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I. Introduction

This paper deals with composition of probability density functions (pdfs) in a sense of composition of
information pieces. As a natural example of such a composition we can give a living creature forming
its image of the environment using information provided by its senses. Such information pieces are of
different nature, they may be partially contradictory to each other, or some of them may be missing. In
spite of that, living creatures are able to process such information completely naturally.

In this sense, roughly speaking, pdf composition means to find a joint pdf for given particular
“marginal” pdfs. The given pdfs are arbitrary, and random quantities, for which the particular pdfs
are given, may overlap. Therefore, a joint pdf, the marginal distributions of which are equal to the
given pdfs, need not exist. What we are looking for is a joint pdf which is, in a certain sense, close to
all given “marginal” pdfs. Such kind of composition is needed in applications like, e.g., sensor fusion
[1] or multiple participant decision making [2].

II. Problem Formulation

For simplicity, in this paper we use a particular example instead of general formulation, nevertheless,
a general task of this type can be formulated in the exactly same way and the outcomes presented in
this paper are applicable as well.

Let us consider three random quantitiesx1, x2, x3, two pdfsf1(x1, x2), f2(x2, x3), and nonnegative
coefficientsα1, α2, such thatα1 + α2 = 1. What we are searching is a joint pdff(x1, x2, x3) whose
marginal pdfs are, in a certain sense, close to the given pdfsf1(x1, x2), f2(x2, x3) with respect to the
weightsα1, α2. To be close to this two pdfs are contradictory requirements. From this point of view,
the marginals of the resulting pdff(x1, x2, x3) provide a certain compromise betweenf1(x1, x2) and
f2(x2, x3) and the coefficientsα1, α2 determine “how close” the resulting pdf should be to the given
ones – the higherα1 is the closer tof1(x1, x2) the corresponding marginal pdf off(x1, x2, x3) should
be (and similarly forα2). The coefficientsα1, α2 can represent our belief to the corresponding sources
of information.

A solution, which would be suitable from our point of view, should fulfil certain “natural” require-
ments:

• The given pdfs are supposed to be inconsistent in general, i.e., a joint pdf, sayg(x1, x2, x3), such
thatf1(x1, x2) andf2(x2, x3) are marginal pdfs ofg(x1, x2, x3) need not exist.

• The link between information represented by the given pdfs and the resulting one should be clear.
• The result of the composition should not depend on the order in which the given pdfs are pro-

cessed.
• The process of composition should not add any information, which is not in the given pdfs.
• The considered variables may be discrete as well as continuous.
• Uniqueness of the resulting pdf is to be guaranteed, if it is necessary.



Of course, there are many publications (e.g., [3], [4]) dealing with similar problems, however, none
of them fulfil all of the preceding requirements.

1. Minimization of a Weighted Sum of Kullback-Leibler Divergences

It can be shown that all of the requirements are fulfilled if we formulate the composition as an
optimizing task – minimization of a weighted sum of Kullback-Leibler divergences of given pdfs and
corresponding marginal pdfs of the “common approximation”, i.e.,

f(x1, x2, x3) ∈ Argmin
f̃(x1,x2,x3)

α1D(f1(x1, x2)||f̃(x1, x2)) + α2D(f2(x2, x3)||f̃(x2, x3)), (1)

whereD(f(x)||g(x)) =
∫

f(x) ln f(x)
g(x)

dx is a Kullback-Leibler divergence [5] of pdfsf(x) andg(x),

f̃(x1, x2), f̃(x2, x3) are marginal pdfs of̃f(x1, x2, x3).
It is proved [6] thatf(x1, x2, x3) fulfils (1) iff it holds

α1f1(x1, x2)f(x3|x1, x2) + α2f2(x2, x3)f(x1|x2, x3) = f(x1, x2, x3). (2)

Unfortunately, an analytical solution of equations corresponding to (2) is known for a few, very
simple, cases only. However, for discrete quantities an approximate solution can be found using an
iterative algorithm described in [6]. The algorithm is based on repetitive use of an operatorA, which
assigns to an arbitrary pdff(x1, x2, x3) the pdf

Af(x1, x2, x3) = α1f1(x1, x2)f(x3|x1, x2) + α2f2(x2, x3)f(x1|x2, x3). (3)

If we denote the weighted sum of KL divergences in (1)D(f̃), i.e.,

D(f̃) = α1D(f1(x1, x2)||f̃(x1, x2)) + α2D(f2(x2, x3)||f̃(x2, x3))

then for an arbitrary pdff(x1, x2, x3) it holds

D(Af) ≤ D(f)

with equality iff f is solution of (2). It can be shown that for an arbitrary initial approximation
f0(x1, x2, x3) the sequencef0, Af0, A(Af0), . . . converges to the solution of (2)[6].

Such an algorithm can be theoretically used for continuous quantities as well, nevertheless, in this
case the approximations do not remain in any “reasonable class” of pdfs, for instance, finite mixtures of
pdfs from a certain exponential family. For this reason, the approximations can be hardly represented
in a computer, whereas for discrete quantities the approximations are easily represented by a finite grid.

2. Example

Using of the iterative algorithm based on (3) we demonstrate on a simple example for which an
analytical solution is not known. Let us consider two discrete random quantitiesx1, x2 with values in
{1, 2, . . . , 80}, three pdfsf1(x1), f2(x2), f3(x1, x2), and weightsα1, α2, α3. The corresponding opera-
tor A has the following form

Af(x1, x2) = α1f1(x1)f(x2|x1) + α2f2(x2)f(x1|x2) + α3f3(x1, x2).

The pdfsf1(x1), f2(x2), f3(x1, x2) are selected as discretized Gaussian pdfs (Fig. 1), (Fig. 2),
(Fig. 3) and the starting approximationf0(x1, x2) is a uniform pdf. Ratios of the weightsα1 : α2 : α3

are 3:2:4. The approximation after 100 iterationsf(x1, x2) is in (Fig. 4). Evolution ofD(f) during
iterations is plotted in (Fig. 5).
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Figure 3: Evolution ofD(f)

III. Concluding Remarks

We have formulated composition of probability density functions as an optimizing task. The func-
tional minimized (1) is a weighted sum of Kullback-Leibler divergences of given particular pdfs and
corresponding marginal pdfs of their “common approximation”. Composition of pdfs defined in such



a way is suitable for applications in which a “global information” must be composed from, potentially
inconsistent, “information pieces”.

An analytical solution of (1) is known only for a few special cases. In general, it must be solved
approximately. An iterative algorithm for approximate solution is suggested in [6]. This algorithm is
potentially able to find an arbitrarily good approximation, nevertheless, many problems remain to be
solved to make it practically useful. The most important are:

• Find a practically usable modification of the algorithm for continuous quantities.
• Find an efficient stopping rule for the algorithm.
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