

convert ARX LS component to predictor (112)
[Facs, comaux] = com2pro(Facs, pchns, cchns)

Facs : ARX LS component (array of ARX LS factors)
pchns : predicted channels
cchns : channels in condition
Facs : the resulting predictor
comaux: { matstr, pcove, ih, ic, pchns, cchns, itd0 }

build at the end of the function
matstr - matrix component structure
pcove - matrix component cove
ih - pointers to history in matstr
ic - pointers to all zero-delayed entries in matstr
pchns - memory of pchns
cchns - memory of cchns
itd0 - pointer to not modelled zero-delayed entry in matstr

Design : P. Nedoma
Updated: May 2003
Project: ProDaCTools remake

comarx

build matrix ARX component
Com = comarx(ychns, str)

Com : matrix ARX component, type = 13
ychns : modeled channels
str : common regressor structure

Design : P. Nedoma
Updated : June 2001
Project : ProDaCTools
See also: comarxls, facarx

comarxls

build matrix ARX LS component
Com = comarxls(ychns, str)

Com : matrix ARX LS component, type = 14
ychns : modeled channels
str : model structure

Design : P. Nedoma
Updated : May 2000
Project : ProDaCTools
See also: comarx, facarx

comdel

cancel the specified component
Mix = comdel(Mix, com)

Mix : mixture without the specified component
com : component to be deleted
Mix : source mixture

commerge

optimum merging of mixture components or possibly with enforced range
[Mix, Mix0, changed] = commerge(Mix, Mix0, nlow, nhigh)
[Mix, Mix0, changed] = commerge(Mix, Mix0, nlow) nhigh = nlow
[Mix, Mix0, changed] = commerge(Mix, Mix0) range unspecified

Mix : merged estimated mixture
Mix0 : merged initial mixture
changed : 0 - mixture not changed, otherwise 1
Mix : estimated mixture
Mix0 : initial mixture
nlow : lower bound on number of components to be preserved
nhigh : upper bound on number of components to be preserved

Note : merging is made when there is a chance for increasing of
v-likelihood; it acts as counterpart of mixsplit

Design : M. Karny, P. Nedoma
Updated : September 2002
Project : ProDaCTools
See also: mixinit, mixsplit, mixcut

complot

plot contour of level*std probability of a two-dimensional ARX or ARX LS static component
complot(Mix,com, level)

Mix = inspected mixture
com = considered component
level = probability level

Designed : P. Nedoma
Updated : May 2000, July 2004
Project : Prodactools

comunpk

get information about a component
[typ, ychns, notmodelled, zerodelayed, str] = comunpk(Com)
[typ, ychns] = comunpk(Com)

typ : component type
ychns : modelled channels
notmodelled : not modelled channels
zerodelayed : zero-delayed not modelled channels
str : component structure (union of factors structures)
Com : component of any form

Design : P. Nedoma
Updated: June 2001
Project: ProDaCTools

Calls : unique, setdiff
Updated : August 2001, MK added comments and problems checked
Problems: solved by PN Sempember 2001

credit

evaluation of an credibility interval

[Cl,Cu,Chat] = credit(C,beta)

Cl = lower credibility bound
Cu = upper credibility bound
Chat = center of the credibility interval
C = vector of independent realizations
beta = credibility level in (0,1)

designed : PN
updated : 15.07.04
reference:

credits

evaluation of an credibility interval with stopping

[Cl,Cu,Chat,flag,st] = credits(C,beta,epsi)

Cl = lower credibility bound
Cu = upper credibility bound
Chat = center of the credibility interval
flag = stopping flag [1/0] = stop/do_not_stop data acqusition
Q = value of the stopping test statistic
C = no-vector of independent realizations
beta = credibility level in (0.5,1)
epsi = upper bound on relative error

datagrid

compute histogram coordinates for DATA having two channels
[x,y,z] = datagrid(chns, nx, ny, rx, ry)
[x,y,z] = datagrid(chns, nx, ny)
[x,y,z] = datagrid(chns)
[x,y,z] = datagrid

x, y, z : computed coordinates
chns : considered channels
nx,ny : number of poits of grids at x and y directions
rx,ry : grid ranges (lower and upper bound)

Design : P. Nedoma
Updated: June 2001
Project: ProDaCTools

dataplot

plot data of 1 or 2 channels
dataplot(chns, nlev)
dataplot(chns) nlev = 20
dataplot chns = [1,2]

chns : channels displayed
nlev : the number of histogram boxes

designed : PN
updated : 15.07.04

datascan

scan data for 2 dimensional clusters
datascan(chns)
datascan chns = all channels

chns : list of channels

Design : P. Nedoma
Updated: July 2002
Project: ProDaCTools

defaults

database of processing defaults
use : varargout = defaults(default)

vargarout: supplied defaults: meaning and number depends on the input argument
default : char string, 1st letter decisive:

’a’ : ARX LS factor
’A’ : alternative ARX LS (used in prior)
’b’ : ARX LS flat ("basr") mixture
’B’ : ARX LS the most flat possible (used in prior)
’m’ : Markov-chain factor
’x’ : mixture
’s’ : structure estimation
’f’ : forgetting
’i’ : mixture initialization (MIXINIT)
’e’ : mixture estimation
’E’ : estimation with stopping rules
’m’ : dfm for markov model

Design : P. Nedoma
Updated : 10.2.00
Project : ProDaCTools
See also: comarx, mixinit

dial1

No help comments found in dial1.m.

dial2

No help comments found in dial2.m.

dial3

No help comments found in dial3.m.

diff-tg

DIFF_tg sets difference of vectors A,B; the result is NOT sorted
[C] = diff_tg(A,B)

C : vector containing those values of A which are not in B
A,B : compared vectors

Design : T.V.Guy
Updated : September 2002
Project : ProDaCTools

dydrs

DYDRS dyadic reduction, performs transformation of sum of 2 dyads

[rout, fout, Drout, Dfout, kr] = dydrs(r,f,Dr,Df,R,jl,jh);
[rout, fout, Drout, Dfout] = dydrs(r,f,Dr,Df,R);

Description: dyadic reduction, performs transformation of sum of
2 dyads r*Dr*r’+ f*Df*f’ so that the element of r pointed by R is zeroed

r : column vector of reduced dyad
f : column vector of reducing dyad
Dr : scalar with weight of reduced dyad
Df : scalar with weight of reducing dyad
R : scalar number giving 1 based index to the element of r,

which is to be reduced to
zero; the corresponding element of f is assumed to be 1.

jl : lower index of the range within which the dyads are
modified (can be omitted, then everything is updated)

jh : upper index of the range within which the dyads are
modified (can be omitted then everything is updated)

rout,fout,Drout,dfout : resulting two dyads
kr : coefficient used in the transformation of r

rnew = r + kr*f

Description: dyadic reduction, performs transformation of sum of
2 dyads r*Dr*r’+ f*Df*f’ so that the element of r indexed by R is zeroed

Remark1: Constant mzero means machine zero and should be modified
according to the precision of particular machine

Remark2: jl and jh are, in fact, obsolete. It takes longer time to
compute them compared to plain version. The reason is that we
are doing vector operations in m-file. Other reason is that
we need to copy whole vector anyway. It can save half of time for
c-file, if you use it correctly. (please do tests)

Remark3: indexes jl, jh are 1’based as opposed to c-version, where they
are zero-based

Original Fortran design: V. Peterka 17-7-89
Modified for c-language: probably R. Kulhavy
Modified for m-language: L. Tesar 2/2003
Updated: Feb 2003

Jan 2004 comments updated
Project: post-ProDaCTool

Reference: none

equal

test entry-wise equality of matrices (up to a small difference) or structures
res = equal(a,b,eps)
res = equal(a,b) eps = MATLAB eps

res : res = 0 if matrices differ (then a message is printed) otherwise res = 1
a,b : matrices or structures to be compared
eps : maximum difference

designed : J. Andrysek, P. Nedoma
updated : December 2001
project : ProDaCTools

estfrg

Select the best forgetting rate for the mixture

[Mix, frg, mixlls] = estfrg(Mix0,frgs,ndat,niter,method,Mixa)
niter = 1; method = ’q’; enforced

[Mix, frg, mixlls] = estfrg(Mix0,frgs,ndat,niter,method)
exponential forgetting used

[Mix, frg, mixlls] = estfrg(Mix0,frgs,ndat,niter) method = quasi-Bayes (’q’)
[Mix, frg, mixlls] = estfrg(Mix0,frgs,ndat) niter = 1
[Mix, frg, mixlls] = estfrg(Mix0,frgs) ndat = size(DATA,2)
[Mix, frg, mixlls] = estfrg(Mix0) frgs = (1+1e-3)-logspace(-3,-1,25)

Mix : mixture estimated with the best forgetting
frg : forgetting rate selected
mixlls : array of posterior data log-likelihood
frgs : inspected vector of forgetting rates

Mix0 : initial mixture
frgs : vector of forgetting rates (if missing or empty, frgs = (1+1e-3)-logspace(-3,-1,25))
ndat : number of data items (if missing or empty, ndat = size(DATA,2))
niter : number of iterations (if missing or empty, niter = 1)
method: the used estimation method (if missing or empty, method = ’q’ = quasi-Bayes)
Mixa : mixture for alternative forgetting

(if missing, exponential forgetting is used)

Design : L. Pavelkova
Updated : May 2002, July 2004
Project : Designer, Baddyr
Reference:

fac2arxc

convert ARX or ARX LS component into matrix ARX LS component
Com = fac2arxc(Facs)

Com : matrix ARX LS component
Facs: array of ARX or ARX LS factors

Design : P. Nedoma
Updated: December 2003
Project: ProDaCTools

fac2ls

conversion of factor to LS representation
[Eth, Cth, cove, dfm] = fac2ls(Fac)

Eth : LS estimate of regression coefficients
Cth : LS covariance matrix of Eth (LDL’ decomposition)
cove : estimate of noise variance (LDL’ decomposition)
dfm : degrees of freedom
Fac : the ARX factor to be converted

Designed : P. Nedoma
Updated : 16.2.00, August 2001, 17.07.04
Project : ProDaCTools, Baddyr
See also : ld2ls

fac2marg

build marginal factors
Facs = fac2marg(Facs0, mchns)

Facs : array of marginal factors
Facs0 : component in the form of factor array
mchns : marginal channels to be evaluated

Designed : P. Nedoma
Updated : November 2000, July 2004
Project : ProDaCTools, Baddyr

Calls : fac2cf, udform

facarx

build ARX-factor FOR PRIOR PROCESSING
Fac = facarx(ychn, str, default);
Fac = facarx(ychn, str) default = ’A’

Fac : ARX factor, type = 1
ychn : modeled channel
str : factor structure
default : string determining type of default values to be used, see defaults.m

Design : P. Nedoma
Updated : 20.3.00, June 2002, July 2004, MK
Project : ProDaCTools
Note : constructor modified for selection of defaults
Reference:
See also : comarx, comarxls

facarxls

build ARX LS factor
Fac = facarxls(ychn, str,default)
Fac = facarxls(ychn, str) default = ’A’

Fac : ARX LS factor type = 2
ychn : output channel
str : factor structure
default : string determining type of default values to be used, see defaults.m

Design : P. Nedoma
Updated : 9.3.00
Project : ProDaCTools

Reference:
Updated : June 02, MK
See also: facarx, comarx, comarxls, defaults

facchng

replace predictor factor in a given component
pMix = facchng(pMix, com, Fac)

pMix : mixture predictor
com : component (number)
Fac : ARX LS factor

Design : P. Nedoma
Updated: March 2002, July 2004
Project: ProDaCTools

facdpred

FACDPRED computes logarithm of factor predictions

faclls = facdpred(Mix)

Mix : mixture containing the inspected factors
faclls : logarithms of factor predictions

log(f(dt | fac))=log(pfd(current data|past,factor))

Design : L. Tesar, Jan 2004
Note : equals to logarithm of normalizing integral of virtually updated estimate

- logarithm of the current normalizing integral

Note1 : based on facdpred.c by and facdpred1() from mexlibe (both by P. Nedoma)
Calls: facupred
Calls inline: facpred1

facflat

factor flattening
Fac0 = facflat(Fac, rate, FacA)
Fac0 = facflat(Fac, rate) completely flat alternative factor is used

Fac0 : flattened factor
Fac : estimated factor
rate : factor flattening rate
FacA : alternative factor used in flattening

Design : M. Karny, P. Nedoma
Updated : January 2003, July 2004
Project : ProDaCTools, Baddyr
Note : function of the construction base, the default rate is

computed in the calling function
See also: mixflat, mixflatv

facfrg

factor forgetting
Fac = facfrg(Fac, rate, Faca)
Fac = facfrg(Fac, rate) exponential forgetting is used

Fac : forgotten factor
rate : forgetting rate
FacA : alernative factor used in the stabilized forgetting

Design : P. Nedoma
Updated: April 2003, July 2004
Project: ProDaCTools remake

facgmean

geometric mean of factors: Fac = weight(1)*Fac1+weight(2)*Fac2

Fac = facgmean(Fac1, Fac2, [weight, weight1])
Fac = facgmean(Fac1, Fac2, weight) weight1=1-weight
Fac = facmerge(Fac1, Fac2) weight1=weight=1

Fac : the resulting factor
Fac1, Fac2 : factors of the same structure (not checked!)
weight : weight in [0,1]
weight1 : weight in [0,1]

Design : P. Nedoma
Updated : April 2003, July 2004
Project : ProDaCTool remade

facmark

build Markov factor
Fac = facmark(ychn, str, levels);

Fac : Markov factor
ychn : factor output
str : factor structure
levels : maximum number of values for all channels

Designed : P. Nedoma
Updated : 10.2.00, August 2001, July 2004 MK
Project : ProDaCTools and its continuations

facmerge

merge factors Fac = weight*Fac1+weight1*Fac2
Fac = facmerge(Fac1, Fac2, weight, weight1)
Fac = facmerge(Fac1, Fac2, weight) weight1=weight
Fac = facmerge(Fac1, Fac2) weight1=weight=1

Fac : the resulting factor
Fac1, Fac2 : factors of the same structure (not checked!)
weight : weight in [0,1]
weight1 : weight in [0,1]

Design : P. Nedoma
Updated : MK, January 2001, April 2002, July 2004
Project : Prodactools and its continuation
Reference:
Problems : MK check of the common structure should be added
See also: mixinit, commerge, scalpri

facpred

FACPRED computes logarithm of $\int f(d_t|d(t-1),\Theta)^w f(\Theta|d(t-1)) d\Theta$
[LH,FSC] = facpred(Fac,w,Psi)
[LH,FSC] = facpred(Fac,w) Psi=getdvect(Fac)
[LH,FSC] = facpred(Fac) w=1

LH : logarithm of $\int f(d_t|d(t-1),\Theta)^w f(\Theta|d(t-1)) d\Theta$
logarithm factor prediction f(dt | fac)) for w==1

FSC : factor specific charactristics - depends on factor type

Fac : factor, for which the value is evaluated
w : exponnent in evaluated expression w=1
Psi : data vector of the factor Psi=getdvect(Fac);

Design : J. Andrysek, Sep 2004
Project: BadDyr

Note : works for normal factors and MT-normal factors
Note2 : MT-normal factor ignores the input w

facsort

sort factors of a component (in order how they can appear in pdf)
facs = facsort(Facs)

facs: numbers of sorted factors
Facs: component factors

Designed : P. Nedoma
Updated : April 2000, MK August 2001, July 2004
Project : ProDaCTools and its continuation

Calls : sorttree

facstr

FACSTR factor-structure estimation

[optstr, lhs] = facstr(Fac, Fac0, belief, nbest, max_nrep, uchns, lambda, order_k)
[optstr, lhs] = facstr(Fac, Fac0, belief, nbest, max_nrep, uchns, lambda) order_k=2
[optstr, lhs] = facstr(Fac, Fac0, belief, nbest, max_nrep) uchns) lambda = 0.9
[optstr, lhs] = facstr(Fac, Fac0, belief, nbest, max_nrep) uchns = []
[optstr, lhs] = facstr(Fac, Fac0, belief, nbest) max_nrep = 100 !!!!! change this to 500
[optstr, lhs] = facstr(Fac, Fac0, belief) nbest = 1
[optstr, lhs] = facstr(Fac, Fac0) belief = 2

defaults generated by function defaults with the option ’s’

optstr: maximum a posteriori probability estimate of factor structure
%% lhs : cell vector of the best regressors -- not true now
%% {1} values
%% {2} indicators

Fac : factor type = 1
Fac0 : initial factor type = 1
belief : user’s belief on maximum structure items

(1 items must be present, 2 items are probably present
4 items must not be present, 3 items are probably not present)

nbest : how many "best" regressors are maintained
max_nrep : maximal number of random starts in search for the best

structure
uchns : list of input channels - if specified, the resulting structure

contains at least one of inputs (suboptimal solution)
Note: channel description can be used instead of "uchns"

lambda : stooping rule threshold
order_k : order of k

Design : L. Tesar. Interface Based on P. Nedoma’s previous version of facstrid.
Updated : 14.4.2003 - 10.9.2003, MK July 2004
Project : post-ProDaCTool
Reference: straux1

facupdt

update factor statistics
[Fac, ep] = facupdt(Fac, weight)

Design : P. Nedoma
Updated : April 2003
Project : ProDaCTools cnt.

facupdtp

[Fac ,er]=myfacupdt(Fac,w,ep,zeta);

facupred

FACUPRED computes logarithm of one factor prediction (trial (virtual) factor prediction)
LH = facupred(Fac)

LH : logarithm of factor prediction
log(f(dt | fac))=log(pfd(current data|past,factor))

Fac : factor, for which logarithm of factor prediction is calculated

Design : L. Tesar, Jan 2004
Updated: MK July 2004
Project: post-PorDaCTool

Note : LH = logarithm of normalizing integral of virtually updated estimate
- logarithm of the current normalizing integral

Note1 : based upon facupred() from mexlibe.c by P. Nedoma
Calls inline: redultx
IDENTICAL WITH SOME OTHER FUNCTION???

facvll

compute data log-likelihood
vll = facvll(Fac, Fac0)
vll = facvll(Fac) the initial vll is set to zero

vll : log-likelihood
Fac : estimated factor
Fac0: initial factor - if not specified, a relative vll is computed

Design : P. Nedoma
Updated: June 2003, July 2004
Project: post-ProDaCTools

Problem: 0.5*log(2*pi) factor should be checked everywhere
here even 0.5*(dfm-dfm0)*log(2*pi) seems to be mising

filoutm

Outlier filtration by mixture estimation
n_out=filout(ord)

DATA : this GLOBAL matrix is modified by filout
n_out : the number of filtered outliers
ord : the order of the data component

Filtration is based on modelling of corrupted data by a mixture with two
components. One of them, with a priori small noise variance, models normal
data, the second is initialized with big noise variance models outliers.
Prediction by the normal components replaces a detected outlier.

Design : P. Nemcova
Updated: March 2003, MK July 2004
Project: ProDaCTools
Problem: FIXED values (alfa etc) have to be taken from defaults

fixerr

fix errors in mixture-estimation while TIME<101
fixerr(Mix)

Mix : processed mixture

designed : PN
updated : MK July 2004
project : post-ProDaCTool

fullscreen

Set a figure size to completely fill the screen
fullscreen(h)
fullscreen h = handle of the current figure

h : the handle of the figure that will fill completely the screen

designed : JA
updated : July 2004

gauss1

evaluate values of one-dimensional Gaussian pdf on a grid
p = gauss1(x,m,R)

p : values of the pdf
x : grid of arguments on which values are asked
m : mean value defining the pdf
R : variance defining pdf

Design : P. Nedoma
Updated : August 2001, June 2002, MK
Project : Prodactools
See also: gaussn

gaussn

values of multivariate Gaussian density pdf
p = GausN(x,m,R)

p : vector of values
x : matrix vector of argument: i-th column = i-th argument
m : column of the mean defining the pdf
R : L’DL decomposition of the covariance matrix defining pdf

Design : MK
Updated : August 01, June 2002, MK
Project : Prodactools
See also: gauss1

genmixe

generates mixture for identification (type 24)
Mix = genmixe(ncom, ychns, str, ndat, diagCth, diagcove, dfm)
Mix = genmixe(ncom, ychns, str, ndat, diagCth, diagcove) dfm=100
Mix = genmixe(ncom, ychns, str, ndat, diagCth) diagcove=0.01
Mix = genmixe(ncom, ychns, str, ndat) diagCth=1
Mix = genmixe(ncom, ychns, str) ndat=size(DATA,1)
Mix = genmixe(ncom, ychns) str=[0;1]
Mix = genmixe(ncom) ychns=1:size(DATA,1)
Mix = genmixe; ncom = 1;

Mix : generated mixture (type 24)
ncom : number of components
ychns : modeled channels
str : common component structure
ndat : size of data sample
diagCth: diagcove setting of Cth and cove

Design : P. Nedoma
Updated: January 2002, MK July 2004
Project: ProDaCTools

genmixe1

generates initial mixture for identification (type 24) at random positions
suits for normalized data

Mix = genmixe(ncom,ychns,str,ndat,diagCth,diagcove,dfm,dfcs)
Mix = genmixe(ncom,ychns,str,ndat,diagCth,diagcove,dfm) dfcs =0.1ndat
Mix = genmixe(ncom,ychns,str,ndat,diagCth,diagcove) dfm =100
Mix = genmixe(ncom,ychns,str,ndat,diagCth) diagcove=0.0001
Mix = genmixe(ncom,ychns,str,ndat) diagCth =10000
Mix = genmixe(ncom,ychns,str) ndat =size(DATA,2)
Mix = genmixe(ncom,ychns) str =[0;1]
Mix = genmixe(ncom) ychns =1:size(DATA,1)
Mix = genmixe ncom = 1

Mix : generated mixture, type = 24
ncom : number of components
ychns : modeled channels
str : common structure of all components
ndat : size of data sample
diagCth : diagonal value of LS covariance factor
diagcove: diagonal value of LS estimate of noise covariance
dfm : degrees of freedom of factors (common)
dfcs : degrees of freedom of component weights

Design : P. Nedoma
Updated : January 2002, July 2004
Project : post-ProDaCTools
See also: genmixi, defaults

genmixi

generates mixture for initialization (type 24)
Mix = genmixi(ychns, str, ndat)
Mix = genmixi(ychns, str) ndat=size(DATA,2)
Mix = genmixi(ychns) str=[0;1]
Mix = genmixi ychns=1:size(DATA,1)

Mix : constructed mixture, type = 24
ychns : modeled channels
str : common component structure
ndat : size of data sample

Design : I. Nagy, P. Nedoma
Updated : January 2002
Project : ProDaCTools
See also: genmixe

genstr

generate model structure for given model order, channels and common delay
str=genstr(ord,ychns,npr)
str=genstr(ord,ychns) npr = 0

str : model structure, offset always present
ord : common model order
ychns : vector of channels; if scalar then the number od channels
npr : common transportation delay

Design : I. Nagy, P. Nedoma
Updated: August 2002, MK July 2004
Project: post-ProDaCTools

gentab

generate Markov transition table for Metropolis’ algorithm
tab = gentab(dim, dia)

tab : Markov transition table
dim : size of tab, dim>1, number of components
dia : common diagonal value of tab, dia in (0,1)

dia = 0.99 if it is not specified within this interval

designed = PN
updated = July 2004, MK
project = post-PorDaCTool

getdvect

get data vector used in factor
dvect = facgetdv(Fac)

dvect : data vector made of current data values according to Fac.stru
Fac : either directly stru or the considered factor

Design : P. Nedoma
Updated : June 2003, MK July 2004
Project : post-ProDaCTools

getflds

get fields from cell vector of structures
flds = getflds(C, fld)

C : cell vector of structures
fld : field (character string)
flds : cell vector of the fields

Designed = P. Nedoma
Updated = May 2000, MK August 2001, July 2004
Project = post-Prodactools

getth

construction of parameter estimates from "Et" produced by Profix
th=GetTh(Et)
th : parameter estimates
Et : the first output returned by Profix

designed : PN
updated : July 2004
project : post-ProDaCTool
See also : profix

inisyn

initialize advisory design for normal mixture

[aMix,aMixu] = inisyn(Mix, Mixu, varargin)

aMix : advised mixture of the type ARX LS enriched on the following control states:
strc : common control structure
ufc : normalised vector qualifying components:

dangerous component (0), not dangerous (positive number)
kc : lift of quadratic forms
UDc : cell vector of u’du decompositions of KLD kernels
udca : u’du decomposition of average KLD kernel in UDc
kca : average lift of quadratic forms kc

aMixu : desired mixture of the type ARX LS with control states
Mix : mixture estimate, any type
Mixu : desired mixture, any type

input argument varargin may contain either:
Chns : cell vector of channels descriptions

or
pochn : list of channels with o-innovations (vector)
uchn : list of channels with recognisable actions (vector)

Design : J. Bohm
Updated : August, 2002, TG October 2002, MK July 2004
Project : post-ProDaCTools
See also : synmixi

isdimeq

check whether dimensions of 2 arrays are equal
ok = isdimeq(a,b)

a,b : checked arrays (or cell vectors or structures)
ok : 1 - dimensions of a and b are equal

0 - dimensions are not equal

Design : P. Nedoma
Updated: April 2001, MK July 2004
Project: post-ProDaCTools

isstatic

check whether the mixture is static one
is = isstatic(Mix)

Mix : inspected mixture
is : 1 - mixture is static

0 - mixture is dynamic

Design : P. Nedoma
Updated : April 2001, September 2001, MK July 2004
Project : post-ProDaCTools

Overloaded methods
help frd/isstatic.m
help lti/isstatic.m
help ss/isstatic.m
help tf/isstatic.m
help zpk/isstatic.m

See also: isfactor

iterplot

plot evolution of mixture estimate during iterative learning
iterplot(Mix0, Mix, iter, time)
iterplot(Mix0, Mix, iter) time = TIME-1

Mix0 : mixture before iteration
Mix : mixture after iteration
iter : iteration counter
time : time at which is drawing done

designed : PN
updated : MK July 2004
project : post-Prodactool

kldcom

KL divergence of components from initial components
dist = kldcom(Mix, Mix0)
dist = kldcom(Mix) Mix0 = mixflat(Mix)

dist : vector KL divergences of components
Mix : estimated mixture
Mix0 : initial mixture

Designed : P. Nedoma
Updated : June 2002, MK July 2004
Project : post-ProDaCTools

kldiscom

Kullback-Leibler divergence of components in data space

KLcoms = kldiscom(Mix, ndat)

KLcoms: matrix of values of KL divergences between pairs of components
Mix : inspected mixture estimator
ndat : the number of processed data

Designed: L. Tesar , based on kldiscom.c by P. Nedoma
Updated : LT Jan 2004, MK July 2004
Project : post-Prodactools
Calls : facdpred

kldisdir

Kulback-Leibler divergence of Dirichlet pdf
kld = kldisdir(V, V0)

kld : Kullback-Leibler distance
V, V0 : sufficient statistics of Dirichlet pdfs

Designed : M. Karny
Updated : May 2002, July 2004
Project : post-ProDaCTools
Source : Theory section \Markov_learning

kldist

Kullback-Leibler (KL) divergence of normal mixtures and factors (type = 1)
kld = kldist(fac, Mix, Mix0) divergence of a factor in mixtures
kld = kldist(0,Fac, Fac0) divergence of factors

kldistc

provides KL divergence of components in normal mixture

[distances,KLi,KLj] = kldistc(Mix)
[distances,KLi] = kldistc(Mix)

distances = kldistc(Mix)

distances: matrix of KL divergences between individual components
in parametric space

KLi, KLj : index
Mix : evaluated mixture

Design : P. Nedoma
Updated : May 2002, MK June 2002, July 2004
Project : ProDaCTools
See also : kldist, kldistcom

ld2ld

convert L’DL decomposition described by a source structure strs
to another corresponding to a target structure strt

LD = ld2ld(LD, strs, strt)
LD = ld2ld(L,D) composes the factors L and D into the matrix LD
[L,D] = ld2ld(LD) decomposes the matrix LD into the factors L and D

LD : L’DL decomposition of a positive definite matrix
LD ... D placed instead of the unit diagonal of L

strs: source structure
strt: target structure

Designed : M. Karny, P. Nedoma
Updated : April 2000, MK July 2004
Project : post-ProDaCTool

ld2ls

convert L’DL decomposition of information matrix to LS representation
[Eth, Cth, cove] = ld2ls(LD, dfm, ny)
[Eth, Cth, cove] = ld2ls(LD,dfm) ny=1

LD : lower trianglar matrix L with unit diagonal replaced by diagonal D,
both from L’DL decomposition of and extended information matrix

dfm : degrees of freedom
ny : number of outputs
Eth : (ny,length(LD)-1)-matrix of estimates of regression coefficients
Cth : L’DL decomposition (in LD form) of covariance matrix of Eth
cove: L’DL decomposition (in LD form) of estimate of noise covariance

Designed: M. Karny
Updated : September 2001, MK July 2004
Project : post-ProDaCTools

ld2ud

convert L’DL decomposition, L lower triangle
to L’DL decomposition, L upper triangle
use: [L, D] = lt2ut(LD)

LD = lt2ut(LD)

Autor : J. Bohm, design P. Nedoma
Updated: March 2000
Project: ProDaCTools

ld2v

convert LD decomposition into extended information matrix
V = lt2v(LD)

V = L’DL
LD = L’DL decomposition of information matrix in packed form

i.e. with unit diagonal of the lower triangular matrix L
replaced bz diagonal matrix D

Designed: P. Nedoma
Updated : April 2000, MK July 2004
Project : post-ProDaCTools

ldchng

change a part of L’DL decomposition
LD1 = ldchng(LD, str, LD1, str1)

LD1 : target LD decomposition (its structure corresponds to "str")
LD : source LD decomposition
str : structure of the source LD
LD1 : LD to be substituted into the original LD
str1 : structure of the substituted LD1

Design : P. Nedoma
Updated: July 2002, July 2004
Project: post-ProDaCTools

ldinv

inversion of L’DL decomposition, lower triangular representation
[L, D] = ldinv(LD)
LD = ldinv(LD)

L, D: inversion of the source original LDL’ decomposition in the separated form
LD : inversion of the source original LDL’ decomposition in the packed form
LD : source LD decomposition, triangular L matrix with unit diagonal

replaced by diagonal D

Author : P. Nedoma
Updated: May 2000, July 2004
Project: post-ProDaCTools
Calls : utinv,ud2ld,ld2ld

ldperm

LDPERM permute LD decomposition after permuting regressor entry

LD = ldperm(LD, i)

LD : packed permuted form of the L’DL decomposition of the extended information matrix
LD : packed form of the L’DL decomposition of the extended information matrix
i : the row number to be moved to 1st row

Author : L. Tesar, Jan 2004
Updated: Jan 2004, MK July 2004
Project: post-ProDaCTool

ldupdt

update LD decomposition by the weighted dyad w*r’*r
LD = ldupdt(LD,r,w)
LD = ldupdt(LD,r) w = 1
[LD,ep] = ldupdt(LD,r) call for r = data vector

LD: resulting L’DL decomposition with diagonal D stored on diagonal L
ep: prediction error for r = data vector and w = 1 only
LD: source L’DL to be modified
r : row vector forming the dyad
w : scalar weight, possibly negative until result is possitive definite

Designed : January 2004 LT, using MK code partially
Last updated : March 2004
Project : ProDaCTool
See also : dydrs

ldupdtp

update L’DL weighted by w1 by the weighted dyad w*Psi’*Psi
[LD,hate,zeta1,Eth] = ldupdt1(LD,Psi,w)
[LD,hate,zeta1,Eth] = ldupdt1(LD,Psi) w = 1

LD : resulting L’DL decomposition with diagonal D stored on diagonal L
hate : prediction error
zeta1: LS gain = 1+w*regression_vector’ * LS_covariance * regression_vector
Eth : point estimate of parameters: only when NARGOUT=4
LD : source L’DL to be modified
Psi : row vector forming the dyad
w : scalar weight, possibly negative until result is positive definite

Designed : MK
Updated : November 2003
Project : ProDaCTool
Reference: overshoot2.tex

linplot

%%%%%%%%%%%%%%%%%%%%%%%%%%%

loglik

compute v-likelihood or its increment
vll = loglik(LD,dfm,LD0,dfm0) % increment of v-log likelihood
vll = loglik(LD,dfm) % absolute value of v-log likelihood
vll = loglik(Mix, Mix0)

vll : v-likelihood for use vll = loglik(LD,dfm),
otherwise increment of v-likelihood

LD : L’DL decomposition of extended information matrix
dfm : degrees of freedom (\nu-2)
LD0 : L’DL decomposition of prior extended information matrix
dfm0: prior degrees of freedom (\nu_{0}-1)
Mix : posterior mixture
Mix0: prior mixture

Design : M. Karny
Updated : April 2002
Project : ProDaCTools

ls2ld

convert least squares representation of information matrix
to L’DL decomposition of extended information matrix
use : LD = ls2ld(Eth, Cth, cove, dfm) packed version of L’DL
or [L,D] = ls2ld(Eth, Cth, cove, dfm) explicit version of L’DL

Eth : matrix of LS estimates of regression coefficients
Cth : covarinace matrix of Eth in L’DL form packed so that

diagonal D replaced unit diagonal of lower triangular L
cove : LS estimate of noise covariance in the packed L’DL form
dfm : degrees of freedom

Author : M. Karny
Updated : September 2001
Project : ProDaCTools
Calls : utinv, ud2ld

ltdl

L’DL decomposition of positive definite symetric matrix
use: LD = ltdl(C)
or : [L, D] = ltdl(C)

C : matrix to be decomposed
LD : C=L’DL where L is lower triangular matrix with unit diagonal

and D is non-negative diagonal matrix; LD packed version
of L and D: units are replaced by D

Author : P. Nedoma
Updated : August 2001
Project : ProDaCTools
Calls : ulchol

mix2arxc

convert normal mixture into array of ARX components
Coms = mix2arxc(Mix)

Coms : array of components
Mix : the converted mixture

Design : P. Nedoma
Updated : July 2000, MK August 2001, July 2004
Project : post-ProDaCTools

Calls : arx2arx,fac2arxc

mix2mix

convert mixture to a specified form
Mix = mix2mix(Mix, form)

Mix : mixture of any form
form : coded form 21 22 23 or 24; (+100 for estimator)

Designed: P. Nedoma
Updated : June 2001, MK August 2001, July 2004
Project : post-ProDaCTools

Calls : arx2arx, com2com, mixconst

mix2mix0

create initial mixture dimensioned as a pattern
Mix0 = mix2mix0(Mix, dfcs)
Mix0 = mix2mix0(Mix) dfcs are set to default values

Designed: P. Nedoma
Updated : July 2000, MK August 2001, August 2004
Project : post-ProDaCTools
Calls : defaults, facarx, facarxl, mixconst

mix2mixm

get data-marginal projector
pMix = mix2mixm(Mix, pchns)
pMix = mix2mixm(Mix) predicted channels coincide with the modelled ones

pMix : mixture predictor
Mix : mixture of any form, preferably 22, 122
pchns : predicted channels

Designed: P. Nedoma
Updated : June 2001, August 2004
Project : post-ProDaCTools

mix2pro

make/re-build mixture projector
pMix = mix2pro(Mix, pchns, cchns)
pMix = mix2pro(Mix, pchns) no channels in condition
pMix = mix2pro(Mix) all modelled channels predicted and

no channels in conditions

pMix : mixture predictor
Mix : mixture or p-mixture of any form
pchns : modelled channels
cchns : channels in condition

Design : P. Nedoma
Updated : June 2001, MK August 2001, August 2004
Project : ProDaCTools
Calls : mix2mix, com2pro

mixbrow

GUI window for viewing of mixture parameters
mixbrow(Mix)

Mix : an arbitrary mixture

Designed: Vasek Smidl
Updated : 3 Sep 2001, MK August 2004
Project : post-ProDaCTools

mixconst

normal-mixture constructor
[Mix, maxtd] = mixconst(Facs,coms,dfcs)
Mix = mixconst(Coms, dfcs)

Mix : mixture or p-mixture
maxtd : maximum time delay of factors
Facs : array of factors
Coms : array of components
coms : table components-by-factors
dfcs : degrees of freedom of components

Designed: P. Nedoma
Updated : June 2001, MK August 2001, 2004
Project : post-ProDaCTools

mixcopy

copies of ARX or ARX LS statistics, states and type preserved
Mix1 = mixcopy(Mix,Mix0)

Mix1 : updated mixture
Mix : source of statistics
Mix0 : mixture to be updated

Note: current limitation to 21, 22 and 122 mixtures

Design : P. Nedoma
Updated: April 2002, MK August 2004
Project: post-ProDaCTools

mixcut

cancel components with small dfcs
Mix = mixcut(Mix, level)
Mix = mixcut(Mix) level = 0.001

Mix : updated mixture
Mix : source mixture
level: percentage of sum(Mix.dfcs)

Note : type 21, 22, 122 supported only

Design : P. Nedoma
Updated: October 2002, MK July 2002, August 2004
Project: post-ProDaCTools
See also: comdel

mixdfms

sum of dfm and dfm0 of mixture factors
[s, s0] = mixdfms(Mix)

s : sum of dfms
s0 : sum of dfms0
Mix : mixture

Designed: P. Nedoma
Updated : April 2001, MK August 2004
Project : post-ProDaCTools

mixdump

dump the mixture to the disk file
mixdump(Mix,filename)

Mix : dumped mixture
filename : the target file

Note:
machineformat: used machine format, fixed at machineformat=l
prec : adopted precision, fixed at prec=double

Designed : B. Kovar, M. Tichy
Updated : September 2000, MK August 2001, 2004
Project : post-ProDaCTools

Calls : dump
Problems : in "dump" prec=’double’ thus prec is not optional

mixest

iterative Bayesian ARX mixture estimation

LHS = mixest(Mix0, frg, ndat, niter, method)
LHS = mixest(Mix0, frg, ndat, niter) method = quasi-Bayes (q)
LHS = mixest(Mix0, frg, ndat) niter = 1 for q,f; 10 for b
LHS = mixest(Mix0, frg) ndat = lenght(DATA)
LHS = mixest(Mix0) frg = defaults

LHS : Mix or [Mix, mixlls]
Mix : estimated ARX mixture, type = 21
Mix0 : initial estimate of ARX mixture of any type
mixlls : trajectory of mixll, i.e. v-log-likelihood of the mixture

(used for experiments only)
frg : forgetting rate (alternative forgetting for method (f))
ndat : size of data sample or data sample (copied to global DATA)
niter : the number of iterations used in iterative methods
method : character string, the 1st significant character means:

’q’ : iterative quasi-Bayes mixture estimation
’b’ : iterative batch quasi-Bayes mixture estimation
’f’ : iterative mixture estimation with forgetting branching

If the string ’method’s’ 2nd column is ’s’ : states are
evaluated by mixstats

Designed: P. Nedoma
Updated : October 2001, MK June 2002, August 2004
Project : post-ProDaCTools
Note: DEBUG mechanism is exploited for inspecting intermediate results

DEBUG is set in Prodini
See also: mixestqb, mixestq, mixestbb, mistats

mixestbb

iterative mixture estimation by forgetting branching
function [Mix, mixlls] = mixestbb(Mix0, frg, ndat, niter)

LHS = mixestbb(Mix0, frg, ndat, niter)
LHS = mixestbb(Mix0, frg, ndat) niter = 1
LHS = mixestbb(Mix0, frg) ndat = length of global DATA
LHS = mixestbb(Mix0) frg = defaults(’frg’)

LHS : Mix or [Mix, mixlls]
Mix : estimated mixture, type = 21
mixlls: trajectory of mixll, i.e. v-log-likelihood of the mixture
Mix0 : initial mixture
frg : a low forgetting rate
ndat : size of data sample or data sample (copied to global DATA)
niter : the number of iterations

Note : by setting global DEBUG>1: the initial and estimated
mixtures are displayed in each iteration

Designed: P. Nedoma
Updated : November 2001, MK June 2002, August 2004
Project : post-ProDaCTools
See also: mixestbb1, mixest, mixestqb, mixestim, mixestbq, mixestem

mixestbq

iterative mixture estimate by batch quasi-Bayes estimation
function [Mix, mixlls] = mixestbq(Mix0, frg, ndat, niter)

LHS = mixestbq(Mix0, frg, ndat, niter)
LHS = mixestbq(Mix0, frg, ndat) niter = 10
LHS = mixestbq(Mix0, frg) ndat = size of global DATA
LHS = mixestbq(Mix0) frg = defaults(’f’)

LHS : Mix or [Mix, mixlls]
Mix : estimated mixture, type = 21
mixlls: trajectory of mixll, i.e. v-log-likelihood of mixture
Mix0 : initial mixture, any type
frg : forgetting rate
ndat : size of data sample or data sample (copied to global DATA)
niter : number of iterations

Note : by setting global DEBUG>1 the initial and estimated mixtures
are displayed in each iteration

Design : P. Nedoma
Updated : October 2001, MK June 2002, August 2004
Project : post-ProDaCTools
See also: mixestqb, mixest, mixestim, mixestbb

mixestem

normal mixture estimation by EM algorithm
Mix = mixestem(Mix0, ndat, niter)
Mix = mixestem(Mix0, ndat) niter = 10
Mix = mixestem(Mix0) ndat = length of global DATA

Mix : estimated mixture (point estimate is produced only), type = 21
Mix0 : initial mixture
ndat : size of data sample or data sample (copied to global DATA)
niter: number of iterations

Designed: P. Nedoma
Updated : January 2000, MK June 2002, August 2004
Project : post-ProDaCTools
See also: mixestbq

mixestfe

[Mix, Mixs, Mixs1] = mixestfe(Mix0, frg, ndat, Mixs, Mixs1);
mixture estimate + filtration error for each factor
called in covering function mixestee.m

Mix : estimated mixture
Mixs : cell vector of mixtures, 2 components
Mixs1: cell vector of mixtures, 1 component

Mix0 : initial mixture
frg : forgetting rate (default: default forgetting rate)
ndat : size of data sample (default: whole data sample)

Design : P. Nedoma
Updated: May 2002
Project: ProDaCTools

==*/

mixestim

quasi-Bayes estimation of ARX mixture
Mix = mixestim(Mix0, frg, ndat, Mixa)
Mix = mixestim(Mix0, frg, ndat) % stabilized forgetting is not used
Mix = mixestim(Mix0, frg) % recursive estimation
Mix = mixestim(Mix0) % use default forgetting rate

Mix : estimated mixture
Mix0 : initial mixture, any type
frg : forgetting rate
ndat : sample size
Mixa : alternative mixture for stabilized forgetting

Designed: P. Nedoma
Updated : January 2003, MK August 2004
Project : post-ProDaCTools

mixestimp

projection-based estimation of ARX mixture
Mix = mixestimp(Mix0, frg, ndat, Mixa)
Mix = mixestimp(Mix0, frg, ndat) % stabilized forgetting is not used
Mix = mixestimp(Mix0, frg) % recursive estimation
Mix = mixestimp(Mix0) % use default forgetting rate

Mix : estimated mixture (type 21)
Mix0 : initial mixture (any type)
frg : forgetting rate
ndat : sample size
Mixa : alternative mixture for stabilized forgetting

Designed: P. Nedoma
Updated : January 2003, MK August 2004
Project : post-ProDaCTools

mixestims

quasi-Bayes estimation of ARX mixture with stopping
[Mix, tstop, Qs, mixlls] = mixestims(Mix0, frg, ndat, Mixa)
[Mix, tstop, Qs, mixlls] = mixestims(Mix0, frg, ndat) % stabilized forgetting is not used
[Mix, tstop, Qs, mixlls] = mixestims(Mix0, frg) % recursive estimation
[Mix, tstop, Qs, mixlls] = mixestims(Mix0) % use default forgetting rate

Mix : estimated mixture (type 21)
tstop : time moment when estimation was stopped
Qs : value of the test statistics according to which the stopping is made
mixlls : time trajectory of the mixture log-likelihood
Mix0 : initial mixture (any type)
frg : forgetting rate
ndat : sample size
Mixa : alternative mixture for stabilized forgetting

Designed: P. Nedoma
Updated : January 2003, MK August 2004
Project : post-ProDaCTools

mixestmt

function Mix = mixestmt(Mix0, frg, ndat, niter)
quasi-Bayes iterative estimation with fixed variances

Mix = mixestmt(Mix0, frg, ndat, niter)
Mix = mixestmt(Mix0, frg, ndat) niter = 1
Mix = mixestmt(Mix0, frg) ndat = length of global DATA
Mix = mixestmt(Mix0) frg = defaults(’frg’)

Mix : estimated mixture, type = 21
Mix0 : initial mixture, any type
frg : forgetting rate
ndat : size of data sample or data sample (copied to global DATA)
niter : number of iterations

Notes :
- without iterations equivalent to batch mixestim
- by setting global DEBUG>1: prior and posterior mixture

are displayed in each iteration

Design : P. Nedoma
Updated : June 2002, MK August 2004
Project : post-ProDaCTools
See also: mixestim, mixest, mixestbq, mixestqb

mixestpb

function [Mix, mixlls] = mixestpb(Mix0, frg, ndat, niter)
projection-based iterative estimation of normal mixture

LHS = mixestpb(Mix0, frg, ndat, niter)
LHS = mixestpb(Mix0, frg, ndat) niter = 1
LHS = mixestpb(Mix0, frg) ndat = length of global DATA
LHS = mixestpb(Mix0) frg = defaults(’frg’)

LHS : Mix or [Mix, mixlls]
Mix : estimated mixture
mixlls: trajectory of mixll, i.e. log-likelihood of the mixture
Mix0 : initial mixture, any type
frg : forgetting rate
ndat : size of data sample or data sample (copied to global DATA)
niter : number of iterations

Note : by setting global DEBUG>1:
in each iteration, start and end mixture is displayed

Designed: P. Nedoma
Updated : October 2001, MK August 2001, 2004
Project : post-ProDaCTools

mixestqb

function [Mix, mixlls] = mixestqb(Mix0, frg, ndat, niter)
quasi-Bayes iterative estimation of normal mixture

LHS = mixestqb(Mix0, frg, ndat, niter)
LHS = mixestqb(Mix0, frg, ndat) niter = 1
LHS = mixestqb(Mix0, frg) ndat = length of global DATA
LHS = mixestqb(Mix0) frg = defaults(’frg’)

LHS : Mix or [Mix, mixlls]
Mix : estimated mixture, type 21
Mix0 : initial mixture, any type
mixlls: trajectory of mixll, i.e. log-likelihood of the mixture
frg : forgetting rate
ndat : size of data sample or data sample (copied to global DATA)
niter : number of iterations

Note : by setting global DEBUG>1:
in each iteration, start and end mixture is displayed

Design : P. Nedoma
Updated : October 2001, MK August 2001, 2004
Project : post-ProDaCTools

mixestqbs

function [Mix, mixlls] = mixestqbs(Mix0, frg, ndat, niter, threshold)
quasi-Bayes iterative estimation of normal mixture with a stopping rule

LHS = mixestqbs(Mix0, frg, ndat, niter, threshold)
LHS = mixestqbs(Mix0, frg, ndat, niter, []) default threshold
LHS = mixestqbs(Mix0, frg, ndat) niter = 1
LHS = mixestqbs(Mix0, frg) ndat = length of global DATA
LHS = mixestqbs(Mix0) frg = defaults(’frg’)

LHS : Mix or [Mix, mixlls]
Mix : estimated mixture, type 21
mixlls: trajectory of mixll, i.e. log-likelihood of the mixture
Mix0 : initial mixture, any type
frg : forgetting rate
ndat : size of data sample or data sample (copied to global DATA)
niter : number of iterations
threshold: stopping threshold

Note : by setting global DEBUG>1:
in each iteration, start and end mixture is displayed

Designed: P. Nedoma
Updated : October 2001, MK August 2001, 2004
Project : post-ProDaCTools

mixflat

mixture flattening
Mix0 = mixflat(Mix)
Mix0 = mixflat(Mix, rate)
Mix0 = mixflat(Mix, rate, rate1)
Mix0 = mixflat(Mix, rate, rate1, MixA)

Mix : input estimated mixture
Mix0 : flattened mixture
rate : factor flattening rate
rate1 : component-weights flattening rate
MixA : alternative flattening mixture

Design : M. Karny, P. Nedoma
Updated : May 2001
Project : ProDaCTools
See also: mixflatv

mixflatv

mixture flattening with variable flattening rate

[Mix0, handle] = mixflat(Mix, niter, ndat) initialization
(1st estimation step)

[Mix0, handle] = mixflat(Mix, handle) otherwise

Mix : input estimated mixture
Mix0 : output flattened mixture
handle : 1st step: No of iterations

otherwise run time states (structure)

Design : P. Nedoma
Updated : November 2001
Project : ProDaCTools
See also: mixflat

mixfrg

mixture forgetting
Mix = mixfrg(Mix, rate, rate1, Mixa)
Mix = mixfrg(Mix, rate, rate1) flat "bar" alternative
Mix = mixfrg(Mix, rate) rate1 = rate

Mix : forgotten mixture
Mix : updated mixture
rate : factor flattening rate
rate1: component-weights forgetting rate
Mixa : stabilezed forgetting

Design : P. Nedoma
Updated : March 2003
Project : ProDaCTools remake

mixgmean

geometric mean of mixtures
Mix = mixgmean(Mix1, Mix2, [lambda1 lambda2])
Mix = mixgmean(Mix1, Mix2, lambda) lambda2 = 1-lambda

Mix1, Mix2: prior mixtures
lambda: weight(s)

sum can be <1 (for geometric mean of several mixtures)

Design : P. Nedoma
Updated : April 2003
Project : ProDaCTools remake

mixgrid

conversion of ARX mixture to pdf. coordinates
[x,y,z] = mixgrid(Mix, pchns, cchns, psi0, pre, n, r)
[x,y,z] = mixgrid(Mix, pchns, cchns, psi0, pre, n) r = []
[x,y,z] = mixgrid(Mix, pchns, cchns, psi0, pre) n = []
[x,y,z] = mixgrid(Mix, pchns, cchns, psi0) no scaling
[x,y,z] = mixgrid(Mix, pchns, cchns) psi0 = []
[x,y,z] = mixgrid(Mix, pchns) cchns = []
[x,y,z] = mixgrid(Mix) pchns = modelled channels

Mix : mixture, any form
pchns : predicted channels
cchns : channels in condition
psi0 : values of channels in condition

if empty, the values are extracted from DATA
pre : preprocessing list (scaling)
n : grid density (densities)

if empty: 100 for 1 dim, [50,50] for 2 dimensional case
r : grid range (ranges)

if empty: automatic value computed from means and noise covariances

Design : P. Nedoma
Updated : March 2002
Project : ProDaCTools

mixinit

NEW mixinit
initialization of mixture estimation

[Mix, Mix0] = mixinit(Mix0, frg, ndat, niter, options, belief)
[Mix, Mix0] = mixinit(Mix0, frg, ndat, niter, options) belief is not used
[Mix, Mix0] = mixinit(Mix0, frg, ndat, niter) defaults are used
[Mix, Mix0] = mixinit(Mix0, frg, ndat) niter=5
[Mix, Mix0] = mixinit(Mix0, frg) size(DATA, 2)
[Mix, Mix0] = mixinit(Mix0) default forgetting rate

Mix : estimated mixture, type 21
Mix0 : initial mixture, any type internally converted to 21
frg : forgetting rate
ndat : size of data sample

it can be cell vector for buffered data processing
niter : number of iterations
options: initialization options

character string or character string followed an number
belief : cell vector of beliefs for individual channels

--- options for estimation ---
q : iterative quasi-Bayes mixture estimation
b : iterative batch quasi-Bayes mixture estimation
f : iterative mixture estimation based on forgetting branching
m : iterative quasi-Bayes with fixed variances
n : number of iterations for iterative estimation, a number follows;

default is 10 iterations
Note: if iterative estimation is not explicitly specified,

mixestim is used

--- option for structure estimation ---
h : number of runs for structure estimation (integer follows)

--- options that modify processing ---
c : do not make the final housekeeping, default: make it
g : number of initial steps when all factors are split default: 2
k : number of steps when components are not merged or erased, default: 1

Design : M. Karny, P. Nedoma
Updated: September 2002
Project: ProDaCTools
See also: commerge, mixerase, mixest

mixmaxtd

get maximum time delay in mixture
maxtd = mixmaxtd(Mix)

Design : P. Nedoma
Updated: January 2003
Project: ProDaCTools

mixmesh

mixture contour plot
mixmesh(Mix, pchns, cchns, psi0, pre, n, r)
mixmesh(Mix, pchns, cchns, psi0, pre, n) r = []
mixmesh(Mix, pchns, cchns, psi0, pre) n = []
mixmesh(Mix, pchns, cchns, psi0) no scaling
mixmesh(Mix, pchns, cchns) psi0 = [] (values from DATA)
mixmesh(Mix, pchns) cchns = [] (marginal pdf)
mixmesh(Mix) pchns = modelled channels[1 2] or 1

Mix : mixture, any form
pchns : predicted channels
cchns : channels in condition
psi0 : values of channels in condition

if empty, the values are extracted from DATA
pre : preprocessing list (scaling)
n : grid density (densities)

if empty: 100 for 1 dim, [50,50] for 2 dimensional case
r : grid range (ranges)

if empty: automatic value computed from means and noise covariances

Design : P. Nedoma
Updated : March 2002
Project : ProDaCTools

mixplot

mixture contour plot
mixplot(Mix, pchns, cchns, psi0, pre, n, r)
mixplot(Mix, pchns, cchns, psi0, pre, n) r = []
mixplot(Mix, pchns, cchns, psi0, pre) n = []
mixplot(Mix, pchns, cchns, psi0) no scaling
mixplot(Mix, pchns, cchns) psi0 = [] (values from DATA)
mixplot(Mix, pchns) cchns = [] (marginal pdf)
mixplot(Mix) pchns = modelled channels[1 2] or 1

Mix : mixture, any form
pchns : predicted channels
cchns : channels in condition
psi0 : values of channels in condition

if empty, the values are extracted from DATA
pre : preprocessing list (scaling)
n : grid density (densities)

if empty: 100 for 1 dim, [50,50] for 2 dimensional case
r : grid range (ranges)

if empty: automatic value computed from means and noise covariances

Design : P. Nedoma
Updated : March 2002
Project : ProDaCTools

mixplotc

mixture contour plot in 2 subplots
mixplot(Mix, pchns, cchns, psi0, pre, n, r)
mixplot(Mix, pchns, cchns, psi0, pre, n) r = []
mixplot(Mix, pchns, cchns, psi0, pre) n = []
mixplot(Mix, pchns, cchns, psi0) no scaling
mixplot(Mix, pchns, cchns) psi0 = [] (values from DATA)
mixplot(Mix, pchns) cchns = [] (marginal pdf)
mixplot(Mix) pchns = modelled channels[1 2] or 1

Mix : mixture, any form
pchns : predicted channels
cchns : channels in condition
psi0 : values of channels in condition

if empty, the values are extracted from DATA
pre : preprocessing list (scaling)
n : grid density (densities)

if empty: 100 for 1 dim, [50,50] for 2 dimensional case
r : grid range (ranges)

if empty: automatic value computed from means and noise covariances

Design : P. Nedoma
Updated : March 2002
Project : ProDaCTools

mixpro

get mixture projection (prediction on conditioned marginal pdf)
LHS = mixpro(Mix, pchns, cchns, psi0, pre)
LHS = mixpro(Mix, pchns, cchns, psi0) no scalling
LHS = mixpro(Mix, pchns, cchns) psi0 = []
LHS = mixpro(Mix, pchns) cchns = []
LHS = mixpro(Mix) pchns = modelled channels
LHS = pMix : mixture prediction or LHS = [Eths, coves, dfcs]

with mixture prediction sum dfcs * N(Eths,coves)

Mix : mixture or p-mixture, any form
pchns : modelled channels
cchns : channels in condition
psi0 : values of channels in condition
pre : preprocessing list (scaling)

Design : P. Nedoma
Updated : June 2001
Project : ProDaCTools

mixreorg

reorganize mixture estimator
Mix1 = mixreorg(Mix, chns)

Mix1 : reorganized mixture
chns : new order of channels in components

Design : P. Nedoma
Updated: January 2003
Project: ProDaCTools continued

mixscan

scan mixture for 2 dim. clusters
mixscan(Mix,chns,pre)
mixscan(Mix,chns) no data scaling
mixscan(Mix) all channels

Design : P. Nedoma
Updated: July 2002
Project: ProDaCTools

mixshow

function plots mixture pMix;
1D supported

mixsimul

mixture simulation
use: mixsimul(Sim) - recursive

mixsimul(Sim,ndat) - batch

Sim: mixture simulator
ndat: size of data sample

Autor : P. Nedoma
Updated: April 2000
Project: ProDaCTools

mixstats

compute estimation statistics for a fixed mixture
Mix = mixstats(Mix, ndat) batch
Mix = mixstats(Mix) recursive

Design : P. Nedoma
Updated: March 2003
Project: ProDaCTools remake

mixstrid

estimate mixture structure
[Mix, Mix0, flag] = mixstrid(Mix, Mix0, belief, nruns)

Mix : estimated mixture
Mix0 : initial mixture
flag : 0 if not changed, otherwise 1
belief: cell vector of believes for individual channels
nruns : number of runs for factor structure estimation

Design : P. Nedoma
Updated: April 2002
Project: ProDaCTools

mixupdt

one step of mixture update
Mix = mixupdt(Mix0, flag,weight)
Mix = mixupdt(Mix0, flag) weight=1;
Mix = mixupdt(Mix0) flag = 0, i.e. physical updating

Mix : estimated mixture
Mix0 : initial mixture
flag : 1 only trial step

0 physical updating
w : weight of the data vector used, weight of the time

Designed: P. Nedoma
Updated : March 2003, MK August 2004
Project : post-ProDaCTools

mixupdtpF

one step of ARX mixture update for projection based estimation
Mix = mixupdt(Mix0, flag)
Mix = mixupdt(Mix0) % flag = 0, i.e. physical update

Mix : estimated mixture, type 21
Mix0 : initial mixture, type 21
flag : 1 only trial step

0 physical update

Designed: P. Nedoma
Updated : March 2003, MK August
Project : post-ProDaCTools

mversion

No help comments found in mversion.m.

noise

random number generator scaled to mean=0, variance=1 (except Cauchy)
rn = noise(m,n,type)
m,n : dimensions of the generated matrix sample
type : 1 gauss

2 uniform
3 lognormal
4 Cauchy

rn : generated sample

Author : P. Nedoma
Updated: August 2001
Project: ProDaCTools
realized as MEX function

perm

PERM swaps information matrix in LD decomposition

[LD] = perm(LD,i);

LD ... LD decomposition of information matrix
i ... index of line to be swapped with the next one

Description:
Lout’ * diag(dout) * Lout = P(i,i+1) * L’ * diag(d) * L * P(i,i+1);

Where permutation matrix P(i,j) permutates columns if applied from the
right and line if applied from the left.

Design : L. Tesar, Feb 2003
Updated : Jan 2004
Project : post-ProDaCTool
Reference: dydrs

preaux

auxiliary function used by preproc.m
designed to be equal wit the dll version

preaux1

PREAUX1 Auxiliary function for data pre-processing. Should be run through preproc and prestep.

Preout = preaux1(method_nr, time, Pre);

method_nr method number
time time array
Pre data pre-processing structure Pre. Preout is the output.

preinit

initialization of preprocessing
pre = preinit(pre)

pre : input preprocessing requirements
output run-time preprocessing list

pre is the celllist of the type
{’algorithm’ parameters}

parameters is a cell list of of individual parameters or
numerical matrix

Available pre-processing algorihms:

boundary signal limits
olymean mean outlier removal filter (window based)
olymedian median outlier removal filter (window based)
olymeanf mean outlier removal filter (forgetting based)
olymedianf median outlier removal fiter (forgetting based)
mean simple mean filter (window based)
median simple median filter (window based)
meanf simple mean filter (forgetting based)
medianf simple median filter (forgetting based)
outliers remove outliers
smooth filter for smoothing

General parameters:
c list of channels
startup_period is a scalar to adjust the initial period of algorithm

where the DATA matrix is not modified at all, to allow clean startup of the algorithm

Specific parameters:
boundary lower upper
olymean window_size level m0 s0
olymedian window_size level m0 s0
olymeanf forgetting_constant level m0 s0
olymedianf forgetting_constant level m0 s0 importance_threshold
mean window_size m0 s0
median window_size m0 s0
meanf forgetting_constant m0 s0
medianf forgetting_constant m0 s0 importance_threshold

Design : L. Tesar, P. Nedoma
Updated: January 2002
Project: ProDaCTools

preproc

==

prestep

PRESTEP, data pre-processing run-time function
function [out]=prestep(in,nt);
function [out]=prestep(in);
Data pre-processing is done on the global data matrix DATA. If nt
parameter is omitted, the time parameter is taken from the global
variable TIME. Otherwise data are pre-processed from 1 to nt.

in ... cellvector describing the data pre-processing to be done
out ... cellvector, that is to be used in the next call of the

function preproc. It includes run-time information, and
status.

prior

prior knowledge processing
Facs = priproc(Facs0, pri)

Facs : fictitious ARX factor or cell vector of factors
Facs0 : flat ARX factor or cell vector of factors
pri : prior knowledge list

Design : P. Nedoma
Updated: February 2003, February 2003 MK
Project: DESIGNER
Call : priproc

pristr

structure estimation with prior knowledge
lhs = pristr(Facs0, pri, beliefs, nbest, nrep)
lhs = pristr(Facs0, pri, beliefs, nbest) nrep = 50
lhs = pristr(Facs0, pri, beliefs) nbest = 30
lhs = pristr(Facs0, pri) belief is not used

lhs : Facs | [Facs, vlls]
Facs : resulting estimated factor or cell vector

of factors
vlls : cell vector of information or cell vector of the information

for individual outputs
vll{1} - vlls nested prior
vll{2} - vlls with prior
vll{3} - "best" structures in cell array
vll{4} - stuctures in block

Facs0 : richest initial factor or cell vector of factors
pri : prior knowledge list (can be empty)
beliefs : belief of cell vector of belifs or empty matrix
nbest : number of "best" regressor maintained
nrep : number of repetitions of search in space of regressors

Design : M. Karny, P. Nedoma
Updated : July 2004
Project: GA CR 102/03/0049, AV CR S1075351, S1075102, DESIGNER
+ maxfac +priestim + primerge

pristrd

display results of structure estimation
with prior knowledge
pristrd(Fac, Fac0, vll, sub)

Fac : estimated factor
Fac0: reachest factor
vll : result of pristr
sub : display weights and weights with prior

110 for full display

Design : P. Nedoma
Updated: April 2003
Project: ProDaCTools remake

pro2pre

convert predictor to prediction component

Facs : ARX LS component (array of ARX LS factors)
comaux: { matstr, pcove, ih, ic, pchns, cchns, itd0 }

build by com2pro
psi0 : values of channels in condition and zero-delayed not modelled channels

Design : P. Nedoma
Updated: June 2003
Project: ProDaCTools remake

pro2str

add additional information about pointers to external structure
pMix = pro2str(pMix, str)

pMix: mixture projector
str : structure to be used for prediction

Design : P. Nedoma
Updated: November 2001
Project: ProDaCTools

prodini

standard start of Mixtools session that
cleans everything
defines global variables needed in management
specifies debugging level
fixes seeds of random generators

use Prodini

Designed : P. Nedoma
Updated : August 2001
Project : Prodactools

profix

get projection from projector

OUTPUTS = profix(pMix, psi0, pre)
OUTPUTS = profix(pMix, psi0) pre =[] (data are not normalized)

OUTPUTS
pMix1 or [pMix1, scales] or
[Eths, coves, dfcs] or [Eths, coves, dfcs, scales]

pMix : mixture predictor
psi0 : values of channels in condition and zero-delayed not modelled channels
pre : pre-processing list if data are scaled

OUTPUTS
pMix1 : mixture prediction
Eths : cell vector or vector of means of the mixture component
coves : cell vector or vector of noise covariances of the mixture component
dfcs : transformed mixture dfcs respecting conditioning
scales: approximate data dependent component weights

for components ---
Com1 = profix(Com, comaux, psi0)

(internal function pro2pre is called)
Com : predictor component
Com1 : prediction component
comaux: states related to components (build by com2pro)
psi0 : values of channels in condition and zero-delayed not modelled

Design : P. Nedoma
Updated: May 2002
Project: ProDaCTools
Calls : pro2pre (internal), getflds
Updated : August 2001, MK comments added and problems searched for
Problems: solved by PN September 1001

remains: pro2pre should be complemented by comments

profixn

prediction n-steps ahead
OUTPUTS = profixna(pMix, psi0, pre, nstep)
OUTPUTS = profixna(pMix, psi0, pre) nstep==1
OUTPUTS = profixna(pMix, psi0) no scaling
OUTPUTS = profixna(pMix) psi0 from DATA

OUTPUTS: --- data dependent case ---
[Eths, coves, scales, weights] | [pMix1, weights]

--- normal case ---
[Eths, coves, scales] | pMix1

Design : P. Nedoma
Updated: October 2002
Project: ProDaCTools

profixn1

prediction n-steps ahead
OUTPUTS = profixn(pMix, psi0, pre, nstep)
OUTPUTS = profixn(pMix, psi0, pre) nstep==1
OUTPUTS = profixn(pMix, psi0) no scaling
OUTPUTS = profixn(pMix) psi0 from DATA

OUTPUTS: --- data dependent case ---
[Eths, coves, dfcs, scales] | [pMix1, scales]

--- normal case ---
[Eths, coves, dfcs] | pMix1

Design : P. Nedoma
Updated: October 2002
Project: ProDaCTools

protest

check projection arguments
auxiliary undocummented function
protest(Mix, pchns, cchns)

pchns : predicted channels
chns : channels in condition

Design : P. Nedoma
Updated: October 2001
Project: ProDaCTools

prt

debugging prints
use : prt(mes , X)

prt(mes)
mes : message
X : cell vector, structure matrix, LS normal mixture, normal factor

Design : P. Nedoma
Updated: August 2001
Project: ProDaCTools

prtstr

print results of facstrid

psi

evaluates psi function, i.e. 1st derivative of gammaln
z = positive argument
psi = value of the function

Design : M. Karny
Updated : May 2000
Project : Prodactools
See also : kldistc, kldistcom

randnm

generate sample from Normal distribution
r= randnm

r : generated sample
%
Design : J. Andrysek
Project : BadDyr
Comments: used to generate exactly the same numbers in .m and .dll
versions

randun

generate sample from Uniform distribution
r= randun

r : generated sample
SEED : global variable SEED

Design : J. Andrysek
Project : BadDyr
Comments: used to generate exactly the same numbers in .m and .dll
versions

relep

[se, yp] = relep(Mix, ndat, use_wgs)

se: relative prediction error
yp: prediction trajectory

Mix: estimated mixture or mixture predictor
ndat: portion of the data sample to be processed
use_wgs: use additional components weights

Design: P. Nedoma
Project: GA CR 102/03/0049, AV CR S1075351, S1075102, DESIGNER

relepn

[se, yp, dd] = relepn(Mix, nstep)
Mix: estimated mixture
nstep: number of prediction steps
se: relative prediction error
yp: prediction
dd: shifted data

Design: P. Nedoma
Project: GA CR 102/03/0049, AV CR S1075351, S1075102, DESIGNER

resizefig

SETFIG Set a figure size and position relatively to the screen size

h=resizefig(s,x,y,h)
h=resizefig(s,x,y) h=gcf
h=resizefig(s,x) y=0
h=resizefig(s) x=0

s : new size of the figure given as percentage of the screen size (0-100)
x : new x-coordinate of the left bottom corner of the figure given as

percentage of the screen size (0-100)
y : new y-coordinate of the left bottom corner of the figure given as

percentage of the screen size (0-100)
h : handle of the figure, which size should be changed

Design : J.Andrysek
Project : The BOOK

restore

Xs = mixrest(filename) machineformat=’l’

filename : file where the object is stored
machineformat: see MATLAB fopen
prec : see MATLAB fopen
Xt : object of the same type as the restored one

used to restore field names
not required for Mixtools structures

Desing : P. Nedoma
Updated : September 2001
Project : ProDaCTools

ricexp

disp(’exp’)
keyboard

ricpen

noise contribution of channels with o-innovations

ricpenu

noise contribution of channels with o-innovations

ricshift

ric = [Rici(nychn+1:nPsi,nychn+1:nPsi) zeros(npsi,nychn); zeros(nychn,nPsi)];

scalepri

scale prior knowledge list

ychn - first channel

setaxis

No help comments found in setaxis.m.

setdbg

set in dialog "dbstop" in a function
setdbg(’function’)

The function is checked for presence of the comment
%> any comment
at the line beginning (line number is "line_number").
The comment(s) is (are) displayed and one selected in dialog.
Then the command
"dbstop in function at line_number"
is evaluated.
No action is done when only Enter is pressed.

Author : P. Nedoma
Updated: December 2001
Project: ProDaCTools

setfig

setting plot windows
use: setfig(x)
x - number of windows, 1-2
autor: I. Nagy
setting position:
(x,y) left corner
Position: [x y width height]

sigscan

scan signal

sim2pdf

convert mixture predictor to estimator close to data pdf (edits Cth,dfm etc.)
Mix = sim2mix(Sim, ndat)

Mix : complete mixture, type = 22
Sim : predictor mixture
ndat : number of data items

Design : P. Nedoma
Updated : June 2000
Project : ProDaCTools
See also: mixestem

simeval

repeated simulations
[res, tstop] = simeval(Sim, chns, nrep, ndat, threshold)
[res, tstop] = simeval(Sim, chns, nrep, ndat) threshold = 0.01
[res, tstop] = simeval(Sim, chns, nrep) size(DATA,2)
[res, tstop] = simeval(Sim, chns) 100
[res, tstop] = simeval(Sim) all modelled channels

res : processing results: cell vector for each channel of chns
res{chn}.stats - confidence interval for range and increments
res{chn}.tra - trajectories of individual simulation runs

tstop : time where trajectories are stopped
Sim : simulator | task
chns : list of channels to be evaluated
nrep : maximum number of repetitions
ndat : maximum length of trajectories
threshold : threshold value, default = 0.01;

soptim

soptim performs simultaneous advisory design for normal mixture

[aMix] = soptim(aMix, aMixu, ufc, nstep, chis)
[aMix] = soptim(aMix, aMixu, ufc, nstep) chis = 1
[aMix] = soptim(aMix, aMixu, ufc) nstep = [200, 1]

aMix : advised mixture of the type ARX LS enriched on following control states:
strc : common control structure
ufc : normalised vector qualifying components:

dangerous component (0), not dangerous (positive number)
kc : lift of quadratic forms
UDc : cell vector of u’du decompositions of KLD kernels
udca : u’du decomposition of average KLD kernel in UDc
kca : average lift of quadratic forms kc

aMixu : desired mixture (user’s target) of the type ARX LS with control states
ufc : vector qualifying components: 0 - dangerous component, (1) - not
nstep : parameters [ns1,per] determining design horizon, i.e. horizon = ns1*per;

ns1 : number of block repetition
per : horizon of a block

if nstep is defined by parameter nsl only then per is set to 1
chis : indicates strategy chosen: chis=1 for receding horizon (default) and chis=-1 for IST

Design : J. Bohm
Updated : June, 2002
Project : ProDaCTools, IST-1999-12058
See also : udupdt, getdvect, facchng, facarxls

statgrid

[x,y,z] = statgrid(Eths, coves, alphas, n, r)
[x,y,z] = statgrid(pMix, n, r)

x,y,z : coordinates
Eths : vector or cell-vector of means
coves : vector or cell vector of noise variances
alphas : normalized degrees of freedom of components
n : grid density - number of points (or densities)
r : grid range (or ranges)
pMix : mixture projection

Design : P. Nedoma
Updated: June 2001
Project: ProDaCTools

statmesh

interactive 2D static mixture or data display
[x,y,z] = statmesh(Mix)
[x,y,z] = statmesh(chns)

x,y,z : coordinates
Mix : mixture or p-mixture, any form
chns : channels to be displayed

Design : P. Nedoma
Updated: June 2001
Project: ProDaCTools

statplot

plot centers and 2-sigma borders of components of a mixture
statplot(Mix, arg)
Mix : mixture, any form
arg : character string for plot (e.g.’r--’);

1 - standard
2 - standard, instead of ’o’ in center, component No is displayed
missing: standard, before plot: clf; hold off

plot ends by hold on

Design : P. Nedoma
Updated: September 2001
Project: ProDaCTools

statsim

build static mixture simulator and data sample, 2 channels
Sim = statsim(ndat, ncom, cove)
ndat: size of data sample (located at global DATA)
ncom: number of components located on unit circle
cove: LD decomposition of the components common covariance (default eye(2))
Sim : the mixture simulator

%%

stopstac

stopping of a time series at stationary mode

Fac : updated factor
Q : value of relevant statistics

Design : P. Nedoma
Updated: October 2003
Project: GA CR 102/03/0049, AV CR S1075351, S1075102, DESIGNER
reference= stationarity.tex

straux1

STRAUX1 Advanced structure estimation based on LD decomposition

This m/mex file is internally called by facstr, IT IS NOT TO BE CALLED
BY USER!! Documentation guiven for reference.

[strout, Lout, dout, nuout] = straux1(L, d, nu, L0, d0, nu0, belief, nbest, max_nrep, lambda, order_k);

L : Actual LD decomposition based on data
d : Actual LD decomposition based on data
nu : Actual data amount
L0 : prior information
d0 : prior information
nu0 : prior data amount
belief: user’s belief on maximum structure items

(1 items must be present, 2 items are probably present
4 items must not be present, 3 items are probably not present)
2 and 3 is the same

nbest : how many "best" regressors are maintained
strout : structure estimated (of the regressor, richest is 2:length(d)
Lout : output lower triangular matrix
dout : output diagional vector of diagonal matrix D
nuout : posterior amount of data
max_nrep : maximal number of random starts in search for the best

structure
lambda : stooping rule threshold
order_k : order of k

Design : L. Tesar
Updated : Feb-Apr 2003
Project : post-ProDaCTool
References: (only local inline functions)

Todo: in add_new, we need to implement structure comparison, instead of
loglikelihood comparison: ~any(logliks == new.loglik)

streq

are two structures equal ?
is = streq(str1, str2)

str1, str2: structures to be compared
is: 0 if not equal

1 if identical
-1 if equal but in different ordering

Design : P. Nedoma
Updated: May 2002
Project: ProDaCTools

strmax

auxiliary function used in mixture structure estimation

Design : L. Berec
Updated : 1998
Project : ProDaCTool
See also: facstrid

student

No help comments found in student.m.

synmixi

aMix = synmixi(Mix,uchn,strc)
aMix = synmixi(Mix,uchn), strc = []
aMix = synmixi(Mix), uchn =[], strc = []

synmixi transforms mixture estimate Mix to the control form aMix
needed for design of advises

aMix : advised mixture of the type ARX LS + following control states:
strc : common control structure
ufc : normalised vector qualifying components:

dangerous component (0), not dangerous (positive number)
kc : lift of quadratic forms
UDc : cell vector of u’du decompositions of KLD kernels
udca : u’du decomposition of average KLD kernel in UDc
kca : average lift of quadratic forms kc

Mix : mixture estimate, any form
uchn : list of channels with recognisable actions
strc : common control structure

Design : J. Bohm
Updated: 06.03.02
Project: ProDaCTools

calls : mix2mix, mix2pro, pro2str
problems:

target

TARGET creates desired mixture (user target) and build list of modelled
channels in component in the form [o-innovations, surplus p+, recognisable actions].
Channels inside of each group is ordered according to ascending priority set by the user

[Mixu, Chns, ychns] = target(Chns)

Mixu : user target
ychns : list of modelled channels in component
Chns : channels desriptions

Design : T.V.Guy
Updated : September 2002
Project : ProDaCTools
See also : chnget, chnset, aloptim, inisyn, soptim

tukinit

obtain number of data samples in the input data of estimation algorithms,
set gloal variable DATA if need
ndat=tukinit(Ndat)

Ndat : scalar containing number of data samples to be processed or a
pair containing data filename and rowcount of data stored in
the file

ndat : scalar containing number of data samples to be processed

Design : J. Andrysek
Created: September 2004
Project: BadDyr

Note : C-version of tukinit is used to process the data contained in the file
filename in parts. This m-version was made for compatibility purposes
only. It loads the whole data file in memory at once.

ud2ld

convert U’DU decomposition to its equivalet L’DL decomposition
[L, D] = ud2ld(UD)
LD = ud2ld(UD)

UD = upper triangular matrix with unit diagonal replaced by diagonal % D
L = lower triangular matrix with unit diagonal
D = diagonal matrix
LD = lower triangular matrix with unit diagonal replaced by diagonal

D

Design : P. Nedoma
Updated: November 2000
Project: ProDaCTools

udform

UDFORM restores matrix factorized (canonical) form of ARX LS component

[Eth1, cove1] = udform(Eth, cove)

Eth, cove - input relevant part of the component
Eth1, cove1 - output component

Design : L. Tesar, Jan 2004
Updated: January 2004
Project: post-ProDaCTool
Note: to exchange 2 rows of the component, change

the colums of the input component and call this function

udinv

inversion of U’DU decomposition
UD = Udinv(UD)
[U, D] = udinv(UD)

UD = upper triangular matrix U with unit diagonal replaced by
the diagonal D

UD = the resulting inversion organised as inputs
U, D = the resulting inversion with full formof U and D

Autor : P. Nedoma
Updated: November 2000
Project: ProDaCTools

udupdt

update U’DU decomposition update
U’DU := U’DU+w*r’*r
UD = udupdt(UD, r, w)
UD = input upper triangular matrix with unit diagonal replaced

by D
w = weight of the updating dyad
r = the modifying data vector

Design : L. Tesar Jan 2004
Updated: Jan 2004
Project: ProDaCTool
Calls : dydrs

ufcgen

Mixc = stedopt(Mixc,Mixc0)

stedopt computes losses of the components for the
given criterion (desired mixture Mixc0)

Mixc : mixture advised of the type ARX LS + following control states:
strc : common control structure
ufc : normalised vector qualifying components:

dangerous component (0), not dangerous (positive number)
kc : lift of quadratic forms
UDc : cell vector of u’du decompositions of KLD kernels
udca : u’du decomposition of average KLD kernel in UDc
kca : average lift of quadratic forms kc

Mixc0 : mixture desired type ARX LS + control states

utdu

utdu = decompose positive definite g into u’du decomposition and store it into g
use : g = utdu(g)

Autor : J. Bohm
Updated: April 2000
Project: ProDaCTools

utinv

utrinv = Upper Triangle matrix INVersion
use : b = utinv(a)

a : inverted upper triangular matrix
b : resulting inversion

Autor : I. Nagy
Updated: April 2000
Project: ProDaCTools

TIME processing time

DATA data sample

ndat length of data

Ndat specification for buffered processing

psi regressor vector

Psi data vector

npsi length of regression vector

nPsi length of data vector

str structure of regression vector

Fac factor

Facs array of factors

fac position of a factor in an array of factors

ychn modeled channel

dfm degrees of freedom of a factor

LD L’DL decomposition of the extended information matrix

L triangular part of L’DL decomposition

D diagonal part of L’DL decomposition of extended information matrix

Eth point estimate of regression coefficients

Cth covariance of regression coefficients

cove point estimate of noise covariance

com component

coms array of components

dfcs vector of degrees of freedom of components

dfcs0 initial degrees of freedom of components

alphas normalized vector of degrees of freedom of components

Com matrix ARX or ARX LS component

Coms array of matrix ARX or ARX LS components

ychns modeled channels in component

nychn number of modeled channels

Mix mixture estimate

Sim mixture simulator

pMix mixture predictor

pMixfix mixture prediction

facs list of factors

nfac number of active factors

ncom number of components

nchn number of modeled channels

frg forgetting rate

frgd default forgetting rate

rate mixture flattening rate

maxtd maximum time delay of factors in a mixture

nruns number of runs in iterative mixture estimation

relerr relative error

maxerr maximum possible error

pchns predicted channels

cchns channels in condition

psi0 value of zero-delayed regressor

nsk extent of data grouping

faclls virtual factor predictions

comlls component predictions

mixll posterior data likelihood (mixture prediction)

comwgs component weights

facwgs factor weights

maxstr guess of the richest structure

maxFac richest factor

maxMix richest mixture

belief belief on a guess of richest structure

chbelief belief on factors of a channel

nbest number of ”best” MAP structures stored

nrep number of random starts

irep iteration

MAPstr MAP estimate of the factor structure

pre preprocessing requirements

aMixc advised mixture of the type ARX LS + control states

aMixu desired mixture of the type ARX LS + control states

strc common control structure

ufc normalised vector qualifying components

kc lift of quadratic forms

UDc cell vector of u’du decompositions of KLD kernels

udca u’du decomposition of average KLD kernel in UDc

kca average lift of quadratic forms kc

uchn list of channels with recognisable actions

pochn list of channels with o-innovations

outs list of channels with innovations

npochn number of channels with o-innovations

chis strategy of control design

DEBUG global debugging flag

PLOTNO control results of iterative computation

chn channel (data row)

std standard deviation

pdf probability density function

ll log of posterior likelihood on data: v-log-likelihood

kld Kullback-Leibler distance

niter number of iterations

options computational options

seed seed of random generator

sig standard deviation of output noise

Can component in matrix factorized ARX LS form

Cans array of components in matrix factorized ARX LS form

CUMTAB transition table of components

ACTIVE active component

Chns channel descriptions

Cryptonyms

Data management

TIME processing time
DATA data sample
ndat length of data
psi create regression vector
Psi data vector
npsi length of regression vector
nPsi length of data vector
str structure of regression vector

Factors
Fac factor
Facs array of factors
fac position of a factor in an array of factors
ychn modeled channel
str structure of regression vector
dfm degrees of freedom of a factor

standard ARX factors
LD L’DL decomposition of the extended information matrix
L triangular part of L’DL decomposition
D diagonal part of L’DL decomposition of extended information matrix
V information matrix

ARX factors in least squares representation
Eth point estimate of regression coefficients
Cth covariance of regression coefficients
cove point estimate of noise covariance

Components

com component
coms array of components
dfcs vector of degrees of freedom of components
dfcs0 initial degrees of freedom of components
alphas normalized vector of degrees of freedom of components
Com matrix ARX or ARX LS component
Coms array of matrix ARX or ARX LS components
Can component in matrix factorized ARX LS form
Cans array of components in matrix factorized ARX LS form
ychns modeled channels in component
nychn number of modeled channels

Mixtures

Mix mixture estimate
Sim mixture simulator
pMix mixture predictor
pMixfix mixture prediction
facs list of factors
nfac number of active factorsa

ncom number of components
nchn number of modeled channels

adimensions are computed as :
[ncom, nchn] = size(Mix.coms); nFacs = length(Mix.Facs); nfac = length(Mix.states.facs);

Mixture estimation
frg forgetting rate
frgd default forgetting rate
rate mixture flattening rate
maxtd maximum time delay of factors in a mixture
nruns number of runs in iterative mixture estimation
relerr relative error
maxerr maximum possible error

states in mixture estimation a

faclls trial factor predictions log(f(dt+1|fac, t + 1))
comlls component predictions log(f(dt|com))
mixll mixture prediction log(f(dt|mix))
comwgs component weights
facwgs factor weights

arefer to mixupdt.m for meaning of the statistics

Mixture projection

pchns predicted channels
cchns channels in condition
psi0 value of zero-delayed regressor

Advisory system design

aMixc advised mixture of the type ARX LS + control states
aMixu desired mixture of the type ARX LS + control states
strc common control structure
kc lift of quadratic forms
UDc cell vector of u’du decompositions of KLD kernels
udca u’du decomposition of average KLD kernel in UDc
kca average lift of quadratic forms kc
uchn list of channels with recognisable actions
pochn list of channels with o-innovations
outs list of channels with innovations
npochn number of channels with o-innovations
udca u’du decomposition of average KLD kernel in UDc
ufc normalised vector qualifying components

Structure estimation

maxstr guess of the richest structure
maxFac richest factor
maxMix richest mixture
belief belief on a guess of richest structure
chbelief belief on factors of a channel
nrep number of random starts
MAPstr MAP estimate of the factor structure

General cryptonyms

DEBUG global debugging flag
chn channel (data row)
std standard deviation
pdf probability density function
kld Kullback-Leibler distance
ll log of posterior likelihood on data: v-log-likelihood
niter number of iterations
opt option
options computational options
seed seed of random generator
uchn list of channels with recognisable actions
sig standard deviation of output noise
CUMTAB transition table of components
ACTIVE active component

cryptony.tex by PN December 3, 2004

