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When Has Estimation Reached A Steady State?
The Bayesian Sequential Test
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SUMMARY

This paper is concerned with distributions of time series, which (i) are influenced by initial conditions
(ii) are stimulated by an exogenous signal or (iii) are obtained by recursive estimation of underlying
parameters and thus undergo a transient period.
In computer intensive applications, it is desirable to stop the processing when the transient

period is practically over. This aspect is addressed here from a Bayesian perspective. Under an
often met assumption that the model of a system’s time series is recursively estimated anyway,
the computational overhead of the constructed stopping rule is negligible. Algorithmic details are
presented for important normal ARX models (auto-regression with exogenous variable) and models
of discrete-valued, independent, identically distributed data. The latter case provides non-parametric
Bayesian estimation of credibility interval with sequential stopping. Copyright c© 2004 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The analysis of a system’s time series [1] is the corner stone of a broad range of dynamic
data processing techniques used in a variety of applications, e.g. [2, 3, 4, 5, 6, 7]. Often, a
large amount of data is available or can be cheaply generated in simulations widely used
in numerical procedures [8, 9]. Then both the related analysis and numerical evaluations are
computationally intensive and it is important to decide when the processing should be stopped.
In this paper, the above query is answered for tasks in which the stopping makes sense when

the inspected series overcomes the transient period. Typically, this happens when the transient
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period is caused by (i) non-trivial initial conditions, (ii) stimulation by an exogenous signal
that itself becomes stationary or (iii) unfinished recursive parameter estimation.
The proposed solution uses Bayesian decision-making [10, 11] and elementary ideas of

sequential stopping dating back to [12]. It extends and makes more systematic the solution
given in [13]. It is restricted to cases in which the time series model is recursively estimated.
Then, the computational overhead related to the evaluation of the stopping rule is negligible.
The class of such problems is narrower than that involved with caring about stationary
behavior. It covers, however, practically significant examples such as mixture estimation on
large data sets [14, 15] or prior tuning of adaptive controllers [9, 16].
The paper is organized as follows. Basic facts on Bayesian estimation within an exponential

family (EF) are recalled in Section 2. The stopping problem is formulated and solved in Section
3. The solution is specialized to normal ARX models in Section 4 and model describing discrete-
valued, mutually independent, identically distributed data in Section 5. ARX models are widely
used for adaptive predictors and controllers. The discrete-data case is especially suitable
for Bayesian non-parametric estimation [17]. The particular application to non-parametric
estimation of credibility intervals with stopping is presented in Section 6. Then possible
applications are demonstrated on simulation examples, Section 7, followed by concluding
remarks in Section 8.

2. PRELIMINARIES

We use the following common notations. The symbol f is reserved for a probability density
function (pdf) distinguished by identifiers in its arguments. Integrals

∫
are definite, are

generally multiple, and are evaluated over the domain of the integrand. The symbol d(t)
denotes the sequence of data records d1, . . . , dt. The non-numerical left superscript

a of an
object B is also used. The expectation E [•|∗] is taken over all uncertain quantities in • except
for those fixed by the condition ∗.
The collection of pdfs f(dt|d(t − 1),Θ), parameterized by an unknown finite-dimensional

parameter Θ serves for a tailored data description. The data records dt ≡ [yt, ut] consist of
the measured system output yt and the known system input ut. However, the system input ut
need not be present.
The parameter Θ is supposed to be unknown to the input generator (controller, human

being), i.e., the generator meets natural conditions of control (NCC) [18]. The formal expression
of this assumption reads

f(ut|d(t− 1),Θ) = f(ut|d(t− 1)) or equivalently f(Θ|ut, d(t− 1)) = f(Θ|d(t− 1)). (1)

Under NCC, the joint pdf of closed-loop data, up to the time horizon T , and of the unknown
Θ then becomes

f(d(T ),Θ) =

T∏

t=1

f(yt|ut, d(t− 1),Θ)
︸ ︷︷ ︸

parameterized model
︸ ︷︷ ︸

L(d(T ),Θ)≡likelihood function

×
T∏

t=1

f(ut|d(t− 1))
︸ ︷︷ ︸

input generator
︸ ︷︷ ︸

R(d(T ))≡control-strategy realization

× f(Θ)
︸ ︷︷ ︸

prior pdf

.

(2)
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NCC and Bayes rule [18] imply that the posterior pdf has the form

f(Θ|d(T )) = L(d(T ),Θ)f(Θ)
∫
L(d(T ),Θ)f(Θ) dΘ ≡ L(d(T ),Θ)f(Θ)

I(d(T ))
︸ ︷︷ ︸

normalizing integral

. (3)

Thus, the posterior pdf depends on the input generator through the measured data d(T ) only.
Parameterized models belonging to the exponential family (EF) [19] are considered. Their

use is (almost) inevitable in the considered data intensive applications as their likelihood
functions depend on finite-dimensional sufficient statistics. Models in EF have the form

f(yt|ut, d(t− 1),Θ) = A(Θ) exp {tr [B′(Ψt)C(Θ)]} , (4)

where A(Θ) is a non-negative function Θ, and the symbol ′ denotes transposition. B(Ψt) is a
matrix-valued function of the data vector

Ψt ≡ [y′t, ψ′t]′ ≡ [y′t, u′t, d′t−1, . . . , d′t−∂ , 1]′ ≡ [d′t, . . . , d′t−∂ , 1]′

of a finite order ∂ ≥ 0. C(Θ) is a vector or matrix-valued function of Θ with dimensions
compatible with B(Ψ). Recall, that tr denotes the trace of a matrix.
Note that in the static case obtained for ∂ = 0, EF covers a range of distributions such as

Poisson, multinomial, exponential, Wishart etc. In the dynamic case, the family reduces to
a multivariate normal distribution with linearly entering regression coefficients and Markov
chains of finite order. Luckily enough, general dynamic models can be “universally” [20]
approximated by finite probabilistic mixtures [21] of pdfs (components) formed by normal
and Markov factors [22]. For them, the derived stopping rule is applied component wise.
For a member of EF, the likelihood function has the form

L(d(T ),Θ) ≡ L(VT , νT ,Θ) ≡ AνT (Θ) exp {tr [V ′TC(Θ)]} .
The sufficient statistic, describing the likelihood function without information loss, is formed
by the matrix VT and by the scalar νT . This finite-dimensional description of the likelihood
function can be evaluated recursively, using Vt = Vt−1 + B(Ψt), νt = νt−1 + 1, t = 1, . . . , T ,
starting with V0 = 0 and ν0 = 0.
A model in EF possesses the conjugated prior pdf f(Θ) ≡ f(Θ|d(0)) whose form coincides

with that of the likelihood function. Its considered choice makes the functional descriptions of
the prior and posterior pdfs (related by (3)) identical, that is

f(Θ|d(t)) ≡ f(Θ|Vt, νt) ≡
Aνt(Θ) exp {tr [V ′tC(Θ)]}

I(Vt, νt)
, t = 0, 1, . . . , T, (5)

I(Vt, νt) =

∫

Aνt(Θ) exp {tr [V ′tC(Θ)]} dΘ,

Vt = Vt−1 +B(Ψt), νt = νt−1 + 1, V0, ν0 a priori chosen.

The corresponding predictive pdf reads, cf. (2),

f(d(t)) = f(d(t)|V0, ν0) =
I(Vt, νt)
I(V0, ν0)

R(d(t)). (6)

The pdfs (5) and (6) describe completely the Bayesian estimation and prediction with (i)
parameterized model in EF (ii) conjugate prior pdf and (iii) control strategy meeting NCC (1).
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The final preparatory step concerns the factorized version of Bayesian estimation. This
version simplifies treatment of multi-output systems in EF. It also makes modelling more
flexible and suitable for a joint description of outputs with discrete and continuous entries. It
rests on the following parameterization implied by the chain rule

f(yt|ut, d(t− 1),Θ) =

m∏

i=1

f(yi;t|yi+1;t, . . . , ym;t, ut, d(t− 1),Θ)
︸ ︷︷ ︸

i−th factor

≡ (7)

≡
m∏

i=1

A(Θi) exp {tr [B′(Ψi;t)C(Θi)]} .

The i-th data vector Ψi;t is defined recursively

Ψi;t = [yi;t,Ψ
′
i+1;t]

′, i = 1, . . . ,m ≡ the number of y entries and
Ψ′m+1;t ≡ ψt ≡ [u′t, d′t−1, . . . , d′t−δ, 1]′.

The parameter Θi is a reduction of Θ to those entries that influence the i-th factor defined as
the pdf predicting the i-th entry yi;t of the output yt.
The product form (7) allows us to select a conjugate prior for each factor and update their

posterior pdfs in parallel. The conjugate posterior pdf of the i-th factor is characterized by its
individual sufficient statistics Vi;t, νi;t.

3. SEQUENTIAL STOPPING

The design of a strategy that decides sequentially whether to stop the estimation or not is
addressed here. The design is driven by the wish to obtain a computationally simple and still
reasonably justified strategy.
First we show that the posterior pdfs on unknown parameters converge almost surely. Then,

we demonstrate how this convergence influences the Kullback-Leibler (KL) divergence [23] of
a pair of successive posterior pdfs. Recall that the KL divergence D(f1||f2) of a pair of pdfs
fi(x) on a common domain {x} is defined

D(f1||f2) =
∫

f1(x) ln

(
f1(x)

f2(x)

)

dx. (8)

It then holds that

D(f1||f2) ≥ 0 & D(f1||f2) = 0⇔ f1(x) = f2(x) for almost all x. (9)

To avoid technicalities, we assume that only a finite number of Θ values is a priori probable.

Proposition 1 (Asymptotic behavior of posterior pdfs) Let NCC (1) hold and the
prior pdf is non-zero on a finite number of values of unknown parameters Θn, n = 1, . . . , N <
∞. Then, for any fixed Θn, the sequence {f(Θn|d(t))}t≥1 converges almost surely and the
“conditional” KL divergence

Q(d(t)) ≡ D(f(Θ|d(t))||f(Θ|d(t− 1))|d(t)) ≡
∫

f(Θ|d(t)) ln
(

f(Θ|d(t))
f(Θ|d(t− 1)

)

dΘ

converges to zero almost surely.
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Proof: First we show that f(Θn|d(t)) is non-negative bounded martingale with respect to d(t)
for any fixed Θn with f(Θn) > 0. Then, martingale theory [24] implies that almost surely
f(Θn|d(t))→t→∞ f(Θn|d(∞)) ∈ [0, 1].
Indeed, f(Θn|d(t)) ∈ [0, 1] due to finiteness of N . Thus, it remains to show the basic martingale

property, i.e. the equality E [f(Θn|d(t))|d(t − 1)] = f(Θn|d(t − 1)). Its validity can be seen as
follows

E [f(Θn|d(t))|d(t− 1)] ≡
∫

f(Θn|d(t))f(yt|ut, d(t− 1))f(ut|d(t− 1)) dytdut =

=

∫
f(yt|ut, d(t− 1),Θn)f(Θn|d(t− 1))

f(yt|ut, d(t− 1))
f(yt|ut, d(t− 1))f(ut|d(t− 1)) dytdut =

=

∫

f(yt|ut, d(t− 1),Θn)f(Θn|d(t− 1))f(ut|d(t− 1)) dytdut =

= f(Θn|d(t− 1))
∫

f(ut|d(t− 1)) dut = f(Θn|d(t− 1)).

The Bayes rule implies that f(Θn|d(t − 1)) = 0 ⇒ f(Θn|d(t)) = 0. Thus, the conditional KL
divergence has non-zero finite contributions only from those Θn for which f(Θn|d(t − 1)) > 0.
Due to this and the convergence of f(Θn|d(t − 1)), the relevant ratios f(Θ|d(t))

f(Θ|d(t−1)) forming the

argument of logarithms converge to unity and thus the whole KL divergence converges to zero.

Non-negativity and convergence to zero of the conditional KL divergence imply that it makes
sense to stop estimation at time moment t, determined by data d(t), when

Q(d(t)) ≡
∫

f(Θ|d(t)) ln
(

f(Θ|d(t))
f(Θ|d(t− 1))

)

dΘ ≤ ε, (10)

where ε > 0 is a stopping threshold close to zero.

Such a stopping implies that ln
(

f(Θ|d(t))
f(Θ|d(t−1))

)

≈ f(Θ|d(t))
f(Θ|d(t−1))−1 is expected to be in the interval

[−ε, ε] for ε ≈ 0. This interprets ε as a “relative error” caused by substituting f(Θ|d(t − 1))
instead of f(Θ|d(t)) and helps us to select specific values of ε. The typical choice ε = 0.01
corresponds to the expected relative error 1% .

Obviously, the inequality (10) is only the necessary condition for a proper stopping. In order
to guarantee bounded expected relative errors for further moments, we should require

k∑

κ=1

E
[

ln

(
f(Θ|d(t+ κ))

f(Θ|d(t+ κ− 1))

)

|d(t)
]

≡

≡
∫

f(Θ, dt+1, . . . , dt+k|d(t)) ln
(
f(Θ|d(t+ k))
f(Θ|d(t))

)

d(dt+1, . . . , dt+k) dΘ ≤ ε

for all k ≥ 0. It needs, however, computationally intensive multi-step predictions, which pay
off only when the acquiring of new data items is rather expensive. Here, we assume that
computational cost is the main reason for stopping and thus we can stop estimation when the
simplest necessary condition (10) is met.
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4. APPLICATION TO ARX MODELS

Application of the stopping rule (10) to ARX models requires evaluation of the test statistic
Q(d(t)) in (10). For it, basic information on the estimation of ARX models has to be recalled.
Estimation of the factorized model (7) implies that it is sufficient to deal with a single factor.
In the multi-output case, the posterior pdf f(Θ|d(t)) = ∏m

i=1 f(Θi|d(t)) and the overall test
statistic is simply the sum of the test statistics Qi(d(t)) connected with individual factors.
This is obvious from the definition of Q(d(t)) as the conditional KL divergence of posterior
pdfs in the product form.
The factor of the normal ARX model predicting a scalar entry yt has the form

f(yt|tail entries of current y, ut, d(t− 1),Θ) = Nyt(θ′ψt, r) ≡

≡ (2πr)−0.5 exp
[
−0.5r−1(yt − θ′ψt)2

]
= (2πr)−1/2
︸ ︷︷ ︸

A(Θ)

exp







tr







ΨtΨ

′
t

︸ ︷︷ ︸

B′(Ψt)

(

− [−1 θ
′]′[−1 θ′]
2r

)

︸ ︷︷ ︸

C(Θ)














.

It is parameterized by Θ composed of regression coefficients θ and noise variance r. The
indicated correspondence to EF (4) determines directly the form of the conjugate prior pdf

f(Θ|V0, ν0) =
(2πr)−0.5(ν0+γ+2) exp

{

−tr
(

V0
[−1 θ′]′[−1 θ′]

2r

)}

I(V0, ν0)
, (11)

where γ denotes the number of regression coefficients. It is known as Gauss-inverse-Wishart
(GiW ) pdf. The extended information matrix V0 employed to determine it has to be
positive definite. Bayesian estimation in EF implies the updating formula Vt = Vt−1 + ΨtΨ

′
t.

Numerically, it is reasonable to update factors of its decomposition V = L′DL [25]. In it,
L is a lower triangular matrix with unit diagonal and D is a diagonal matrix with positive
diagonal entries. Among others, this decomposition allows us to perform efficient evaluation
of the normalization integral. By splitting

L ≡
[

1 0
yψL ψL

]

, D ≡ diag
[
yD, ψD

]
, yD = scalar, we get

I(V, ν) ≡ I(L,D, ν) = Γ(0.5ν) yD−0.5ν
∣
∣ ψD

∣
∣
−0.5

π−0.5ν(2π)0.5γ with

Γ(z) ≡
∫ ∞

0

xz−1 exp(−x) dx, z > 0.

Updating of the factorized extended information matrix is equivalent to recursive least squares
[18] and it holds that

θ̂ ≡ ψL−1 yψL = E [θ|L,D, ν] = least-squares estimate of θ

cov(θ|r) = r ψL−1 ψD−1
(
ψL′
)−1

r̂ ≡
yD

ν − 2 = E [r|L,D, ν] = point estimate of r

E [r−1|L,D, ν] =
ν
yD

E [ln(r)|L,D, ν] = ln ( yD)− ln(2)− ∂ ln (Γ(0.5ν))

∂(0.5ν)
. (12)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 18:1–18
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Use of L′DL decomposition gives the GiW pdf (11) the form

f(Θ|L,D, ν) ≡ GiWθ,r(L,D, ν) ≡
(2πr)−0.5(ν+γ+2) exp

{

−
(
[−1 θ′]L′D([−1 θ′]L′)′

2r

)}

I(L,D, ν) . (13)

The predictive pdf has the general form (6). It defines the one-step-ahead output predictor as
the Student pdf [18]

f(yt|ut, d(t− 1)) ≡

≡ Syt (ŷt,
yDt−1(1 + ζt), νt) ≡

Γ(0.5νt) [
yDt−1(1 + ζt)]

−0.5

√
πΓ(0.5(νt − 1))

(

1 +
ê2t

yDt−1(1+ζt)

)0.5νt

êt ≡ yt − ŷt ≡ yt − θ̂′t−1ψt ≡ prediction error

ζt ≡ ψ′t
ψL−1t−1

ψD−1t−1
(
ψL′t−1

)−1
ψt. (14)

Proposition 2 (Stopping for a normal ARX factor) Let us perform a single step of
recursive least squares, i.e. updating the statistics Lt−1, Dt−1, νt−1 determining the conjugate
pdf GiWθ,r(Lt−1, Dt−1, νt−1) by the data vector Ψt. Let us store

yDt−1 and quantities ζt, êt
obtained as a by-product. Let us evaluate the following

F (νt) ≡ 2 ln(Γ(0.5(νt − 1)))− 2 ln(Γ(0.5νt)) +
∂ ln (Γ(0.5νt))

∂(0.5νt)
(15)

G(ζt) ≡ ln(1 + ζt)−
ζt

1 + ζt

ρt ≡ ê2t
yDt−1(1 + ζt)

H(νt, ρt, ζt) ≡ (νt − 1) ln(1 + ρt)− νt
ρt

(1 + ρt)(1 + ζt)
.

Then, the estimation meets the stopping criterion (10) if

Q ≡ 0.5(F (νt) +G(ζt) +H(νt, ρt, ζ)) < ε. (16)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 18:1–18
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Proof: It holds that Q(d(t)) ≡

≡
∫

f(Θ|d(t)) ln
(

f(Θ|d(t))
f(Θ|d(t− 1))

)

dΘ =

= − ln(f(yt|ut, d(t− 1)) +
∫

f(Θ|d(t)) ln(f(yt|ut, d(t− 1),Θ)) dΘ ≡

≡ − ln
[

Syt

(

θ̂t−1ψt,
yDt−1(1 + ζt), νt

)]

+

+

∫

GiWθ,r(Vt, νt)

{

−0.5 ln(2πr)− 0.5(yt − θ
′ψt)

2

r

}

dr dθ =

= 0.5 ln(π) + ln(Γ(0.5(νt − 1)))− ln(Γ(0.5νt)) + 0.5 ln [ yDt−1(1 + ζt)] +

+ 0.5νt ln

(

1 +
ê2t

yDt−1(1 + ζt)

)

− 0.5 ln(2π)− 0.5 ln ( yDt) + 0.5 ln(2) +

+ 0.5
∂ ln (Γ(0.5νt))

∂(0.5νt)
− 0.5νt

(

yt − θ̂′tψt
)2

yDt
− 0.5ψt ψL−1t ψD−1t

(
ψL′t

)−1
ψt =

= 0.5







2 ln(Γ(0.5(νt − 1)))− 2 ln(Γ(0.5νt)) +
∂ ln (Γ(0.5ν))

∂(0.5ν)
︸ ︷︷ ︸

F (νt)

+ ln(1 + ζt)−
ζt

1 + ζt
︸ ︷︷ ︸

G(ζt)

+

+ (νt − 1) ln
(

1 +
ê2t

yDt−1(1 + ζt)

)

− νt
ê2t

yDt−1(1 + ζt)
(

1 +
ê2t

yDt−1(1+ζt)

)

(1 + ζt)
︸ ︷︷ ︸

H

(

νt,
ê2
t

yDt−1(1+ζt)
,ζt

)







,

where we use identities known in connection with recursive least squares

yt − θ̂′tψt =
êt

1 + ζt

ψ′t
ψL−1t

ψD−1t
(
ψL′t

)−1
ψt = ζt/(1 + ζt),

yDt =
yDt−1 +

ê2t
1 + ζt

.

The above algorithm uses quantities evaluated during estimation anyway. The function F (νt)
can be cheaply numerically evaluated using standard approximations of ln(Γ(ν)) as well as its
derivative [26]. It is also possible to construct its direct numerical approximation without
approximating internal functions. Functions G and H are also simple and if need be they

can be approximated by simpler functions, too. The fact that ζt and
ê2t
1+ζt

are obtained as

by-product of the updating of the L′DL decomposition of the matrix V by the data vector Ψ
can be seen as follows

1 + ζt =

∣
∣ ψL′t

ψDt
ψLt

∣
∣

∣
∣ ψL′t−1

ψDt−1
ψLt−1

∣
∣
=

γ+1
∏

i=2

Di;t

Di;t−1
,

ê2t
1 + ζt

= yDt − yDt−1 = D1;t −D1;t−1. (17)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 18:1–18
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The discussed stopping rule is directly applicable whenever an ARX model is estimated.
Extensions to a generalized regression model predicting a known non-linear transformation of
the output [18] or to ARX models working on a filtered regression vector [27] make its potential
use quite wide.
Sometimes, the time series is expected to converge and its ARX or other model is not

estimated. Then, it is useful to estimate very simple version of ARX model just for stopping
purposes. Whenever the Proposition 1 is applicable, the simple model converges almost surely
and the stopping rule can be applied to it. For instance, by applying the stopping rule to the
simplified models

Nyt(θ1yt−1 + θ2ut + θ3, sr) or Nyt(θ1yt−1, sr) etc.,
we get practically useful universal and still rather simple stopping tests.

5. APPLICATION TO DISCRETE-VALUED DATA

The parameterized model

f(yt|ut, d(t− 1),Θ) ≡ f(yt|Θ) ≡ Θyt = exp
[
M∑

y=1

By(yt) ln(Θy)

]

yt = 1, . . . ,M ≡ the number of y values (18)

By(yt) =

{
1 if y = yt
0 otherwise

, Θ = [Θ1, . . . ,ΘM ] ∈
{

Θy ≥ 0,
M∑

y=1

Θy = 1

}

is assumed here. It is parameterized by unknown time-invariant probabilities Θyt assigned to
possible outputs yt. This model has a widespread use in Bayesian non-parametric estimation
[17]. In Section 6, its engineering version is applied to the Bayesian estimation of a credibility
interval.
The formulas (18) indicate that the model belongs to EF (4) with A(Θ) = 1 and

C(Θ) = [ln(Θ1), . . . , ln(ΘM )]
′. The conjugate prior pdf can then be determined in the self-

reproducing Dirichlet form

f(Θ|V ) ≡
∏M
y=1Θ

Vy−1
y

B(V ) , B(V ) ≡
∏M
y=1 Γ(Vy)

Γ
(
∑M
y=1 Vy

) , Vy > 0

and the estimation reduces simply to the counting formula Vy;t = Vy;t−1+By(yt). The identities
Γ(x+1) = xΓ(x), f(yt|ut, d(t−1)) = B(Vt)/B(Vt−1) imply the following form of the predictive
probability

f(yt|ut, d(t− 1)) ≡ f(yt|y(t− 1)) =
Vyt;t−1
νt−1

≡ Θ̂yt;t−1, νt−1 ≡
M∑

y=1

Vy;t−1.

Note that the recursion for the statistic Vt can be converted into a recursion for the predictor

Θ̂y;t = Θ̂y;t−1 + ν
−1
t

(

By(yt)− Θ̂y;t−1
)

, Θ̂y;0 =
Vy;0
ν0

, y = 1, . . . ,M,

νt = νt−1 + 1, ν0 =

M∑

y=1

Vy;0.
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The final relationship needed for specializing the stopping test (10) reads

E [ln(Θy)|V ] =
∂

∂Vy
ln(Γ(Vy))−

∂

∂ν
ln(Γ(ν)).

Validity of this formula can be simply seen by taking derivatives of the integral defining B(V )
with respect to its “parameter” Vy.
Thus, the necessary condition for stopping at time t reads

Q(Vt) ≡ − ln
(
Vyt;t−1
νt−1

)

+
∂

∂Vyt;t
ln(Γ(Vyt;t))−

∂

∂νt
ln(Γ(νt)) < ε

with ε > 0 being the chosen stopping threshold. This gives an overall estimation algorithm
combined with stopping.

Algorithm 1 (Estimation with stopping for the Dirichlet model)
Initial phase

• Select prior statistics V0 ≡ [V1;0, . . . , VM ;0], Vy;0 > 0.
• Evaluate ν0 =

∑M
y=1 Vy;0.

• Select a stopping threshold ε > 0 and set t = 0.
• Specify the largest number T of measurements to be done.

Sequential phase

1. Set t = t+ 1 and measure yt.

2. Set Q = − ln
(
Vyt;t−1

νt−1

)

.

3. Perform the estimation step Vyt;t = Vyt;t−1 + 1, νt = νt−1 + 1.
4. Complete evaluation of the test statistic Q = Q+ ∂

∂Vyt;t
ln(Γ(Vyt;t))− ∂

∂νt
ln(Γ(νt)).

5. Go to the 1st step of the sequential phase if Q ≥ ε and t < T , otherwise stop.

6. ESTIMATION OF CREDIBILITY INTERVALS

We demonstrate the usefulness of Algorithm 1 for stopping in the non-parametric estimation of
credibility intervals [y, y] assigned to an unknown uni-modal pdf f(y). The credibility bounds
y, y searched for fulfil

∫ y

y

f(y) dy = β ∈ (0.5, 1) given , y − y → min .

The estimates are based on t mutually independent, real-valued, samples yt ∼ f(yt).
A pair of bounds −∞ < y < y <∞ splits the real line containing support of f(y) into three

intervals I1 ≡ [−∞, y], I2 ≡ (y, y) and I3 ≡ [y,∞]. The relevant, finitely parameterized, model
is then

f(yt ∈ In|y, y, y(t− 1),Θ) =
3∏

i=1

Θδini , (19)
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where δin = 1 if n = i and zero otherwise. The probabilities Θi ≥ 0,
∑3
i=1Θi = 1 are unknown

(as the pdf f(y) is unknown) and are constant for a fixed bounds y, y. Construction of the
credibility interval coincides with the selection of these bounds so that the estimate of Θ2 is
close to the given credibility level β ∈ (0.5, 1) while the length of the interval I2 is as small
as possible. In other words, we require E [Θ2|y, y, y(t)] ≈ β with the smallest y − y. At the
same time, we decide whether to continue collecting new data by applying the stopping rule
(10) for discrete observations. It defines indirectly the precision with which the probability
of the credibility interval can be tuned. For simplicity, we take the uniform prior pdf on Θ,
irrespective of the chosen y, y. Thus,

E [Θi|y, y, y(t)] =
the number of ys within Ii +1

t+ 3
. (20)

For fixed observations y(t), the credibility bounds are obtained by inspecting observations y(t)
ordered in an ascending manner. Loosely speaking, the candidates for credibility bounds are
then the nearest observed values among which the portion of the observed data is the closest
one to the pre-specified credibility level β ∈ (0.5, 1).
With this choice, we have all the ingredients needed for applying the stopping algorithm

(1). The overall algorithm of sequential non-parametric estimation of credibility interval is as
follows.

Algorithm 2 (Sequential estimation of the credibility interval)
Initial phase

• Select credibility level β ∈ (0.5, 1).
• Specify the largest number T of measurements to be taken.
• Specify the stopping threshold ε > 0.
• Define the smallest number of observations t to be processed without stopping. Formula
(20) implies that if all t measurements fall into I2 then E [Θ2|y(t)] ≥ β is equivalent to
t ≥ (3β − 1)/(1 − β). Note that the right hand side of this inequality is at least 1 for a
meaningful β > 0.5.

• Measure data y(t) and order them into ỹ(t) in an ascending way.

Sequential processing for t = t+ 1, t+ 2, . . . , T .

1. Measure yt and order ỹ(t− 1) with yt into ascending ỹ(t).
2. Set the number of data that will not belong into the credibility interval oj = floor[t(1 − β) +
1 − 3β], where floor gives the nearest integer smaller than its argument. This choice of oj
guarantees (see below) that Θ̂2;t ≥ β. It is meaningful for t ≥ t.

3. Initialize the indices of data omitted left lj = 1 and right rj = t from the constructed credibility
interval.

4. Search for credibility bounds for
j = 1, . . . , oj − 1

if ỹ
(
lj + 1

)
− ỹ

(
lj
)
> ỹ ( rj)− ỹ ( rj − 1) set lj = lj + 1 else set rj = rj − 1

end % of the j cycle
y = ỹ

(
lj
)
, y = ỹ ( rj) % lower and upper credibility bounds

5. Specify estimation and test statistic
Q(d(t)) = ln(t+ 2) % test statistic
νt = t+ 3 % degrees of freedom
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12 M. KÁRNÝ, J. KRACÍK, I. NAGY AND P. NEDOMA

Q(d(t)) = Q(d(t))− ∂
∂νt
ln(Γ(νt))

V1;t =
lj + 1, V3;t = t− rj + 2, V2;t = νt − V1;t − V3;t

if yt < y

Q(d(t)) = Q(d(t))− ln (V1;t − 1) + ∂
∂V1;t

ln(Γ(V1;t))

else
if yt ≤ y

Q(d(t)) = Q(d(t))− ln (V2;t − 1) + ∂
∂V2;t

ln(Γ(V2;t))

else
Q(d(t)) = Q(d(t))− ln (V3;t − 1) + ∂

∂V3;t
ln(Γ(V3;t))

end % end of the test where yt is
Θ̂3;t =

V3;t

νt
, Θ̂1;t =

V1;t

νt
, Θ̂2;t = 1− Θ̂3;t − Θ̂1;t % estimates, unnecessary for stopping

if ε > Q(d(t))
stop and take the found credibility bounds as the final ones

else
continue in Sequential processing

7. ILLUSTRATIVE EXAMPLES

The simulated examples presented here should help to give an insight into the properties of
the proposed stopping rule.

7.1. Recursive estimation of the dynamic ARX factor

Recursive estimation stopping of a single-input single-output ARX model is presented in this
subsection.

The simulated system is the discrete transformation of the continuous system with transfer
function F (s) = 1/(1+s)2. Its discrete version, obtained with a sampling period of 0.1 seconds,
gives

yt = 1.81yt−1 − 0.8187yt−2 + 0.00468ut + 0.00438ut−1 + et,

in which et is white zero-mean normal noise with variance r = 0.0001. Meanwhile the input
ut is an independent white zero-mean normal noise with the same variance 0.0001.

Two hundred of input-output data pairs employed for estimation are displayed in Fig. 1 (note
differences in scales). Bayesian recursive estimation of the ARX model of correct structure is
illustrated by trajectories of the point estimates of the auto-regression coefficients a1=1.81,
a2=-0.8187 in the left subplot of Fig. 2. True values of the auto-regression coefficients are
marked by a dotted line. The right subplot of Fig. 2 shows the trajectory of the test statistic
Q(d(t)) (10). Possible thresholds 0.5%, 1% and 2 % are marked by dotted lines. The test
statistic Q(d(t)) reaches the threshold 2% after processing t ≈ 50 data samples, the threshold
1% after t = 65 data samples and 0.5% after t = 110 data samples. The increase of Q(d(t))
above thresholds, observed without stopping, reflects both the suboptimal and stochastic
nature of the stopping rule. Practically, the threshold values 0.05%, 1% are plausible as
confirmed by a range of other experiments.
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Figure 1. Simulated inputs and outputs
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Figure 2. Left: trajectories of point estimates of auto-regression coefficients. Right: the trajectory of
the test statistic Q(d(t)).
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Figure 3. Data clusters and estimated mixture

7.2. Estimation of a probabilistic mixture

The example presented here illustrates how the stopping rule applied to a simplified model
may be employed in complex estimation tasks when a large amount of data for processing is
available.

Mutually independent two-dimensional data items were generated by a probabilis-
tic mixture with the normal components (pdfs) Ndt([1, 0], R), Ndt([−0.5, 0.866], R),
Ndt([−0.5,−0.866], R), R =

[
0.1 0.01
0.01 0.1

]

, mixed with probabilities 1/6, 1/3, 1/2.

The data clusters and contours at simulated 95% equiprobability levels are displayed in the
left subplot of Fig. 3.

The mixture is estimated using a novel projection algorithm [28, 29]. The resulting contours
of the posterior pdf are shown in the right subplot of Fig. 3.

Recursive projection estimation [28] is the basic building block in complete mixture
estimation that includes initialization of the mixture estimation [30] and estimation of the
mixture structure. The repetitive estimation is then computationally intensive especially in
higher-dimensional cases. Then, the use of sequential stopping is vital.

It can be shown [30] that the pdf of processed data f(d(t)|v) is an adequate measure of the
inspected model variant v. Thus, it makes sense to stop when its values reach steady state. This
makes us to estimate together with mixture a static ARX log-normal model Nln(f(d(t)|v))(θ, r)
and to stop when this auxiliary simple estimation stabilizes. A trajectory of f(dt|d(t − 1), v)
is plotted in the left part of Fig. 4 and the corresponding test statistic Q(d(t)) is displayed in
the right part of this figure. In this case, a sample size slightly above 100 is sufficient to reach
stationarity. It corresponds to a threshold value of 0.5%. The sample size to reach stationarity
is surprisingly low, which will bring substantial computational speed-up of the overall mixture
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Figure 4. Trajectories of posterior data likelihood and test statistic

estimation and extend applicability to a significantly larger set of practical problems.

7.3. Estimation of credibility intervals

The result of the previous paragraph indicates the possibility of substantial mixture estimation
speeding up. To be sure that this promising result is not random, we evaluate here a credibility
interval for the moments of stopping. For it, the estimation previously done is repeated on
independent realizations. With each run, the time needed to reach a stationary state is recorded
and Algorithm 2 is used for checking the need for a further realization. The repetition was
stopped when the test statistics reached the threshold level 0.5%.

The stopping moments of individual runs are shown in Fig. 5, the left subplot, the value of
the test statistics is in the right subplot.

For the chosen credibility level of β = 0.7, the credibility interval found is < 101, 105 >
steps.

In order to check this result further, we made 100 repetitions of the above experiment
giving 100 independent realizations of the number of iterations recommended by the analyzed
stopping rule. All runs stopped after 39 or 40 realizations. Both these results indicate the
reliability of the sequential estimates obtained.

8. CONCLUDING REMARK

Sequential testing is an old but underestimated direction that can substantially shift the
boundary of practically solvable estimation and simulation problems. The test elaborated in
this paper serves as a practically useful confirmation of this claim. A wide range of applications
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16 M. KÁRNÝ, J. KRACÍK, I. NAGY AND P. NEDOMA

0 10 20 30 40
101

102

103

104

105

106

107

108

109

110

111

iteration

tim
e

Stopping time

0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time

Q
threshold

Figure 5. Independent realizations of stopping moments and the trajectory of the test statistic

are especially seen in Monte Carlo evaluations that form the core of many evaluation tools,
e.g. [9, 31]. The complement offered here is expected to increase their efficiency substantially.
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M. Valečková, M. Kárný, and K. Warwick, Eds., Praha, September 1998, pp. 145–150, ÚTIA AV ČR.
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