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Abstract: The paper deals with state estimation in a factorized form. By the concept
of the factorized filtering we mean such data preprocessing, as a result of which the
n-dimensional state-space model can be decomposed into n one-dimensional models
(factors). The key idea is the factors are expected to open a way to describe jointly
continuous and discrete probability distributions. A special transformation of the
state-space model is considered. The general solution of the factorized state estimation
is discussed.
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1. INTRODUCTION

The filtering problem is the subject of research
in the different areas, the applications are hardly
countable. Navigational and guidance systems,
radar tracking, sonar ranging are only several
examples just to name, see Cipra (1993). A fil-
ter tries to obtain an optimal estimate of de-
sired quantities from data provided by a noisy
environment. Any measurement will be corrupted
to some degree by noise and device inaccuracies,
so the filter removes the measurement noise and
extracts valuable information from signal. A lot
of signal proccesing techniques is available in the
field of the filtering problems, see Oppenheim and
Wilsky (1983). The Kalman filter is a special case,
addressed to the problems in which the system
can be described through a linear model and the
measurement noise is white and Gaussian, accord-
ing to Welch and Bishop (1995). The appearance
of the Kalman filter stimulated the subsequent
research on its extending and applying, as Welch
and Bishop (2005) say. This moves us to explain-
ing the aim of the work.

The idea of the paper is to use the factorized
filtering and find the ways to allow its systematic
implementation. By the concept of the factor-
ized filtering we mean such data preprocessing,
as a result of which the n-dimensional state-space
model can be decomposed into n one-dimensional
models, namely, the factors. The factorized data
preprocessing seems to be a solution of a difficulty
caused by different probability distributions for
separate factors. In Gaussian and linear case it
leads to the special Kalman filtering combined
with parameter estimation. The factor here is
equivalent to a special state-space model. In gen-
eral, the i-th state factor can be described by
conditional probability distribution

f(xi;t+1|xi+1;t+1, . . . , xx̊;t+1, xt, ut) ∼ (1)

∼ N (Axi;t + Bui;t, Ri;t)

where xt is a state of system, ut is the input.

The key idea of the use of factorized filtering is
the factors are expected to open a way to de-
scribe jointly continuous and discrete probability
distributions, Kárný et al. (2005). Let’s try to
explain the idea. Generally, the joint probability



distribution can be presented in the factorized
form using the chain rule.

f(d(t)|d(t− 1),Θ) = (2)

=
d̊∏

i=1

f(di;t|di+1;t, . . . , dd̊;t, d(t− 1), θi;t, . . . , θθ̊;t)

when dd̊+1;t, . . . , dd̊;t denotes the empty set.

Let d̊ = 3 and respectively d(t) = [d1;t, d2;t, d3;t]′.
Three factors of the data vector are in essence the
random variables with their probability distribu-
tions. Obviously, the case when all three random
variables have continuous or discrete probability
distributions may not even need to use the factor-
izing, since the random values can be described as
a vector.

Assume that d1;t and d2;t have continuous proba-
bility distribution, while d3;t has the discrete one.
In that case the data factors d1;t and d2;t may
need Gaussian model and can be united in the
vector, while d3;t needs some another model. But
the most unsuccessful case from that point of view
is the presence of discrete probability distribution
for d2;t, when both d1;t and d3;t might be described
by Gaussian model. We have no choice but to ob-
serve each factor individually. It should be noted
furthermore, that the factors open a way to use
the different models for different entries of data.

Now we have told about data vector in general,
but what if the situation could have been pro-
jected to the state-space model? The existence
of both continuous and discrete state factors in
any order will seriously complicate the problem.
It remains only to try to process the state factors
individually.

Thus we have shown why the factorized filtering
problem requires a solution and described the aim
of the paper.

To say briefly about the contents of the paper, the
preliminaries with short description of conceptual
Bayesian solution of the state estimation problem
will be available. Further the paper deals with the
general factorized filtering. A separate section will
be devoted to the transformation of state-space
model.

2. PRELIMINARIES

The section gives the general Bayesian solution of
the filtering problem. One of the basic objectives
of a decision maker in this paper is to estimate
the state and predict the output of the observed
system. The state-space model defines the condi-
tional probability distributions

f(xt+1|xt, ut), f(yt|ut, xt) (3)

It is considered that the state xt and input ut

are known, and neither the output yt nor the
next state xt+1 depend on the past history of the
system, hence

f(yt|ut, d(t− 1), xt) = f(yt|ut, xt) (4)

f(xt+1|xt, d(t)) = f(xt+1|xt, ut) (5)

The state-space model practically combines (4)
and (5) in a single more complex model with
all parameters known. As the one-step-ahead
Bayesian predictor for this case we have the fol-
lowing recursion, according to Peterka (1981)

f(yt|ut, d(t− 1)) = (6)

=
∫

f(yt|ut, xt)f(xt|d(t− 1))dxt

f(xt|d(t)) =
f(yt|ut, xt)f(xt|d(t− 1))

f(yt|ut, d(t− 1))
(7)

f(xt+1|d(t)) = (8)

=
∫

f(xt+1|xt, ut)f(xt|d(t))dxt

We will try to explain briefly what the use of
the recursion is based on. We shall assume that
the second integrand in (6), i.e. the probability
distribution f(xt|d(t − 1)), is known for some
t = t0 and can be calculated for t = t0 + 1,
in other words, f(x1|d(0)) is known. Knowing
the probability distribution f(xt|d(t− 1)) we can
calculate the probability distribution of the next
output yt for any ut. As a result of this operation
the new data pair d(t) = {ut, yt} can be predicted.
This new pair will be used for the next step of
recursion.

In order to obtain the second part (7) of the
recursion the basic Bayesian operations have been
applied. We have

f(yt, xt|ut, d(t− 1)) =

= f(yt|ut, d(t− 1), xt)f(xt|ut, d(t− 1)) =

= f(xt|d(t))f(yt|ut, d(t− 1))

It should be noted that the second equality in
this relation occured due to the new data pair
d(t) = {ut, yt} prediction. From this relation and
from (4) the second step (7) of the recursion
follows. The probability distribution for the state
xt is updating with respect to the new data pair
d(t) = {ut, yt}.

The recursive relation (8) is understood as up-
date of the state xt in time. This part has been
obtained with the help of applying the basic
Bayesian operations

f(xt+1|d(t)) =
∫

f(xt+1, xt|d(t))dxt =



=
∫

f(xt+1|xt, d(t))f(xt|d(t))dxt (9)

and due to (5).

The attempt to factorize this data processing
recursive algorithm will be discussed in the next
sections.

3. TRANSFORMATION OF THE
STATE-SPACE MODEL

Assume the system is described by the state-space
model

xt+1 = Axt + But + ωt (10)

yt = Cxt + Dut + et (11)

where A,B, C, D are known matrices of appropri-
ate dimensions. The noises ωt and et are supposed
to be white and Gaussian with zero mean values
and known covariances.

Before we proceed to the immediate problem solv-
ing, we suggest to make some transformation of
the state-space model (10)-(11) that leads to the
triangular form of matrices of the state both from
(11) and (10). The presence of triangular matrices
of the state is strongly needed from the positions
of our approach to the factorized filtering, because
according to our state-space model it gives a pos-
sibility to observe dependencies of the individual
factors. That would be quite understandable, if we
imagined the structure of the state-space model
after multiplying the matrices and vectors. Be-
sides, it essentially simplifies the computational
process.

Thus we propose to make the following transfor-
mation of (10)-(11) introducing the transforma-
tion matrix T

yt = CT−1Txt + Dut + et (12)

Txt+1 = TAT−1Txt + TBut + Tωt (13)

Denoting the new state x̃t=Txt we obtain

yt = CT−1x̃t + Dut + et (14)

x̃t+1 = TAT−1x̃t + TBut + Tωt (15)

Obviously our basic requirements is the transfor-
mation matrix T must satisfy the following condi-
tions (for the sake of simplicity it is assumed that
the output yt and the state xt have dimensions
ẙ = 2 and x̊ = 3 correspondingly).

CT−1 = C̃ =
[

c̃11 c̃12 c̃13

0 c̃22 c̃23

]
(16)

TAT−1 = Ã =

 ã11 ã12 ã13

0 ã22 ã23

0 0 ã33

 (17)

It should be noted that during transformation we
have obtained Tωt at (15). In order not to lose
a triangular structure of noise and its uncorrelat-
edness, let’s put some orthogonal matrix F such
that the product of T and F would give us the
triangular matrix. It means

TFF ′ωt = TF ω̃t (18)

where ω̃t = F ′ωt and

E[ω̃tω̃
′
t] = E[F ′ωtω

′
tF ] = F ′IF = I (19)

Solution of this task (search of the orthogonal
matrix) is out of scope of this paper now, but we
can return to it later.

There is a possibility to make one more transfor-
mation of equation (11).

Hyt = HCT−1x̃t + HDut + Het (20)

which leads to

ỹt = HCT−1x̃t + HDut + Het (21)

where H is a square matrix of dimension (ẙ × ẙ).

This kind of transformation must be fulfilled be-
fore making the square root matrix from covari-
ance matrix of noise. The matrix H should trans-
form CT−1 into triangular one. As regards Het,
we will handle it in the similar way as we treated
with Tωt, i.e. with the help of the orthogonal
matrix G.

HGG′et = HGẽt (22)

where HG is a triangular matrix.

Then with the help of multiplying (21) by the
inverse matrix G−1 we will obtain necessary tri-
angular structure of the output equation.

The new transformation will enable to fulfill the
requirements (16)-(17). The matrix H can be
found if the matrices A, B, C and D are known.

Now we can speak about transformation of the
whole state-space model as {xt, yt} → {x̃t, ỹt}
that can be produced separately before fulfilling
the filter algorithm steps.

4. GENERAL FACTORIZED FILTERING

It is assumed that both matrices of the state at
(11) and (10) are triangular either with the help of
transformation of the state-space model (Section
3) or according to initial conditions. This section
offers only the calculation of the factorized filter.



4.1 Data update factorizing

At this step we try to predict the new data pair.
For the sake of simplicity it is assumed that the
output yt and the state xt have dimensions ẙ = 2
and x̊ = 3 correspondingly. According to the chain
rule the factorized form of the recursive relation
(6) is

f(y1;t|y2;t, ut, d(t− 1))× (23)

×f(y2;t|ut, d(t− 1)) =

=
∫ ∫ ∫

f(y1;t|y2;t, ut, x1;t, x2;t, x3;t)×

×f(y2;t|ut, x2;t, x3;t)×

×f(x1;t|x2;t, x3;t, d(t− 1))f(x2;t|x3;t, d(t− 1))×

×f(x3;t|d(t− 1))dx1;tdx2;tdx3;t

It should be noted that the conditional probability
distribution f(y2;t|ut, x2;t, x3;t) demonstrates the
triangular structure of the output equation (11).
Due to the triangular structure of the model the
factors f(y2;t|ut, x2;t, x3;t) and f(y2;t|ut, d(t − 1))
do not depend on x1;t and the right-hand side of
relation (23) can be expressed as a recursive calcu-
lation shceme. Let’s take (23) and try to calculate
the probability distribution while integrating over
the factor x1;t.

f(y1;t|y2;t, ut, d(t− 1))× (24)

×f(y2;t|ut, d(t− 1)) =

=
∫ ∫ ∫

f(y1;t|y2;t, ut, x1;t, x2;t, x3;t)×

×f(x1;t|x2;t, x3;t, d(t− 1))f(y2;t|ut, x2;t, x3;t)×

×f(x2;t|x3;t, d(t−1))f(x3;t|d(t−1))dx1;tdx2;tdx3;t =

=
∫ ∫

α1f(y2;t|ut, x2;t, x3;t)f(x2;t|x3;t, d(t−1))×

×f(x3;t|d(t− 1))dx2;tdx3;t

where

α1 =
∫

f(y1;t|y2;t, ut, x1;t, x2;t, x3;t)× (25)

×f(x1;t|x2;t, x3;t, d(t− 1))dx1;t

Obviously, after that it remains to calculate re-
cursively

α2 =
∫ ∫

α1f(y2;t|ut, x2;t, x3;t)× (26)

×f(x2;t|x3;t, d(t− 1))f(x3;t|d(t− 1))dx2;tdx3;t

Thus at this step the new data have been pre-
dicted. They will be used to update the proba-
bility distribution for the state xt. Let’s express

relation (7) as a product of the conditional prob-
ability distributions for the factors

f(x1;t|x2;t, x3;t, d(t))f(x2;t|x3;t, d(t))× (27)

×f(x3;t|d(t)) ∝ f(y1;t|y2;t, x1;t, x2;t, x3;t, ut)×

×f(y2;t|x2;t, x3;t, ut)f(x1;t|x2;t, x3;t, d(t− 1))×

×f(x2;t|x3;t, d(t− 1))f(x3;t|d(t− 1))

Let’s take all the probability distributions, which
depend on x1;t and aggregate them.

f(x1;t|x2;t, x3;t, d(t)) ∝ (28)

∝ f(y1;t|y2;t, x1;t, x2;t, x3;t, ut)×

×f(x1;t|x2;t, x3;t, d(t− 1))

We have got rid of x1;t at (27). Now the following
joint probability distribution remains

f(x2;t|x3;t, d(t))f(x3;t|d(t)) ∝ (29)

∝ f(y2;t|x2;t, x3;t, ut)f(x2;t|x3;t, d(t− 1))×

×f(x3;t|d(t− 1))

We know that knowledge about y2;t incorporates
into both x2;t and x3;t according to our state-
space model and due to the triangular struc-
ture. Because of the unequal dimensions of the
output yt and state xt we have some obvious
difficulties here. The matrix C of state at (11)
is of dimension (ẙ × x̊) and in consequence of
that ẙ 6= x̊ we can observe the dependencies
mentioned above. At this step it is enough to
calculate the joint conditional probability distri-
bution f(x2;t|x3;t, d(t))f(x3;t|d(t)). We will need
the factors f(x2;t|x3;t, d(t)) and f(x3;t|d(t)) for
time update, but knowing the joint probability
distribution and applying the basic Bayesian op-
erations, we can always calculate the conditional
ones. It can be seen that

f(x2;t|x3;t, d(t)) =
f(x2;t, x3;t, |d(t))

f(x3;t|d(t))
= (30)

=
f(x2;t, x3;t, |d(t))∫

f(x2;t, x3;t|d(t))dx2;t

So we fulfilled the data update and could move to
the next recursion step, namely, to re-calculation
of the state at moment (t + 1).

4.2 Time update factorizing

At this step the operation of time update is ful-
filled. It should be reminded that an assumption
about triangular matrix A at (10) has been made.
Let’s rewrite (8) at the factorized form, taking into
account that the factors x1;t and x2;t gradually



disappear in the conditional probability distribu-
tions due to the triangular structure.

f(x1;t+1|x2;t+1, x3;t+1, d(t))× (31)

×f(x2;t+1|x3;t+1, d(t))f(x3;t+1|d(t)) =

=
∫ ∫ ∫

f(x1;t+1|x2;t+1, x3;t+1, x1;t, x2;t, x3;t, ut)×

×f(x2;t+1|x3;t+1, x2;t, x3;t, ut)f(x3;t+1|x3;t, ut)×

×f(x1;t|x2;t, x3;t, d(t))f(x2;t|x3;t, d(t))×

×f(x3;t|d(t))dx1;tdx2;tdx3;t

Due to triangular structure the product of the
conditional probability distributions for the fac-
tors x1;t+1, x2;t+1 and x3;t+1 can be converted
into the recursive scheme. Much as we operated
calculating the output prediction, we will start to
integrate over x1;t. It should be only noted that at
the state equation (10) the matrix A is of dimen-
sion (̊x×x̊) and after necessary transformation we
obtain a triangular matrix without complexities
we had while updating data. So let’s integrate the
right-hand side of (31) recursively over x1;t, x2;t

and x3;t.∫ ∫
β1f(x2;t+1|x3;t+1, x2;t, x3;t, ut)× (32)

×f(x3;t+1|x3;t, ut)f(x2;t|x3;t, d(t))×

×f(x3;t|d(t))dx2;tdx3;t =

=
∫

β1β2f(x3;t+1|x3;t, ut)f(x3;t|d(t))dx3;t = β3

where

β1 = (33)

=
∫

f(x1;t+1|x2;t+1, x3;t+1, x1;t, x2;t, x3;t, ut)×

×f(x1;t|x2;t, x3;t, d(t))dx1;t

and

β2 =
∫

β1f(x2;t+1|x3;t+1, x2;t, x3;t, ut)× (34)

×f(x2;t|x3;t, d(t))dx2;t

In that way this step completes the recursion de-
fined by relations (6)-(8). It should be noted that
the prior probability distribution f(xt=1|d(0))
must be available for applying the recursive al-
gorithm solving the problem of filtering. It only
remains to rewrite the recursion as step-by-step
algorithm what the next section is devoted to.

4.3 Algorithm

At this section we will only resume the calculating
described above and present it as the recursive
algorithm. Previously we have considered only a
case, directed at matrices (2×3), but hopefully we
could extend it to the universal one, when ẙ = m,
x̊ = n. Thus, taking into account the appropriate
matrix dimensions, the factorized filtering algo-
rithm includes the following steps.

α1 = (35)

=
∫

f(y1;t|y2;t, . . . , yẙ;t, ut, x1;t, . . . , xx̊;t)×

×f(x1;t|x2;t, . . . , xx̊;t, d(t− 1))dx1;t

If ẙ < x̊, then for αj , 1 < j < ẙ it is valid

αj =
∫

α1 . . . αj−1× (36)

×f(yj;t|yj+1;t, . . . , yẙ;t, ut, xj;t, . . . , xx̊;t)×
×f(xj;t|xj+1;t, . . . , xx̊;t, d(t− 1))dxj;t

αẙ =
∫ ∫

α1 . . . αẙ−1× (37)

×f(yẙ;t|ut, xx̊−1;t, xx̊;t)f(xx̊−1;t|xx̊;t, d(t− 1))×
×f(xx̊;t|d(t− 1))dxx̊−1;tdxx̊;t

If ẙ = x̊, what is the most successful case, then
αj , 1 ≤ j < ẙ, is calculated in the same way as
for ẙ < x̊. As regards αẙ

αẙ =
∫

α1 . . . αẙ−1× (38)

×f(yẙ;t|ut, xx̊;t)f(xx̊;t|d(t− 1))dxx̊;t

We suggest that max ẙ = x̊.

The next step is calculated equally for both cases
ẙ < x̊ and ẙ = x̊.

f(x1;t|x2;t, . . . , xx̊;t, d(t)) ∝ (39)

∝ f(y1;t|y2;t, . . . , yẙ;t, x1;t, . . . , xx̊;t, ut)×
×f(x1;t|x2;t, . . . , xx̊;t, d(t− 1))

f(xj;t|xj+1;t, . . . , xx̊;t, d(t)) ∝ (40)

∝ f(yj;t|yj+1;t, . . . , yẙ;t, xj;t, . . . , xx̊;t, ut)×
×f(xj;t|xj+1;t, . . . , xx̊;t, d(t− 1))

where 1 < j < ẙ.
If ẙ < x̊, then the conditional probability distri-
bution for two last factors remains the joint one.

f(xx̊−1;t|xx̊;t, d(t))f(xx̊;t|d(t)) ∝ (41)

∝ f(yẙ;t|xx̊−1;t, xx̊;t, ut)f(xx̊−1;t|xx̊;t, d(t− 1))

×f(xx̊;t|d(t− 1))



f(xx̊−1;t|xx̊;t, d(t)) = (42)

=
f(xx̊−1;t, xx̊;t, |d(t))

f(xx̊;t|d(t))
=

=
f(xx̊−1;t, xx̊;t, |d(t))∫

f(xx̊−1;t, xx̊;t|d(t))dxx̊−1;t

If ẙ = x̊, then the last factor should be calculated

f(xx̊;t|d(t)) ∝ (43)

∝ f(yẙ;t|xx̊;t, ut)f(xx̊;t|d(t− 1))

The time update steps includes

β1 = (44)

=
∫

f(x1;t+1|x2;t+1, . . . , xx̊;t+1, x1;t, . . . , xx̊;t, ut)×

×f(x1;t|x2;t, . . . , xx̊;t, d(t))dx1;t

βj =
∫

β1 . . . βj−1× (45)

×f(xj;t+1|xj+1;t+1, . . . , xx̊;t+1, xj;t, . . . , xx̊;t, ut)×

×f(xj;t|xj+1;t, . . . , xx̊;t, d(t))dxj;t

where 1 < j < x̊. And the last factor

βx̊ =
∫

β1 . . . βx̊−1f(xx̊;t+1|xx̊;t, ut)× (46)

×f(xx̊;t|d(t))dxx̊;t

Thus we have aggregated all calculations into the
stepwise algorithm.

5. CONCLUSION

The paper has described the general solution
of the state estimation in factorized form. The
particular example for the number of the output
factors ẙ = 2 and for the state factors x̊ = 3
respectively and the general recursive algorithm
have been presented. The next task expected to be
solved is to specialize the factorized filtering and
try to apply the approach to linear and Gaussian
case, which will lead to special factorized Kalman
filter.
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