
Abstract

The paper deals with an approach to the formulation of the decision-
making tasks via such specifying constituents as system, experience, igno-
rance, admissible strategy, loss function and decision. The paper describes
how to construct the offered specification and also shows how this way
of the material organizing can be applied for teaching Bayesian decision-
making methodology, namely, in e-learning. To demonstrate the approach
the fully probabilistic control design in its state-space setting has been
taken as an example. The fully probabilistic design describes the con-
trolled closed loop system and its desired behavior in probabilistic terms
and uses the Kullback-Leibler divergence as their proximity measure. Be-
cause of the state-space setting both solutions of filtering and regulation
tasks are shown. The practical example is demonstrated on normal state-
space model and normal ideal pdf. In this case the solution of the fully
probabilistic design reduces to Kalman filtering and design minimizing
the quadratic criterion. In the end the paper shows an implementation of
the approach.

Keywords: fully probabilistic design; state-space model; optimal control
strategy; e-learning

1 INTRODUCTION

Bayesian decision making plays a significant role in the world of statistics. It is
a powerful statistical approach with a wide area of application [1, 2]. A lot of
books and articles on Bayesian decision making are available [3, 4, 5].

The fundamental tasks of Bayesian decision making can be conditionally
divided among estimation (point and set), testing of hypotheses, prediction and
control. These tasks, both static and dynamic, can be specified by six following
constituents: system, experience, ignorance, admissible strategy, loss function
and decision. These constituents compose a specification of the decision-making
(DM) task and are, in essence, the concepts, which a decision maker should
define when formulating a task. They are not always so obvious as it may seem.

In order to determine them a decision maker should know the definitions of
the concepts [6]:

• System is a part of the world that is of interest for a decision maker who
should either describe or influence it.

• Experience is knowledge about the system, available to the decision maker
for the selection of the particular decision.

• Ignorance concerns knowledge about the system, unavailable to the deci-
sion maker.

• Admissible strategy is a mapping from experience to actions, that meets
physical constraints, implied by the system and the actuator.
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• Loss function quantifies the degree of achievement of the DM aim by
assigning to each realization of behavior a number on real line.

• Decision is the value of a quantity that can be directly chosen by the
decision maker for reaching decision maker’s aims.

To demonstrate a specification of the DM task, let’s make a simple example
from everyday life. Let a decision maker be an usual student. Assume that a
student has the following aim: to become a good specialist, who has a good
knowledge and excellent diploma. It can be expressed in the mentioned terms
by the following way.

Aim: to minimize a divergence between the knowledge of the student and
knowledge of a good specialist.

• System: is the student, who has the lectures, study material and teachers
as the inputs and exams and marks (in principle, the student’s knowledge)
as the outputs;

• Experience: past marks, mapping a student’s level of knowledge; student’s
abilities;

• Ignorance: such factor as the exam, which can include the psychological
state of student’s health, a teacher’s behavior, transport problems;

• Admissible strategy: time and energy of the student that can be devoted to
study, restricted by schedule, number of exams and subjects, other duties;

• Loss function: the quality of knowledge expressed in marks; time spent
to study;

• Decision: how much time and energy the student will devote to study,
taking into account all the restrictions.

This example from life is very simple and, probably, it does not stand up to
criticism. But the principle of composing the specification is clear now.

What this paper tries is to show how the DM tasks could be specified via
these constituents and, simultaneously, how it could be applied for educational
purposes in a field of Bayesian DM methodology. The fully probabilistic design
(FPD) [8], which can be interpreted as a superstructure of Bayesian DM on the
whole and under the corresponding setting can include majority of DM tasks, is
a good example to demonstrate the approach. The example of practical solution
is shown here on Gaussian models. Whether such formulation of DM tasks was
effective, a reader could judge having read this paper.
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2 FULLY PROBABILISTIC DESIGN: THEORY
AND PRACTICAL EXAMPLE

2.1 Preliminaries

For a start, the notations used through the paper should be pointed out: ≡
is equality by definition; X∗ denotes a set of X-values; X̊ means cardinality
of a finite set X∗; f(·|·) denotes probability density function (pdf) that is as-
sumed to exist; t labels discrete-time moments, t ∈ t∗ ≡ {1, . . . , t̊}; t̊ < ∞ is a
given control horizon; dt = (yt, ut) is the data record at time t consisting of an
observed system output yt and of an optional system input ut; xt is an unob-
served system state; d, x are assumed to be finite-dimensional; X(t) denotes the
sequence (X1, . . . , Xt), X(t) ∈ {y(t), u(t), x(t)}.

The FPD uses the Kullback-Leibler (KL) divergence [9]

D
(
f ||f̃

)
≡

∫
f(X) ln

(
f(X)
f̃(X)

)
dX (1)

to measure the proximity of a pair of pdfs f, f̃ acting on a set X∗. The key
property of KL divergence is

D(f ||f̃) ≥ 0, D(f ||f̃) = 0 iff f = f̃ almost everywhere on X∗. (2)

2.2 Aim

The FPD deals with the controlled closed loop system and describes it entirely
in probabilistic terms. In order to represent the desired joint distribution of the
considered closed loop variables the FPD requires the ideal pdf to be introduced.

The aim of the FPD task can be formulated in the following way:

Find admissible control strategy minimizing the KL divergence D
(
f̊t|| If̊t

)
,

where f̊t is the joint pdf describing the controlled closed loop and If̊t is the
ideal pdf.

Despite the aim is formulated, it remains rather indistinct without precise
specification of DM task. It can be seen that the decision maker would need
the loss function in order to express the aim through the ideal pdf, the admis-
sible strategies to denote a set of possible actions and the further specifying
constituents. Let the decision maker try to determine them gradually.

2.3 Specification

2.3.1 System

The joint pdf describing the controlled closed loop can be decomposed with the
help of the chain rule [10].

f(d(̊t), x(̊t)|x0) = (3)
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= f(x0)
∏
t∈t∗

f(yt|ut, x(t), d(t−1))f(xt|ut, x(t−1), d(t−1))f(ut|x(t−1), d(t−1)).

From this relation it follows that the system is described by observation model
f(yt|ut, x(t), d(t− 1)), the state evolution model f(xt|ut, x(t− 1), d(t− 1)) and
the general randomized controller f(ut|x(t− 1), d(t− 1)) [11].

The following assumptions are made about the system models:

• the unobserved system state xt does not depend on the past history of the
system, i.e.

f(xt|ut, x(t− 1), d(t− 1)) = f(xt|ut, xt−1);

• the probability distribution of the observed system output yt is determined
only by the current system input ut and the system state xt, i.e.

f(yt|ut, x(t), d(t− 1)) = f(yt|ut, xt).

The practical example of the FPD will be demonstrated on Gaussian models.
Let the state evolution model be normal f(xt|ut, x(t − 1)) = Nxt

(Axt−1 +
But;R), where Nz(ẑ; r) denotes normal pdf of z having expectation ẑ. Let the
observation model be also normal f(yt|ut, xt) = Nyt

(Cxt +Dut; r). Matrices A,
B, C, D, R and r are assumed to be known. More illustrative way is to show
the models by equations:

xt = Axt−1 + But + ωt (4)

yt = Cxt + Dut + et (5)

The noises ωt and et are supposed to be white and Gaussian with zero mean
values and known covariances R and r respectively.

2.3.2 Admissible strategies

The set of admissible actions is restricted by the following assumption:

• admissible control strategies generate the system input ut from the ob-
served data history d(t − 1) and ignore the unobserved states x(t − 1),
i.e.

f(ut|x(t− 1), d(t− 1)) = f(ut|d(t− 1)).

Hence, the joint pdf (3) reduces to

f(d(̊t), x(̊t)|x0)f(x0) =
∏
t∈t∗

f(yt|ut, xt)f(xt|ut, xt−1)f(ut|d(t− 1))f(x0), (6)

and the models of the system define the conditional probability distributions

f(yt|ut, xt), f(xt|ut, xt−1), f(ut|d(t− 1)).
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2.3.3 Loss function

The loss function for the FPD task follows from its DM aim, namely, from
searching the admissible control strategy minimizing the KL divergence (1). It
means, the KL divergence between the joint pdf described the closed control
loop and the decision maker’s ideal pdf will be the loss function.

The decision maker’s ideal pdf is constructed in the way analogous to (6)(note
an appearance of superscript I)

If(d(̊t), x(̊t)|x0) If(x0) =
∏
t∈t∗

If(yt|ut, xt) If(xt|ut, xt−1) If(ut|d(t− 1))f(x0),

(7)
where pdf If(yt|ut, xt) describes the ideal model of observation,

If(xt|ut, xt−1) – the ideal model of state evolution,
If(ut|d(t− 1)) – the ideal control law.

It is obviously that the prior pdf on initial states x∗0 cannot be influenced by
the optimized control strategy, so If(x0) = f(x0).

On Gaussian models it can be shown that the ideal pdfs are defined as

If(xt|ut, xt−1) = Nxt
( Ix̂t;R), If(yt|ut, xt) = Nyt

( Iŷt; r),

while If(ut|d(t− 1)) = Nut
( Iût; q) is required.

With normal models and normal ideal pdfs, the state-space FPD setting
of the task reduces to Kalman filtering and design minimizing the quadratic
criterion. The penalization matrices are interpreted here as inversions of ideal
covariance matrices

J =
N∑

t=1

[
x′tR

−1xt + u′tq
−1ut

]
, where R−1 ≥ 0, q−1 > 0. (8)

2.3.4 Experience

The knowledge about the system, available to the decision maker for achieving
the aim, includes

• past outputs,

• model structure,

• and model parameters.

Theoretically, the problem of identification could be included in a list of the
tasks for FPD, but here the parameters are supposed to be known.

2.3.5 Ignorance

Such knowledge about the system as

• future inputs,
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• future outputs,

• and all the system states.

is not available to the decision maker.

2.3.6 Decision

It has been already mentioned that the FPD is considered in its space-state
setting. According to the previous constituent, the knowledge about the system
states is unavailable to achieve the DM aim. Therefore, the decision maker
should solve the state estimation task.

Bayesian filtering in closed control loop includes the next steps [10] on con-
ditions that the prior pdf f(x0) is available:

f(xt|ut, d(t− 1)) =
∫

f(xt|ut, xt−1)f(xt−1|d(t− 1)) dxt−1 (9)

f(xt|d(t)) =
f(yt|ut, xt)f(xt|ut, d(t− 1))∫
f(yt|ut, xt)f(xt|ut, d(t− 1)) dxt︸ ︷︷ ︸

f(yt|ut,d(t−1))

, (10)

where (9) is understood as the time updating, while relation (10) as data up-
dating.

The important remark should be made here: the stochastic filtering does not
depend on the used admissible control strategy {f(ut|d(t− 1))}t∈t∗ but on the
generated inputs only.

Proof: See [11].
Managing the Gaussian models the solution coincides with Kalman filtering

[12] that calculates the expectation and covariance for f(xt|d(t)) = Nxt(x̂t;P ).
The equations fulfilled are shown below

x̂t = Ax̂t−1 + But + K(yt − Cx̂t−1 −Dut),

K = PC ′r−1, P−1 = C ′r−1C + (APA′ + R)−1.

Thus the state estimation task built in the FPD is solved. The successive
task, necessary to achieve the decision making aim, is the regulation problem.

Let the joint pdf f(x(̊t), d(̊t)|x0) and the ideal one If(x(̊t), d(̊t)|x0) be con-
sidered (see Sections 2.3.1 and 2.3.3) and let the assumptions (see Sections 2.3.1
and 2.3.2) be fulfilled.

The optimal admissible control strategy, which minimizes D
(
f̊t|| If̊t

)
is ran-

domized one given by the pdfs

of(ut|d(t− 1)) = If(ut|d(t− 1))
exp[−ω(ut, d(t− 1))]

γ(d(t− 1))
, t ∈ t∗, (11)

γ(d(t− 1)) ≡
∫

If(ut|d(t− 1)) exp[−ω(ut, d(t− 1))] dut.
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Starting with γ(d(̊t)) ≡ 1, the functions ω(ut, d(t−1)) are generated recursively
for t = t̊, t̊− 1, . . . , 1 in a backward manner, as it is shown below

ω(ut, d(t− 1)) ≡
∫

Ω(ut, d(t− 1), xt−1)f(xt−1|d(t− 1))dxt−1, (12)

where f(xt|d(t)) is updated according to the filtering operations (9)-(10) and

Ω(ut, d(t− 1), xt−1) ≡ (13)

≡
∫

f(yt|ut, xt)f(xt|ut, xt−1) ln
(

f(yt|ut, xt)f(xt|ut, xt−1)
γ(d(t)) If(yt|ut, xt) If(xt|ut, xt−1)

)
dyt dxt.

The result is based on the use of the definition of the KL divergence (1), its
basic property (2), Fubini theorem on multiple integration [13], marginalization
and normalization of pdfs and the chain rule for them [10].

Proof: See [11].
In case of normal models the solution comes to linear quadratic Gaussian

(LQG) algorithm and operating with Riccati matrix. The optimal admissible
control strategy is also normal here

of(ut|d(t− 1)) = Nut
(Lx̂t; oq)

and calculated with Riccati equation

Si = A′Si−1A + C ′r−1C − L′
i

oqLi + R−1, (14)

oq = (B′Si−1B + D′r−1D + q−1),

Li = oq−1(B′Si−1A + D′r−1C),

where index i is a number of iterations, i ∈ [1, N ] , S0 = 0, LN , LN−1, . . . , L1

should be applied backward. The calculation of the optimal control strategy
can be shown in more customary way

ut+i = LN−i+1xt+i−1, i = 1, 2, . . . , N. (15)

The form of Riccati equation shown at (14) is caused by the presence of Dut

in the observation model. Without it the mean value of the optimal controller
is usual control law obtained in linear quadratic design with state penalization
R−1 and input penalization q−1.

Now, when six specifying constituents have been introduced for the given
task and the example of practical solution on Gaussian models has been offered,
it should be said about implementation.

3 IMPLEMENTATION

All said above must find its final form that could be used for teaching, and
primarily for e-learning. To achieve this objective, the DM tasks with their
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specifications, offered solutions and recommended experiments are gathered into
collection of illustrative examples, available as .pdf document. Each example is
represented by its own main page.

Fig.1 shows the main page of the example for FPD. The structure of the
page contains the aim of the task and a brief description of the solution. Here
it should be noticed that the important decision making concepts, such as the
KL divergence, the ideal pdf and even system inputs and outputs, etc, are the
hyperlinks, providing their definitions in new window by clicking on them.

Further the specification of the task with six constituents described is shown.
The specifying constituents also enable to see their definitions in order to help
to understand such a way of defining the task. Each variable occurred provides
its description as well.

All the definitions are collected in the termbase of Bayesian decision-making.
The termbase is a set of terms created according to the style document spe-
cially developed. Those definitions, which include the further DM terms, also
give their definitions with the help of hyperlinks. The termbase is generated
automatically, when the example’s text is edited. In ready-to-use form it is a
.pdf document.

To learn the specialities of the task Fig.1 offers the recommended experi-
ments. The brief comments of system behavior during them and references are
shown. Naturally a link to read the theory is available at bottom of the page.

To make the recommended experiments and to show the results it is possible
to run the task with the help of link “Run example”. This link starts the asso-
ciated application (MATLAB, Octave) and runs the dialog, which for the FPD
case can be seen at Fig.2. The dialog shows the default values of parameters
that can be further changed by the decision maker according to recommended
experiments. For example, Fig. 3 demonstrates the results of experiment of
changing the value of input penalization. The graphs show influence of gradual
increase of this value on the system behavior. It can be seen that the higher the
value of input penalization is, the more difference is between the system output
and its desired value.

In the end it should be said that during the learning the decision maker can
use links “Edit m-file” and “Restore m-file”.

4 CONCLUSION

In the described way the illustrative examples with the corresponding models
and solutions for majority of DM tasks have been presented. The specifying
constituents precisely defined for each task are believed to help the decision
maker not only in learning, but also in setting the subsequent DM tasks and
their solutions.

Since the work is being fulfilled within the bounds of the Edukalibre e-
learning open source project (http://edukalibre.org), then the tasks have been
implemented in Octave [15], which is a free clone of MATLAB. From this it also
follows that the source codes of the material (both LATEX and Octave) will be
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put on the repository free for download and further development. The demo-
version of examples and software packages for download are also available at
UTIA Moodle environment (http://moodle.utia.cas.cz).
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Fully Probabilistic Design

Aim:
To find admissible control strategy minimizing the KL divergence (see Section 2.2).

Description:
For this task we consider normal state-space model and normal ideal pdf. The required
admissible strategy must provide minimal KL divergence from the user’s ideal pdf. Due
to normal models the solution of fully probabilistic design comes to operating with linear
quadratic Gaussian algorithm with penalization matrices interpreted as inversions of ideal
covariance matrices. The solution includes the state estimation and design of the control
strategy minimizing the quadratic criterion.

Specification:

System: described by observation and state evolution normal models (see 2.3.1);

Admissible strategy: causal with generating the input ut from the observed data history
d(t− 1) and ignoring the unobserved states x(t− 1) (see 2.3.2);

Loss function: KL divergence from ideal pdf (see 2.3.3);

Experience: past outputs; model structure; model parameters;

Ignorance: future inputs; future outputs; all states;

Decision: state estimation; optimal regulation (see 2.3.6);

Recommended experiments:
In order to observe a behavior of the controller it is useful to

1. Try different model structure with parameter stru= [5 3 0], [10 6 0], [5 1 0], [20 1 0],
[50 20 0], whose default value is [3 2 0];

2. Change value of input penalization by parameter qur=0.00001, 0.01, 0.05, 0.1, 0.5,
0.9. Default value of qur=0.001.

Comments and references:
The user’s compromise between quality and desired input signal is mostly expressed with
the help of input penalization qur, which is a basic tuning knob. But in practice it is not
enough to satisfy all requirements. Usually such tuning knobs as dynamic penalization, a
setting of open loop transfer or filtration must be used.

Run example Edit m-file Restore m-file Read theory Contents

Figure 1: FPD example page
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FULLY PROBABILISTIC DESIGN
============================================================

--- Models -------------------------------------------------
Choice of system -> S = ’S01’
Horizon of the criterion -> nstep = 100
Input penalization -> qur = 0.001
Input increment penalization -> dqy = 0
Output increment penalization -> dqu = 0

--- Initial conditions -------------------------------------
Model structure -> stru = 3 2 0
Sampling period -> To = 0.1
------------------------------------------------------------

any changes ? ENTER = no, or type a command: >

Figure 2: User dialog
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Figure 3: Output and its desired value with the input penalization qur=0.00001,
0.001, 0.05, 0.5
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