
874 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 7, JULY 2005

Multichannel Blind Deconvolution
of Spatially Misaligned Images

Filip Šroubek and Jan Flusser, Senior Member, IEEE

Abstract—Existing multichannel blind restoration techniques
assume perfect spatial alignment of channels, correct estimation
of blur size, and are prone to noise. We developed an alternating
minimization scheme based on a maximum a posteriori estimation
with a priori distribution of blurs derived from the multichannel
framework and a priori distribution of original images defined by
the variational integral. This stochastic approach enables us to
recover the blurs and the original image from channels severely
corrupted by noise. We observe that the exact knowledge of the
blur size is not necessary, and we prove that translation misregis-
tration up to a certain extent can be automatically removed in the
restoration process.

Index Terms—Image restoration, maximum a posteriori (MAP)
estimator, multichannel blind deconvolution, subspace methods,
variational integral.

I. INTRODUCTION

I N MANY applications, such as microscopy imaging, re-
mote sensing, and astronomical imaging, observed images

are often degraded by blurring. Examples of the most common
sources of blur are atmospheric turbulence, relative motion be-
tween a camera, and an object or wrong focus. Restoration of
the degraded images is a necessary step that precedes further
image analysis.

First, a proper mathematical model that simulates the acqui-
sition system is required. Images may be regarded as either de-
terministic or stochastic signals, blurred by linear or nonlinear
processes and corrupted with additive or multiplicative noise. In
the sequel, we assume a linear filter model with additive uncor-
related noise, i.e.

(1)

where and are the degraded image, system PSF (blur),
original image, and noise, respectively, and denotes convolu-
tion. This model accurately describes many common degrada-
tions and that justifies its frequent use.

The amount of a priori information about the degradation,
like the size or shape of blurring functions and the noise param-
eters, significantly influences the success of restoration. When
the blur function is known, many conventional approaches
have been developed to compensate for the distortion [1].
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The problem is ill posed, and, to overcome this difficulty, it is
common to use regularization. When the blur is unknown, we
talk about blind image restoration. A basic survey of different
blind restoration techniques is given in [2]. Most of the methods
are iterative or recursive. They involve regularization terms
based on available prior information which assure various
statistical properties of the image and constrains the estimated
image and/or restoration filter. As in the nonblind case, reg-
ularization is required to improve stability. For images with
sharp changes of intensity, the appropriate regularization is
based on variational integrals. A special case of the variational
integral, total variation, was first proposed in [3]. Minimization
of the variational integrals preserves edges and fine details in
the image and it was applied to image denoising [4]–[6] and
to blind restoration [7]–[9], as well. Since the blind case is
strongly ill posed, all the methods suffer from convergence and
stability problems. If the images are smooth and homogeneous,
an autoregressive model can be used to describe the measuring
process. The autoregressive model simplifies the blind problem
by reducing the number of unknowns and several techniques
were proposed for finding its solution [10]–[12].

There are many applications, where different blurred ver-
sions of the same original image are observed through multiple
acquisition channels. We distinguish in general two multi-
channel (MC) models: the single-input multiple-output (SIMO)
model and the multiple-input multiple-output (MIMO) model.
The SIMO model (see Fig. 1) is typical for one-sensor imaging
under varying environment conditions, where individual chan-
nels represent the conditions at time of acquisition. The MIMO
model refers, for example, to multisensor imaging, where
the channels represent different spectral bands or resolution
levels. Color images are the special case of the MIMO model.
An advantage of MIMO is the ability to model cross-channel
degradations which occur in the form of channel crosstalks,
leakages in detectors, and spectral blurs. Many techniques for
solving the MIMO problem were proposed and could be found
in [13]–[16]. In the sequel, we confine ourselves to the SIMO
model exclusively and any reference to the term MC denotes
the SIMO model. Sometimes the SIMO model is referred to
in the literature as a multiframe model. Following the above
notation, we define the SIMO model as:

(2)

where is the number of channels. Examples of such MC mea-
suring processes are common, e.g., in remote sensing and as-
tronomy, where the same scene is observed at different time
instants through a time-varying inhomogeneous medium such
as the atmosphere; in confocal microscopy, where images of
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the same sample are acquired at different focusing lengths; or
in broadband imaging through a physically stable medium, but
which has a different transfer function at different frequencies.
Nonblind MC restoration is potentially free of the problems
arising from the zeros of blurs. The lack of information from
one blur in one frequency can be supplemented by the informa-
tion at the same frequency from the others. Intuitively, one may
expect that the blind restoration problem is also simplified by
the availability of different channels. Two classes of MC blind
image restoration algorithms exist. Extensions of single-channel
blind restoration approaches form the first class, but since they
suffer from similar drawbacks as their single-channel counter-
parts, they are of not much interest. The other class consists of
intrinsic MC approaches and will be considered here.

One of the earliest intrinsic multichannel blind deconvolu-
tion (MBD) methods [17] was designed particularly for images
blurred by atmospheric turbulence. Harikumar et al. [18] pro-
posed an indirect algorithm, which first estimates the blur
functions and then recovers the original image by standard
nonblind methods. The blur functions are equal to the minimum
eigenvector of a special matrix constructed by the blurred im-
ages. Necessary assumptions for perfect recovery of the blur
functions are noise-free environment and channel coprimeness,
i.e., a scalar constant is the only common factor of the blurs.
Giannakis et al. [19] (and at the same time Harikumar et al.
[20]) developed another indirect algorithm based on Bezout’s
identity of coprime polynomials which finds restoration filters
and by convolving the filters with the observed images recovers
the original image. Both algorithms are vulnerable to noise
and even for a moderate noise level restoration may break
down. In the latter case, noise amplification can be attenuated
to a certain extent by increasing the restoration filter order,
which comes at the expense of deblurring. Pai et al. [21],
[22] suggested two MC restoration algorithms that, contrary
to the previous two indirect algorithms, estimate directly the
original image from the null space or from the range of a
special matrix. Another direct method based on the greatest
common divisor was proposed by Pillai et al. in [23]. In noisy
cases, the direct algorithms are more stable than the indirect
ones. Interesting approaches based on the ARMA model are
given in [24], [25]. MC blind deconvolution based on the
Bussgang algorithm was proposed in [26], which performs
well on spatially uncorrelated data, such as binary text images
and spiky images. Most of the algorithms lack the necessary
robustness since they do not include any noise assumptions
(except ARMA and Bussgang) in their derivation and miss
regularization terms. Recently, we have proposed an iterative
MC algorithm [27] that performs well even on noisy images.
It is based on least-squares deconvolution by anisotropic reg-
ularization of the image and between-channel regularization
of the blurs.

Unfortunately, all the above mentioned multichannel blind
deconvolution methods contain two ultimate but unrealistic as-
sumptions. They require exact knowledge of the PSFs support
size and individual channels are supposed to be perfectly spa-
tially aligned (registered). These strong assumptions are seldom
true in practice and in fact they have prevented the usage of
multichannel blind deconvolution methods in real applications.

Fig. 1. Single-input multiple-output model: The original scene is captured by
K different channels which are subject to various degradations.

A realistic image acquisition model contains spatial coordinate
transformations that describe geometric differences between
the original scene and the th channel

(3)

Image deformations originate from the fact that the channels
are two-dimensional (2-D) projections of the three-dimensional
world, generally acquired from different viewpoints and/or
with different camera orientation. In simple cases, is limited
to rotation and translation, but, in real applications, complex
nonlinear deformations may be present, too. Image restoration
then consists of two stages: image registration, which brings
the channels into spatial alignment, followed by multichannel
blind deconvolution.

There have been published hundreds of image registration
methods (see [28] for the most recent survey) and even spe-
cial algorithms for registering blurred channels were developed
[29]–[34]. Despite this effort, perfect registration accuracy can
rarely be achieved, namely in the case of blurred and noisy im-
ages. The registration error results in a slight between-channel
shift of up to a few pixels, which cannot be further compensated
in the registration stage. Thus, channel-to-channel registration
simplifies (3) to the form

(4)

where is a small unknown alignment error.
Model (4) also applies to numerous practical tasks directly

without the preceding registration process. Such situations
typically occur when the camera is subject to vibrations or
in multitemporal imaging when the camera slightly moves
between consecutive channel acquisitions and/or the scene is
not perfectly still.

The deconvolution methods mentioned above cannot restore
images degraded according to model (4). If they were applied,
the channel misregistrations would lead to strong artifacts in the
restored image.

In this paper, we introduce the first MBD method which does
not require perfect alignment of the individual channels and
the knowledge of the blur size. Exploiting the stochastic model
and the Bayes rule in Section IV, we express the a posteriori
probability of the original image in terms of the conditional
probability and two a priori probabilities, which are derived
from properties of bounded variation functions and from the
MC framework. An alternating minimization (AM) algorithm
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as a solution to a maximum a posteriori probability (MAP) es-
timator is also given here. In Section V, we examine the mini-
mization algorithm for its ability to alleviate the blur-oversized
problem and demonstrate its convergence properties. We illus-
trate that the channel misalignment can be perfectly neutralized
by properly oversizing the blur support in Section VI.

II. NOTATION

We use the following conventions throughout this paper:
2-D space of integers;
image function with a finite rectangular
support;
support size of the image ;
position at the th row and the th column
in the image;
image value at the position ;

image column vector,
lowercase bold letters;
matrix, uppercase bold letters;

norm.
We endow the vector space with the following operators:

“ ” and “ ” defined in a standard way;
abbreviated form for ;

;
and similarly other

binary relations “ ,” “ ,” etc.
For our next discussion, it is necessary to define convolu-

tion with a variable output support in matrix-vector notation.
We follow the definition in [18]. Let and be two im-
ages with support and

, respectively, and
define an arbitrary output rectangle, where . We separate

column-wise and address individual columns as .

We denote by a Toeplitz-block-Toeplitz matrix of size
such that the concatenated result of con-

volution is equal to .
This is given by

...
...

...

and

...
...

...
...

(5)

where for
and the size of is .

III. PROBLEM FORMULATION

We first define the SIMO degradation model in the discrete
domain as follows. Suppose that an original (input) image

has support . The input image propagates
through different channels that behave as linear filters each
with a finite impulse response (blurs) . Let
the maximum support of the blurs be . In each channel, the
image is further degraded with additive white Gaussian noise
(AWGN) of zero mean and variance and shifted by

. Let denote the maximum observed shift. On
the output, we receive degraded and shifted images with
minimum support , where .
The whole model can be expressed as

where , and is the delta function at .
By concatenating columns of the images, we can rewrite the
previous equation in matrix-vector notation as

where , and are corresponding column image vectors.
is of size

and is of size
. Both matrices are constructed according to (5)

and perform discrete convolution with the reduced output size.
We refer to this type of convolution as “valid,” since the result
is defined only on the area where both convolution arguments
are properly defined. It is easy to verify that the matrix product

denotes “valid” convolution with a mask
of size . This mask is a shifted version

of the original blur . By concatenating the output vectors
and the shifted blur vectors ,

the MC model can be rewritten in two equivalent forms

(6)

where , and is a
block-diagonal matrix with blocks each performing convolu-
tion with the image , i.e.

...
. . .

...

We have obtained a standard MC convolution model and all con-
clusions for blur restoration in [18] and [19] apply also to our
shifted version. When noise is omitted, it follows from (6) that
the “valid” convolution matrix for some ar-
bitrary support is given by

(7)
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where and . The
above equality determines the rank property of and is utilized
in the following lemma.

First, we recall an important definition from [19]. Let
denote the 2-D transform of the blur . The

polynomials are called “weakly coprime” if their
only common factor is a scalar constant.

Lemma 1: Suppose that are weakly
coprime, in (7) has full column rank and the noise term is not
present in (6). Then, all solutions to

(8)

have the form

if
if
otherwise

where is some spurious factor of size and
is some scalar.
The proof is similar in nature to the proof given in [18]

except that is included in size constraints as discussed
below. The above lemma states that in the noiseless case,
if the estimated blur size is equal to the sum of the
maximum size of the original blurs and the maximum
shift , then the true shifted blurs can be recovered precisely
except to some scalar factor. This magnitude ambiguity can
be resolved by stipulating, e.g., , which is a
standard energy preserving assumption. For oversized , the
solutions lie in a subspace of dimension . The
first assumption that the blurs are weakly coprime is satisfied
for many practical cases, since the necessary channel disparity
is mostly guaranteed by the nature of the acquisition scheme
and random processes therein. Refer to [18] for a relevant
discussion. The second assumption of full column rank is also
a mild one. For persistently exciting1 , the matrix has full
column rank provided that it has more rows than columns.
Let us assume that the blur size is correctly estimated, i.e.,

, then is of size
from which follows a size constraint

. Generally, is much larger than and
the size constraint is violated only if the channel shift is for
example . To rephrase and simplify the
condition, does not have full column rank if .

There are equations in (8), and after stacking
them into one system, we get

(9)

where

...
. . .

...
...

...
. . .

... (10)

for .

1Function u is called persistently exciting for size S if u�g is different
from zero for any g 6= 0, which is almost certainly true for real images
if S � S .

The motivation behind Lemma 1 is to reduce the problem of
identifying the blurs to a null-space problem, where the dimen-
sion of the null-space of is .

IV. MAP BLIND DECONVOLUTION

Adopting a stochastic approach, the restoration problem can
be formulated as a MAP estimation. We assume that the images

, and are random vector fields with given probability den-
sity functions (pdf) , and , respectively, and we
look for such realizations of and , which maximize the a
posteriori probability . We assume that and are
uncorrelated then, according to the Bayes rule, the relation be-
tween a priori densities and the a posteriori den-
sity is . The pdf
is a constant and can, thus, be omitted. The conditional pdf

follows from our model (6) and from our assump-
tion of AWGN, i.e.

(11)

where is the noise diagonal covariance matrix with
on the corresponding positions on the main diagonal. If the same
noise variance is assumed in each channel, reduces to a
scalar .

A. A Priori Distribution of the Original Image

The necessity of meaningful a priori probabilities becomes
often Achilles’ heel of Bayesian approaches. Several different
forms of the image a priori probabilities were proposed in the
literature. Some are suitable only for a specific class of images
and others are more general. The classical form chooses the
Laplacian operator as the inverse of the covariance matrix of

, i.e., , where denotes the discrete
Laplacian operator. The exponent is the discretization of

, where denotes the gradient of . Apart from
easy implementation, this pdf is not suitable for the prior model,
since the norm of the image gradient penalizes too much
the gradients corresponding to edges and an oversmoothing ef-
fect is observed. In real images, object edges create sharp steps
that appear as discontinuities in the intensity function. It is the
space of bounded variation (BV) functions that is widely ac-
cepted as a proper setting for real images. Rudin et al. [3] first
demonstrated very good anisotropic denoising properties of the
total variation . Existence and uniqueness of the
minimum of total variation is possible only in the BV space, in
which case denotes the gradient of in the distributional
sense. The same holds true for a more general case of convex
functions of measures , where is a strictly
convex, nondecreasing function that grows at most linearly. Ex-
amples of are (total variation), (hypersurface
minimal function), or . For nonconvex functions,
nothing can be said about the existence of the minimum. Never-
theless, nonconvex functions, such as
or (Mumford-Shah functional [35]), are often used
since they provide better results for segmentation problems.

Our a priori image distribution consists of the convex func-
tion of measures. The function is highly nonlinear and to over-
come this difficulty we follow a half-quadratic scheme proposed
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in [36] and [37], which introduces an auxiliary variable. Special
attention must be paid to the discretization of the image gradient

and relaxation of . If a second-order centered approxi-
mation of the first derivative is used, the prior pdf takes the form

(12)

where is given by

(13)

The auxiliary flux variable is similar to Geman’s line process
[38]. It denotes the edge strength between point and its
neighbors . For example, in the case of the
hypersurface minimal function , the flux
variable becomes . Matrix
is a positive semidefinite block tridiagonal matrix constructed
by that performs shift-variant convolution with . In the above
discretization, the norm of the image gradient is variant to ro-
tation. A more precise discretization is possible if we take into
account the diagonal values.

B. A Priori Distribution of the Blurs

We derive the a priori distribution directly from the
MC model. If the AWGN noise term is present in model (6),
then the left-hand side of (9) is not zero, but equal to a real-
ization of a Gaussian process with zero mean and covariance

. Matrix takes the form of in (10) with
replaced by . Our first estimate of the a priori pdf

is then given by

From Lemma 1, it follows that is close to singular and
the number of eigenvalues that cluster around the noise variance
is proportional to the degree of overestimation .
The expected blurs lie inside a subspace defined by eigenvectors
that correspond to these eigenvalues. We propose to construct
a priori by constraining to a set of admissible
solutions. The set of admissible solutions is defined by our
assumption that the blurs are positive and preserve energy;

. We write

if
otherwise

(14)

This leads to a prior pdf that is data dependent. From a strictly
theoretical point of view, one should use here a different set

of input data but degraded by the same blurs as the data in
question, or use one part of the input data for and perform
restoration on the other part.

The main difficulties are connected with the matrix . The
inverse of the matrix is not trivial and the matrix is constructed by
the blurs that are to be estimated. One way is to use an iterative
algorithm and update by estimated in the previous iteration.
This iterative maximization of w.r.t. closely resembles
the maximum-likelihood algorithm proposed by Harikumar
[18]. However, this updating procedure is difficult to justify.
We, therefore, propose to simplify and approximated it by a
diagonal matrix such that , where
denotes the main diagonal of the matrix. The elements of take
the form for . The value of

is not known in advance, but a good initial approximation
can be given. If , then , and we
use the bottom limit for .

C. AM–MAP Algorithm

The a posteriori pdf is composed of (11), (12), and
(14) and turns out to be

(15)

for and zero otherwise. The MAP estimation is then
equivalent to minimizing sub-
jected to . To find a minimizer of the energy function

, we perform alternating minimizations of over and .
The advantage of this scheme lies in its simplicity. Each term
in (15) is convex (but not necessarily strictly convex, especially,
when is oversized) and the derivatives w.r.t. and can be
easily calculated.

In summary, the AM–MAP algorithm alternates between two
steps

1)

(16)

2)

(17)

In step 1, the flux variable is updated according to (13).
Our AM approach is a variation on the steepest-descent

algorithm. The search space is a concatenation of the blur
subspace and the image subspace. The algorithm first descends
in the image subspace and after reaching the minimum, i.e.,

, it advances in the blur subspace in the direction
orthogonal to the previous one, and this scheme repeats.

We use the preconditioned conjugate gradient method (func-
tion pcg in Matlab) to solve the unconstrained minimization
problem (16) and fmincon (Optimization Toolbox) function
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to solve the constrained minimization problem (17). as a
function of both variables and is not convex. We cannot,
thus, guarantee that the global minimum is reached by the
AM–MAP algorithm. Nevertheless, our thorough testing have
shown good convergence properties of the algorithm for many
real problems. In the following experiments, the hypersurface
minimum function was used as , and the more precise
discretization involving diagonal terms was implemented. We
also assumed that the noise variance is known and is the
same in each channel. If this is not the case, the noise variance
can be assessed by standard noise estimation methods or an
approach of “trial and error” can be considered. The impact
of wrong can be easily observed. If the parameter is too
small, i.e., we assume less noise, the restoration process begins
to amplify noise in the image. If the parameter is too big, the
restoration process starts to segment the image.

D. Initial Guess

Setting appropriately initial blurs can help our iterative algo-
rithm to converge to the global minimum. This issue is impor-
tant especially for the overestimated blur size. One can readily
see that translated versions of the correct blurs give the same
maximum probability as long as they fit into our es-
timated blur size. We already know that the prior pdf of the blurs
is unable to distinguish between the correct blurs and the correct
blurs convolved with an arbitrary spurious factor. This makes a
negative impact on the convergence mainly if the channel mis-
alignment occurs, since new local minima appear for blurs that
cope with the misalignment by convolving the correct blurs with
an interpolating kernel. For example, to compensate a one-pixel
shift between two channels, the suboptimal solution is to shift
both blurs in the opposite direction by half a pixel and perform
an interpolation, while the correct solution (global minimum)
is to shift one of the estimated blurs by one pixel and leave
the other. To get closer to the correct solution, we, thus, pro-
pose to set the initial blurs to delta functions positioned at
the centers of gravity of blurs . More pre-
cisely, if the images were blurred with energy preserving PSFs

, the centers of gravity (cog) satisfy
for any that preserves energy. From

Lemma 1, it follows that our estimate is a good approxima-
tion of , and we can, thus, calculate the relative positions of
the centers of gravity. This technique enables us to compensate
for the channel shifts right from the start of the algorithm and
get away from the incorrect interpolated solutions.

V. OVERSIZED BLURS

It is difficult to analyze global convergence properties of the
algorithm (16), (17) due to the nonlinear term . Chan et al.
in [9] transformed a similar alternating minimization problem
into the Fourier domain and performed the analysis there. In the
Fourier domain, it is difficult to apply the support constraint on
the blurs, but in our case, the blur size plays a fundamental role
in Lemma 1. The analysis should, thus, be performed in the
transform domain but this is difficult to carry out.

We have run a series of experiments on simulated data with
an incorrectly estimated blur size. A standard 128 128 “Lena”

image was degraded with three random blurs of size 3 3 and
with additive Gaussian noise of SNR dB
(SNR , where is the variance of
the original image). The original image was recovered from
each image triplet using the alternating minimization algorithm
with the blur size set to 3 3, 4 4, 6 6, and 8 8, respec-
tively. The percentage mean squared error of the estimated
image defined as was used as
the evaluation measure at each iteration. Calculated PMSEs are
summarized in Fig. 2. For less noisy data (SNR dB),
the convergence rate is fast and not affected by the incorrect
blur size estimation. In the case of SNR dB, we
observe a negative influence of the overestimated blur size on
the convergence. However, not many practical applications
provide data with such low SNRs.

VI. SHIFT-INVARIANT RESTORATION

In this section, we illustrate the ability of the method to handle
channels which are not registered. This is the most important
advantage of the new technique.

The first experiment demonstrates the capability of the
AM–MAP algorithm to recover the original image from two
degraded and shifted versions thereof, when the maximum shift
between the two channels is known. The standard 128 128
“Lena” image was degraded with two 5 5 blurs. One blurred
image was shifted by 10 20 pixels and then both images were
cropped to the same size; see Fig. 3. The AM algorithm was
initialized with the correctly estimated blur size 15 25. The
restored image and blurs are shown in Fig. 4. The blurs are
perfectly recovered and properly shifted. The restored image
matches the original on the area where data from both channels
were available. The same experiment was conducted again but
Gaussian noise SNR dB was added to the blurred and
shifted input images in Fig. 3. Obtained results are depicted in
Fig. 5 and illustrate satisfying restoration.

In the second experiment, we overestimated the blur size
and proceeded as follows. The 250 250 test image in Fig.
6(a) was degraded with two different 5 5 blurs and noise
of SNR dB. One blurred image was shifted by 5 5
pixels and then both images were cropped to the same size;
see Fig. 6(c). Contrary to the previous experiment, the shift
was considered unknown and the AM–MAP algorithm was
initialized with the overestimated blur size 12 12. The fused
image and the estimated blur masks are shown in Fig. 7.
Recovered blurs contain negligible spurious factors and are
properly shifted to compensate for the misregistration. The
fused image is by visual comparison much sharper than the input
channels and very similar to the original, which demonstrates
excellent performance.

We have also compared the performance of the AM–MAP
algorithm with the performance of Pai’s method [22] for
different noise levels. The Pai approach directly recovers the
original image by calculating the maximum singular vector
of a special matrix. The QR decomposition is necessary for
the construction of this matrix and the power method (or any
other iterative method for eigenvector computation) is used to
find the maximum singular vector, i.e., the original image.
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Fig. 2. PMSE of the estimated image as a function of iteration. The “Lena”
image was degraded with three random blurs of size 3� 3 and with AWGN of
SNR (a) 20, (b) 30, (c) 40, and (d) 50 dB. The AM algorithm was executed with
the estimated blur size (
) 3� 3 (correct size), ( ) 4� 4, ( ) 6� 6, and (�)
8� 8.

Fig. 3. (a) Input channels. “Lena” images degraded with two 5� 5 blurs.
Mutual translation between the images is 10 pixels vertically and 20 pixels
horizontally. (b) Blurring masks.

Fig. 4. Perfect noise-free AM restoration. (a) Recovered “Lena” image.
(b) Recovered blurs and 10� 20 shift between channels.

Fig. 5. Noisy AM restoration (30 dB). (a) Recovered “Lena” image.
(b) Recovered blurs and 10� 20 shift between channels.

Although the Pai method is not iterative in its definition, it
requires numerical iterative methods and, thus, approaches the
complexity of our inherently iterative algorithm. We used four
randomly generated 3 3 blurs to obtain four blurred “Lena”



ŠROUBEK AND FLUSSER: MULTICHANNEL BLIND DECONVOLUTION 881

Fig. 6. (a) Original test image 250� 250 pixels. (b) Two 5� 5 PSFs. (c)
Blurred and shifted images.

Fig. 7. Image restoration for the overestimated blur size. (a) Recovered image.
(b) Estimated blur masks with the between-channel shift.

images. The images were then mutually translated so that
centers of the images were in corners of a 5 5 square. Noise
was added with SNR , and dB, respectively.
The maximum shift and the size of blurs were assumed to be
known and, therefore, both methods were initialized with the
correct blur size 8 8. For each SNR, the experiment was
repeated with different blurs 10 times and stopped after 50
iterations in the AM–MAP case. The mean PMSE and standard
deviation was calculated over these ten estimated images and
plotted in Fig. 8. Clearly, the AM–MAP performs better then
the Pai method for every SNR.

To evaluate the performance of the AM–MAP algorithm with
respect to the knowledge of the channel misalignment, a dif-
ferent experiment was conducted. Degraded images were pre-
pared in similar fashion as in the previous experiment but this
time the translation between the channels varied from 0 to 5 5

Fig. 8. Comparison of the (solid) AM–MAP algorithm and the (dashed) Pai
method. Mean PMSE and (vertical abscissae) standard deviation of the restored
images over ten different degradations and for different SNR.

Fig. 9. AM–MAP algorithm performance on misaligned channels. Mean
PMSE of restored images over ten different degradations for the channel
misalignment 0 to 5 pixels and SNR (�) 10, (�) 20, (�) 30, ( ) 40, and
(�) 50 dB.

pixels to simulate inaccurate registration. For each shift, the ex-
periment was repeated ten times with different blurs and was
every time initialized to 8 8 blur size. The calculated mean
PMSE is plotted in Fig. 9. PMSEs are almost constant, which
demonstrates very good stability of the algorithm against the
mask overestimation.

Finally, to demonstrate the power of the AM–MAP algorithm,
we performed an experiment with real data. This experiment
was motivated by many practical situations where we have to
handle images degraded by random motion and/or vibration
blur. This problem appears frequently in industrial visual in-
spection when the camera is mounted on a vibrating machine
or when a stationary camera monitors vibrating environment. A
text label (a part of a standard newspaper page) was attached to
a vibrating machine. The label was monitored under poor light
conditions by a standard digital camera mounted on a tripod.
The camera exposure time was set at s which was compa-
rable to the period of irregular vibrations of the machine. Three
cropped images of the label acquired with the camera were used
as the input channels of AM–MAP; see Fig. 10. The images
were not binarized but only trasformed to grey-level images.
Note strong motion blurs due to the machine movement and
clear spatial misalignment of the channels. Since the shift and
the size of the blurs were completely unknown and it was also
difficult to estimate the upper bound, the AM–MAP algorithm
was restarted with different parameters and the best results were
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Fig. 10. Real data experiment. Three consecutive acquisitions of a text label attached to a vibrating machine. The grey-level images are cropped to 100� 200
size. Shift blurs and spatial misalignment of the images are clearly visible.

Fig. 11. Real data experiment. Reconstructed part of the label and the
corresponding blurs (magnified) using the AM–MAP algorithm. The irregular
vibration of the machine is well preserved in the blurs.

found for the blur size 10 10 and . We used the total
variation in the a priori pdf to favor piecewise constant functions
which is the case of the text label. The reconstructed label and
the corresponding blur masks after 20 iterations are shown in
Fig. 11. One can see that the restoration was successful (the text
is clearly legible) and that the spatial misalignment inherent to
this type of problems poses no threat to proper functionality of
the algorithm. Observe that the restoration is slightly less suc-
cessful near the image borders, especially close to the top edge,
where only data from the third channel were available. Let us
recall that no assumption about the shape of the blurring func-
tions and no preprocessing of the input images were employed.

VII. CONCLUSION

We have developed the iterative algorithm for multichan-
nels blind deconvolution that searches for the MAP estimator.
The prior density functions were derived from the variational
integral defined on bounded variation functions and from the
mutual relation of weakly coprime channels. The restoration is
regularized with an anisotropic term for edge preservation and
performs well on heavily degraded images with high SNR and
shows better performance then the most recent multichannel
method. We have also shown that the inaccurate registration
of channels can be alleviated by properly overestimating the
size of blurs. All previously published MBD methods assumed
perfectly registered channels or required, though not specifi-
cally considered in their formulation, an exact knowledge of
the channel misalignment. To our knowledge, this is the only
method dealing explicitly with misregistration of images in the
multichannel framework and providing a successful solution
to this problem.
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