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Abstract: Designing a controller for particular use requires a proper setting of its
tuning knobs. The searched controller has to track prescribed setpoint properly while
keep some constraints placed on its action variables. The tuning is well explored
for three terms controllers. But, almost nothing can be found about tuning of
LQG controllers. Tuning presented in this contribution is done for multidimensional
adaptive LQG controller. Controller quality is evaluated by Monte Carlo approach
using identified system model for performing off-line simulations. It is necessary
to keep simulation as short as possible because lots of simulations has to be
performed during tuning process. This contribution estabilishes on-line stopping rule
for simulation run to achieve enough precise controller with the smallest possible
computational demands.
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1. INTRODUCTION

The adaptive controllers based on modern control
theory are still not fully exploited because of in-
completeness of solutions and extreme demands
on commission skills. Therefore, the simple three-
term controllers and firmware tailored solutions
are mostly used. A bridge between academicians
providing theoretical solution of control problems
and designers in real processing is needed—a
translator from the theoretical language to the
practical one and back. Such a tool is being
created—a Matlab toolbox DESIGNER—making
an automated off-line design of adaptive con-
trollers. This toolbox combines control aims, re-
strictions, off-line measurements, and prior knowl-
edge about the system in an automatic way.
It provides a completely specified adaptive con-
troller.

1.1 Controller Tuning Problem Formulation

Controller tuning is a process aiming at the cor-
rect controller set-up to fulfill given constraints
and requirements. A controller depends on certain
parameters, called tuning knobs, which have to
be set properly to obtain desired control loop
behavior. Model-based predictive controllers are,
in some sense, optimal. However, the optimality
is conditioned by the perfect model fit to the
controlled plant. And, the optimality from user’s
point of view need not match the kind of optimal-
ity acceptable for the controller.

The reasons for controller tuning are:

(1) The assumed controller uses a system model
that does not fit to the reality due to incor-
rectly identified model parameters, or even
the structure or type of model is not perfect.
The tuning knobs have to be set to suppress



control error caused by the model mismatch.
In another words the controller setting influ-
ences its robustness.

The examples of incorrect controller’s model:
Model is stochastic, has uncertain parame-
ters, is non-linear, and quantities are con-
strained while the use of LQG controller al-
lows just stochastic linear model with Gaus-
sian noise and with known model parameters.

(2) The optimality criterion of the controller is
not able to express the user’s desired kind of
optimality. The selected controller requires a
different formulation of the task. The tuning
process converts the desired optimality into
the form acceptable by controller.

The example of different optimality condi-
tions: Criterion is quadratic, while the wishes
are expressed through desired intervals for
quantities.

The constraints in these two examples are also
called hard in the first case, because they come
from the model itself and soft in the second one,
because they are the user’s wishes where the
variables should approximately be, and it is often
allowed to slightly violate them.

The tuning is an optimization method search-
ing the best tuning knob values. The controller
behavior is evaluated from predicted closed loop
performance.

The tuning, as a process, operates with a wider
amount of information than it is acceptable for
the tuned controller itself. It can use more precise
model of the system, the optimality can include
more subtle conditions, or even it can observe the
control loop as a whole and optimize the good
model excitation for adaptive controllers. The fact
allowing to tune the controller in much more
complex situation is, that the tuning is done off-
line. Thus, it is just weakly limited by numerical
feasibility of control action calculation for working
on-line in closed loop. Therefore tuning cannot be
used directly to generate system input on-line.

The prediction of closed loop performance uses
simulation of a model identified from data mea-
sured on real plant and user supplied prior in-
formation. To use the tuning to reduce drawback
of controller model—reality mismatch, reason 1,
the identified model must be closer to the reality
than the model used by the controller. A sketch
of controller tuning process is shown in figure 1.
Using model from the exponential family, Section
4, has this properties while its identification and
simulation is numerically feasible.
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Fig. 1. Conceptual flowchart of controller tuning
process.

2. SYMBOLS

Symbol f denotes a probability density function
(pdf) for continuously-valued random variable or
probability for discrete-valued random variable.
The f is distinguished by identifiers in its ar-
guments. Symbol x′ denotes a transposition of
matrix x. The set of possible values of variable
x is denoted by x∗. The number of elements of
vector x or number of members of the set x∗, for
countable sets, is denoted by x̊. Time t is discrete
and integer.

Data dt in time t consists of input ut and output
yt vectors, i.e. dt = [y′t, u

′
t]
′. The data are grouped

under the following identifiers

Ψt = [y′t, u
′
t, y

′
t−1, u

′
t−1, . . . , y

′
t−∂ , u

′
t−∂ , 1]′

ψt = [u′t, y
′
t−1, u

′
t−1, . . . , y

′
t−∂ , u

′
t−∂ , 1]′

ϕt = [y′t, u
′
t, y

′
t−1, u

′
t−1, . . . , y

′
t−∂+1, u

′
t−∂+1, 1]′

Ψt = [y′t, ψ
′
t]
′ = [y′t, u

′
t, ϕ

′
t−1]

′,

where symbol ∂ denotes the maximal delay of
signals required in the model. The sequence
{dτ}

t
τ=1−∂ is denoted by d(t), the same holds for

other time dependent variables. Data with nega-
tive time represents the prior information such as
initial state, initial estimate, etc. Symbol Ex rep-
resents unconditional expected value of random
variable x. The conditional expected value of x
conditioned by y is written as Ex|y. Set of all real
numbers is denoted by R.



3. GENERAL PRINCIPLE OF CONTROLLER
TUNING

Controller tuning task consists of controlled sys-
tem model, controller itself, parameterized by cor-
responding tuning knobs, and constraint and ob-
jective function definitions.

General description of the dynamic stochastic
system is given by pdf

f(yt|ut, d(t− 1)). (1)

The actions ut generated by, generally random-
ized, controller are described by pdf

f(ut|d(t− 1), q), (2)

where q denotes the tuning knobs.

Whole evolution of system up to time t ≥ 0 is
described recursively

f(d(t)|q) = (3)

f(yt|ut, d(t− 1))f(ut|d(t− 1), q)f(d(t− 1)|q)

starting from known initial data d(0).

The constraints are described by data dependent
function Zc being non-positive, when constraints
are met

Zc : d(̊t)∗ 7→ Rc̊, Zc ≤ 0, (4)

where c̊ is dimension of space the function maps
to. The controller performance objective function

Zo : d(̊t)∗ 7→ R (5)

is decreasing with increasing controller perfor-
mance. Symbol c̊ denoused dimension of con-
strained quantities vector.

The controller tuning is formulated as the stochas-
tic optimization task

minimize E{Zo|q}

subject to E{Zc|q} ≤ 0 (6)

over tuning knobs q ∈ q∗.

This was obtained applying conditional expecta-
tion and using (3) in (4) and (5).

The particular construction elements of the opti-
mization task is described in the following chap-
ters.

4. SYSTEM MODEL

Let us assume that the system model f(yt|ut, d(t−
1)) is known up to a finite-dimensional parameter
Θ

f(yt|ut, d(t− 1),Θ), (7)

where Θ is inferred from past data

f(Θ|d(t− 1)). (8)

The ut is missing in condition due to natural
condition of control Peterka (1981).

The pdf (8) is exploited during the system iden-
tification and also during the multiple step ahead
predictive pdf or simulation. When controller is
adaptive and model based it estimates the Θ as
well.

4.1 Simulation in Exponential Family

A system model pdf (7) belongs to the exponential
family if it can be written in form

f(yt|ut, d(t− 1),Θ) = (9)

= f(yt|ψt,Θ) = A(Θ) exp(B′(Ψt)C(Θ)),

where A is a non-negative real function on Θ∗,
and B and C are scalar functions with same
dimensions defined on Θ∗ and Ψ∗

t .

The corresponding pdf of Θ is

f(Θ|d(t)) = (10)

= f(Θ|Vt, νt) =
Aνt (Θ) exp(V ′

tC(Θ))f(Θ)

I(Vt, νt)
,

where Vt, νt is sufficient statistics updated recur-
sively

(Vt−1, νt−1,Ψt) 7→ (Vt, νt) (11)

Vt = Vt−1 +B(Ψt)

νt = νt−1 + 1.

The symbol 7→, in this context, denotes existence
of such a function that maps variable on the
left side to the variable on the right side. The
recursion (11) starts from V0, ν0 determining the
prior conjugated pdf f(Θ), see Peterka (1981).
Factor I(Vt, νt) normalizes the pdf (10).

The predictive pdf of the system can be obtained
from (9) and (10)

f(yt|ut, d(t− 1)) =

= f(yt|ψt, Vt−1, νt−1) =
I(Vt, νt)

I(Vt−1, νt−1)
. (12)

Now, the multiple step ahead predictive pdf with
statistic conditioned by system inputs is given
recursively for t ≥ 0, starting from known V0, ν0,
and ψ0, as

f(y(t)|u(t)) =
T

∏

τ=1

f(yτ |ψτ , Vτ−1, ντ−1). (13)



4.2 Simulation of Gaussian ARX model

An important type of dynamic model from the ex-
ponential family is the Gaussian ARX model. This
model with parameter Θ consisting of regressive
parameter θ and Gaussian noise covariance R has
pdf (9) realized in form

f(yt|ψt,Θ) = f(yt|ψt, θ, R) ∼ N(θψt, R),

Θ = (θ,R). (14)

The random variable Θ from pdf (10) has now
Gauss-inverse-Wishart distribution Peterka (1981)

f(θ,R|Vt, νt) = αt|R|
−

νt
2 × (15)

× exp

{

−
1

2
tr

(

R−1

[

−I
θ

]

′

Vt

[

−I
θ

])}

,

where αt is normalizing constant.

The system output yt from the outer model single
step ahead predictive pdf (12) has now Student
distribution

f(yt|ψt, Vt−1, νt−1) = (16)

=
κt

(

1 +
(yt−θ̂′t−1

ψt)
′
Λ−1

t−1(yt−θ̂′t−1
ψt)

1+ζt

)

νt−1+ẙ

2

,

where κt is normalizing constant. Variables θ̂t, Λt,
and ζt are obtained from the split

Vt =

[

Vy,t V ′
yψ,t

Vyψ,t Vψ,t

]

, with ẙ dimensional square Vy,t

and

θ̂t = V −1
ψ,t Vyψ,t

Λ = Vy,t − V ′
yψ,tθ̂t

ζt =ψ′
tV

−1
ψ,t ψt.

It is hard to calculate the multiple step ahead
predictive pdf (13) in closed form. Still it can be
sampled using model simulation.

ARX model simulation is done by recursively
sampling the recursive definition of the multiple
step ahead predictive pdf with statistics included
(13).

The Student distribution (16) converges to Gaus-
sian distribution with number of degrees of free-
dom going to infinity

f(yt|ψt, Vt−1, νt−1)
t→∞
→ (17)

t→∞
→ N

(

θ̂′tψt,
1 + ζt−1

νt−1 − ψ̊
Λt−1

)

thus it is reasonable to sample this approximation
instead.

5. CONTROLLER

Let us restrict to a subset of controllers (2) that
depends only on a finite-dimensional state Υt,
structure of which is determined by the particular
type of controller used. The ”predictive” pdf of
such controller is

f(ut|yt−1,Υt−1, q). (18)

The state evolves according to controller type

Υt−1 7→ Υt. (19)

5.1 Control loop

Using chain rule with the predictive pdf (12)
of the system model from exponential family, a
predictive pdf of data dt is obtained

f(dt|ϕt, Vt−1, νt−1,Υt−1, q). (20)

Now, a multiple step ahead predictive pdf can be
calculated recursively for t ≥ 2, starting from (20)
with t = 1, as

f(d(t)|q) =

=
t̊

∏

τ=1

f(dτ |ϕτ , Vτ−1, ντ−1,Υτ−1, q) (21)

The pdf of data over the whole time span t∗

is needed by the loss functions for closed loop
performance evaluation in the optimization task
(6).

It is generally hard to find pdf (21) in closed
form. But assuming one can sample yt from (13)
and the ut from (18), the sample of whole d(̊t)
is possible to obtain by recursive sampling of the
pdfs according to (21). This is equivalent to closed
loop simulation.

5.2 LQG Controller

The adaptive LQG controller is used here to
demonstrate the state variable and tuning knobs.
Adaptive controller tracks recursively the esti-
mates of parameters of the Gaussian ARX model
(15). Moreover, it uses exactly the same algorithm
as described in section 4.2. Thus the controller
state Υt is equal to the set of statistics of the
model simulator

Υt = (Vt, νt, ϕt).

Adaptive LQG controller uses the current point
estimates θ̂t−1 while minimizing over the T -th
receding-horizon the quadratic loss Jt

Jt =

t+T
∑

τ=t

[

yτ

ψτ

]

′

Qt

[

yτ

ψτ

]

+ ϕ′
t+TSTϕt+T ,(22)



determined by a positive semi-definite matrices
Qt, ST .

The optimal inputs are generated by linear control
law ut = −K ′(θ̂t−1, Qt)ϕt−1 with the state vector
ϕt−1. Matrix gain K(·) results from dynamic pro-
gramming that reduces to the solution of Riccati
equation. The gain K(·) is re-computed whenever
updated parameter estimates are obtained or pe-
nalization matrix Qt is changed.

Often, Qt is time invariant and consists of a block
Qu penalizing inputs and a block Qϕ penalizing
the state ϕt. If we convert the input-output model
into its state version, with state transition matrix
A and the input-gain matrix B made of current
point estimates θ̂t−1, the control law has the form

K = (Qu +B′S0B)−1B′S0A. (23)

The positive semi-definite Riccati matrix S0 de-
termining its results from the Riccati equation

Si = A′Si+1A−A′Si+1B(Qu+

+B′Si+1B)−1B′Si+1A+Qϕ, (24)

starting from known ST . Note that a factorized
equivalent of (24) is used for safe numerical eval-
uations, see Kárný (1992).

5.2.1. Tuning Knobs of the LQG Controller All
parameters of a controller being constant through
the simulation process can be tuned by the
adopted methodology. In case of the LQG con-
troller, the tuning knobs are represented by the
kernel Q of its quadratic criterion (22), the initial
value S0 of the Riccati matrix, cf. (22), (24), and
even the horizon length T . Only the matrix Q is
tuned in this work for sake of simplicity leaving
the other parameters to be set explicitly.

The number of independent elements of matrix Q
is often high. Then its full optimization is compu-
tationally intensive. Moreover, the necessary pos-
itive semi-definiteness of the matrix Q represents
a significant constraint placed on its entries.

It is also worthwhile of knowing the physical
meaning of particular tuning knobs, which is in
situation of whole matrix Q rather difficult. Thus,
the quadratic criterion constructed from smaller
and simpler pieces is suitable to decrease the
problem dimensionality. It is wise to parameterize
Q by tuning knobs with good intuitive physical
meaning. It allows us to get control over partic-
ular properties of the controller. The following
quadratic criterion is considered

Jt =

t+T
∑

τ=t

(q1l
2
1;τ + q2;τ l

2
2;τ + . . .+ qq̊l

2
q̊;τ ), (25)

where the scalar weights q• ≥ 0, called penaliza-
tion coefficients, are taken as the tuning knobs.
The linear vector function lt depends on quantities
yt and ψt and measures the signal deviations from
the desired values. Generally, the overall criterion
(25) depends on quantities yt and ψt in the same
way as the full quadratic criterion (22) does. It
makes sense, however, to fix the linear functions
and let the designer of the LQG controller to find
the weights q• only.

Typical forms of the quadratic criterion, given by
specific function lt, and their correspondence with
the constraints placed on particular signals follow.

The regulation problem is the simplest variant.
The controller tries to keep the output close to
the desired set point yref and the input close to its
reference value uref . Penalizations are then chosen
to penalize the regulation error and to penalize
difference of the input from its reference value

lt =
[

y1;t − yref
1 , y2;t − yref

2 , . . . ,

u1;t − uref
1 , u2;t − uref

2 , . . .
]

. (26)

Penalization weights belonging to the model out-
put q1, . . . , qẙ and input qẙ+1, . . . , qẙ+ů have to
be set to represent optimal trade-off between reg-
ulation error and actuator effort. The discussed
penalizations suit well for tuning of the controller
that respects constraints on the range of the sys-
tem input while minimizing regulation error.

The joint servo-regulation problem is obtained
by allowing time dependent yref . Then, limits on
input increments are put more often. Then, the
appropriate penalization of input increments is

lt =
[

y1;t − yref
1;t , y2;t − yref

2;t , . . . ,

u1;t − u1;t−1, u2;t − u2;t−1, . . .] (27)

that corresponds with time variant uref
t = ut−1.

This discrete-time analogy of the first derivative
can be extended to penalization of the discrete-
time analogy of higher order derivatives.

To cope with the constraints of mutually depen-
dent signals in case of MIMO system, the respec-
tive lt vector function entry has to include these
signals. For instance, closeness of two input signals
is controlled by the following entry

ui;t − uj;t, i 6= j. (28)

This kind of penalization is called non-diagonal
because of its matrix representation as quadratic
form.



6. CLOSED LOOP PERFORMANCE
EVALUATION

In this section, the requirements and constraints
placed on the ideal closed loop behavior are de-
fined. Their fulfillment is measured by loss func-
tions Zo and Zc. The construction of these func-
tions is described.

6.1 Objective Function

The objective expresses commonly the wish that
the quality of the regulation process in certain
sense should be as high as possible subject to
the present constraints. The typical wish on small
tracking error of i-th output is expressed by the
objective function Zo

ZTo =
1

T

T
∑

τ=1

(dτ − dref
τ )′W (dτ − dref

τ ), (29)

where W is a positive semi-definite matrix of
appropriate dimensions.

The matrix W is usually diagonal with non-zero
only those elements corresponding to signals in d
with prescribed reference trajectory or setpoint.
The values of the non-zero elements of W are
usually chosen to be reciprocal to the variances
of respective signals in d. This approach puts
more importance on proper tracking of less noisy
channels, while channels with higher variance take
less effort of controller.

This function is used as the objective in the
definition of the optimal controller (5).

6.2 Constraints

Constraints are placed usually not only on the
input and output quantities magnitudes but also
on their dynamic behavior such as limited incre-
ments. To cope with these constraints uniformly, a
vector variable ct containing all constrained quan-
tities is introduced. Besides values of constrained
signals it contains also their functions to be able
to express the dynamic behavior needed for incre-
ment constraints.

The ct is extracted from data d(T ) by the mapping

d(t) 7→ ct ∈ c∗t . (30)

Let for i-th element of ct, where i = 1, . . . , c̊ with
c̊ as dimension of c, an interval Ci be defined

[cmin
i , cmax

i ] = Ci ⊂ c∗i;t (31)

The constraints are defined by vector function Zc

c(T ) 7→ Zc ∈ Rc̊

being non-positive when the constraints are met,
see (4).

In most practical tasks, vector ct contains magni-
tudes and differences of data

ct = [dt, dt − dt−1].

Two variant of function Zc for servo control ZcM

and noise compensation ZcP
tasks are used.

6.3 Servo Control Task

The constraint function Zc collects information
about maximal constraints violation during the
simulation run

ZTcM ,i = max
t=1,...,T

dist(ci,t, Ci)−dist(ci,t, comp(Ci)),

where comp(Ci) is a set complement of Ci, Z
T
cM ,i

is i-th element of ZTcM
, and dist(., .) denotes a

set distance. This definition of function is suitable
mainly for transient processes, where constrained
signals have one or just few important peaks, such
as servo control tasks, where T is big enough to
cover all instants with significant signal change.

6.4 Noise Compensation Task

The second function evaluates a proportional
amount of time where constraints are satisfied
to the total length of simulation. In the discrete
case, it is the relative frequency of constraints
satisfaction

ZTcP ,i = αmin −
1

T

T
∑

t=1

χCi
(ci,t), (32)

where χCi
is characteristic function of the set

Ci, and number αmin ∈ [0, 1] relaxes the require-
ment of constraint satisfaction to a specified level.
This definition is suitable for situations where the
constraints can be violated any time during the
simulation. This is the case of noise compensation
control.

In the case of control loop generates a stationary
process, it holds

ZTcP ,i
T→∞
−→ αmin −P(ci ∈ Ci) almost surely,

where P denotes probability.

7. NUMERICAL EVALUATION

7.1 Expected Value Estimation

The controller tuning, formulated as the optimiza-
tion task (6), acts on the conditional expecta-
tion of losses Zc and Zo. However, their pdf is



not known in a closed form, because of general
complexity of the dynamic system model (1) and
adaptive controller (2) behavior, and can be only
sampled. Thus the expected value has to be es-
timated using the sampling. To unify notation,
let Z• denotes both loss functions depending on
the content of placeholder • ∈ {cM , cP , o}. The
expectation E{Z•|q} is estimated as sample mean

ZN,T• (q) =
1

N

N
∑

s=1

ZT•,s(q)
N→∞
−→ E{Z•|q}, (33)

Sequence {ZT•,s(q)}
N
s=1 denotes N samples of ran-

dom variable Z•(q).

7.2 Number and Length of Simulations

Random variable ZN,T• is evaluated using N in-
dependent simulation runs. Length of each run
is determined by T . These two values have big
influence on the computational complexity of the
loss function evaluation. The number of indepen-
dent simulation runs N is indirectly proportional
to variance of loss function ZN,T• .

The similar conflicts occurs for the length of
simulation T , which must be long enough in order
to:

(1) Contain all important reference trajectory
changes

(2) Allow uncertain parameters vary to simulate
controller adaptiveness

(3) Lower variance of the controller quality loss
functions

The item 1 is straightforward. It is used for tran-
sient processes, where kind of constraints measure
ZcM

is used. Of course, also all responses of the
reference trajectory changes must be included.

The situation of items 2 and 3 is more compli-
cated. Both of the items contribute to the preci-
sion of expected value estimate. Even more the
item 2 can be substituted by item 3, because if
the variance is low, it means that further param-
eters changes brings no more information to the
controller quality loss functions.

Increasing simulation length T for stationary case
has the same effect as the increasing number N of
the simulations. Thus, one enough long simulation
is sufficient.

The proper values of N and T are decided on-
line using probability convergency or according
to stabilization of particular pdfs using Kullback-
Leibler divergence. The on-line stopping is advan-
tageous in comparison with off-line determination
of length and number of simulations, because it
considers the contribution of actual data and stop-
ping is optimal for current simulation unlike for

all possible simulation runs as in case of off-line
stopping.

7.3 On-line Stopping Rule for Number of Simulations

The independent simulation runs are connected
with non-stationary servo-control tasks. It is hard
to find a reasonable distribution for different vari-
ants of reference trajectory. Thus, a simple non-
parametric stopping rule based on second moment
is used in the form of

P(|ZN,T• − EZN,T• | ≥ γ) ≤ β. (34)

The independency of averaged loss functions re-
sulting to Z

N,T
• used with Chebyshev inequality

yields

P(|ZN,T• − EZN,T• | ≥ γ) ≤
var(ZN,T• )

Nγ2
. (35)

Because covariance var(ZN,T• ) is unknown, its

estimate ZN,Tσ,• is used

ZN,Tσ,• =

N
∑

s=1

(ZT•,s)
2 − (ZN,T• )2

N
, (36)

where variable ZT•,s has the same meaning as in
(33). Then, stopping is triggered after certain
minimal number of simulation is performed and
when the following inequality is satisfied

Z
N,T
σ,•

Nγ2
≤ β. (37)

Typical values for stopping parameters are β =
0.1 and γ = 0.1.

7.4 On-line Stopping Rule for Simulation Length

The rule for on-line simulation stopping in sta-
tionary cases is more complicated. The function
ZT• contain a sum, but the summed terms, or in
another words partial loss functions, in (29) and
(32) are correlated.

To find reasonable stopping rule, a new quantity
vt related to partial loss function is introduced. A
simple dynamic model of vt is being estimated in
Bayesian way. Let the parameters of the model be
denoted by Ξ.

f(vt+1|v(t),Ξ) (38)

When the estimated pdf f(Ξ|v(t)) of model pa-
rameters Ξ stabilizes, the stopping takes place.
The stabilization of pdfs is measured by Kullback-
Leibler divergence DKL of two successive pdf es-
timates Kárný et al. (2005). It is defined by



DKL(f(Ξ•|d(T ))‖f(Ξ•|d(T − 1))) = (39)

=

∫

f(Ξ•|d(T )) ln
f(Ξ•|d(T ))

f(Ξ•|d(T − 1))
dΞ•.

When this divergence, called QT , becomes smaller
than some threshold value ε

QT = DKL(f(Ξ•|d(T ))‖f(Ξ•|d(T − 1))) ≤ ε,

the computation is stopped. At this moment,
the pdf is considered to reach steady state. The
stationarity means that more data would not
bring more information for the estimate.

It is assumed that f(ZT ) is stabilizing as f(Ξ|T )
is stabilizing. In another words the divergence
DKL(f(ZT+1)‖f(ZT )) is decreasing as
DKL(f(Ξ•|d(T ))‖f(Ξ•|d(T − 1))) is decreasing.

The definition of the quantity vt and the construc-
tion of models for the functions Zo and ZcP

is
described in the following sections 7.4.1 and 7.4.2.
The stopping rule for whole simulation is triggered
when the conditions for both loss and constraints
function stopping are activated.

7.4.1. Approximation by Logarithm ARX Model

The model (38) used for stopping uses partial
loss vt of function Zo, which is defined as a
distance between the controlled variable yt and
its referential value yref

t in time t

vt = ‖yt − yref
t ‖. (40)

It was shown Kárný et al. (1990), that tracking er-
ror of adaptive controller, controlling system with
uncertain parameters, closed loop is a random
variable with distribution close to log-normal one.
Accepting this kind of stationary distribution, a
suitable form of dynamic model (38) seems to
be a simple autonomous ARX model acting on
logarithm of the partial losses vt

ln(vt) = a ln(vt−1) + k + et, et ∼ N(0, R).(41)

The parameters a, k, and R are collected into
parameters variable Ξ.

The Bayesian identification of the parameters Ξ
leads to self reproducing Gauss-inverse-Wishart
prior/posterior pdf

f(Ξ|v(t)) = f(Ξθ,ΞR|Vt, νt) = (42)

= αt|R|
−

νt
2 exp

{

−
1

2
tr

(

Ξ−1
R

[

−I
Ξθ

]

′

Vt

[

−I
Ξθ

])}

,

where αt is normalizing constant. Statistics ν and
V and parameter elements Ξθ and ΞR without Ξ
are described in section 4, with the difference that
now the data are logarithmed.

The stationarity measure Qt, in another words
KLD of two successive estimated pdfs of Ξ, ex-
plored in Kárný et al. (2005), has form

Qt = DKL(f(Ξ|d(t))‖f(Ξ|d(t − 1))) =

=
F (νt) +G(ζt) +H(νt, %t, ζt)

2
, (43)

where

F (νt) = 2 ln(Γ(
νt − 1

2
)) − 2 ln(Γ(

νt

2
)) +

∂ ln(Γ( νt

2
))

∂ νt

2

G(ζt) = ln(1 + ζt) −
ζt

1 + ζt

%t =
ê2t

D
y
t−1(1 + ζt)

H(νt, %t, ζt) = (νt − 1) ln(1 + %t) −
νt%t

(1 + %t)(1 + ζt)
.

When the divergence QT is less than threshold ε

in time T , than it is assumed that enough infor-
mation has been collected and the loss function
Zo(T ) (29) is precise enough.

7.4.2. Markov Chain Estimation The calcula-
tion of sum in (32) gives a relative frequency of
constraints satisfaction. To estimate precision of
this estimate, this task is slightly extended.

Given constraints quantity ci;t from (30) and
corresponding constraining interval Ci from (31),
let {vt}t is sequence defining relative position of
ci;t to Ci

vi;t =







1 ci;t > Ci
0 ci;t ∈ Ci
−1 ci;t < Ci

, (44)

where inequality symbol is taken as it holds for all
the elements of set on its right side.

The dynamic model (38) of sequence {vi;t}t is now
modeled by Markov chain

f(vi;t|gi;t−1,Ξ) = Ξvi|gi
. (45)

Because quantity vt is now discrete, the symbol f
represents probability now. Quantity gi;t−1 holds
the past values of vi;t

gi;t−1 = [vi;t−1, vi;t−2, . . . , vi;t−η ].

Number η denotes the order of Markov chain.
The parameter Ξv|g has 3η+1 entries. The signal
element index i will be omitted to simplify the
following text.

Using Bayesian rule and prior on f(Ξ) defined by
statistic V0,v|g

f(Ξ) ∝
∏

g

∏

v

Ξ
V0,v|g−1

v|g ,

we obtain the posterior pdf of parameters Ξ

f(Ξ|v(t)) =

∏

g

∏

v Ξ
Vv|g;t−1

v|g

B(Vt)
,



where

Vv|g;t = V0,v|g +
t

∑

τ=1

δ(v, vt)δ(g, gt)

and the normalizing factor

B(Vt) =
∏

g

∏

v Γ(Vv|g;t)

Γ(
∑

v Vv|g;t)
.

The stopping rule uses Kullback-Leibler diver-
gence to determine that enough information of
the constraint satisfaction statistic ZPc was col-
lected. The calculation is stopped whenever the
divergence of two succesive pdfs is less or equal to
a threshold ε

QT = DKL(f(Ξ|v(T ))‖f(Ξ|v(T − 1))) ≤ ε.(46)

Derivation of this divergence for Markov chain
model is done through converting it to Dirichlet
model, for which the divergence is analyzed in
Kárný et al. (2005).

Parameters Ξv|g are independent for different past
data g. Thus

f(Ξ|v(t)) =
∏

g

f(Ξ•|g |v(t)),

where the particular factors

f(Ξ•|g|v(t)) =
Γ(

∑

v Vv|g;t)
∏

v Γ(Vv|g;t)

∏

v

Ξ
Vv|g;t−1

v|g

are distributed by Dirichlet distribution. In each
time step, only one of these factor is updated—
that one with corresponding past data g = gt−1.
The other factors remain unchanged.

It holds

DKL(f(a)f(c)‖f(b)f(c)) = DKL(f(a)‖f(b)).

Thus

DKL(f(Ξ|v(t))‖f(Ξ|v(t − 1))) = (47)

= DKL(f(Ξ•|gt
|v(t))‖f(Ξ•|gt

|v(t− 1)))

is a divergence of two Dirichlet distributions.

Now, the results from Kárný et al. (2005) can be
substituted to the stopping rule (46) which yields

Qt = − ln
Vvt|gt;t−1

∑

v Vv|gt ;t−1

+

+
∂

∂Vvt|gt;t
ln Γ(Vvt|gt;t) −

∂

∂
∑

v Vv|gt;t
ln Γ(

∑

v

Vv|gt;t).

At the stopping time T , a stabilized MC model
is obtained. Its steady state probability of state
number zero is the wanted value for calculation
of function ZTcP

. Nevertheless, instead of it the
function ZTcP

is calculated in standard way using
its definition 32. Both values are asymptotically
same.

7.4.3. Properties of stationarity measures To
show properties of stationarity measures Q using
both ARX and MC stopping models, a simple
illustrative experiment is presented. The results
can be seen in figure 2. The data simulating the
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Fig. 2. Properties of stationarity measures.

partial loss functions Zo were generated using a
simple linear system with transfer function

0.00468 + 0.00438s

1 − 1.81s+ 0.8178s2

model driven by zero mean white noise with vari-
ance one. The squares of the generated outputs
was used as partial loss function vt for stopping
using ARX model stabilization. The stationarity
measure Qo;t for ARX model is seen in the second
part of the figure and evolution of mean value
estimation is in the third part of figure.

Now, a interval [−0.3, 0.3] is used on the generated
data to obtain the discrete three-state signal (44)
for purpose of stopping through MC model. The
resulting stationarity measure QcP ;t and corre-
sponding estimation of probability of state zero
are shown in second and third part of the picture.

It can be seen that measure QcP ;t is rather fuzzy.
This complicates the decision whether to stop
simulation, because the rule to stop whenever
the measure is below the threshold is quite un-
satisfactory as several next samples immediately
increase the value above the threshold. To solve
this problem, an interpolation is performed using
regression with the following model

Qt = a0 + a1t
−1/2 + a2t

−1. (48)

The interpolated measure, denoted by Q̃cP ;t, is
shown in the figure. The interpolation is, up to a
tiny peak close to origin, satisfactory for stopping
purposes.

It is possible to think about stopping for the
interpolating regression as well and trigger the
stopping when the interpolated measure is below



the threshold as well as the interpolation itself has
been stabilized.

The threshold for the measures Q̃cP ;t and Qo;t
need not be a same value. The stopping models
are different and has different number of identified
parameters.

8. OPTIMIZATION

In general case the pdf of data f(d(T )) is available
only through samples. Thus the same holds for
functions Z•. Therefore the optimization problem
(6) forms a stochastic optimization task. Sample
path method is used to approximate it by a
deterministic optimization task.

Let for a function h• : q∗×Rξ̊ 7→ RZ̊• and random
vector ξ holds

Z•(q) ≡ h•(q, ξ).

Let the expected value EZ•(q) is approximated
with Ẑ•(q)

Ẑ•(q) =
1

N

∑

h•(q, ξi),

where N is a positive integer and {ξi}
N
i=1 is

a sequence, called sample path, of independent
samples of ξ. Fixing this sequence at constant
samples, the optimization becomes deterministic.

In general, it is possible to obtain the selection of
function h• and distribution of ξ by infinitesimal
perturbation analysis (IPA) or by likelihood ratio
method Glasserman (1991). In case of Gaussian
ARX model where yt ∼ N(θψt, R) it was selected

ξi,t ∼ N(0, I) and yt = θψt +R
1
2 ξ, where θ and R

are samples from (15) and R
1
2
′R

1
2 = R.

As the deterministic optimization method, the
quasi-Newtonian BFGS method for constrained
optimization fmincon from the Matlab Optimiza-
tion Toolbox Matlab Inc. (2001) was used to solve
the deterministic task. The method cited is able
to approximate the gradient vector and Hessian
matrix internally.

9. CONCLUSION

A method for controller tuning was presented.
It starts from the general system model and
controller description and its Monte-Carlo sim-
ulation. Constraints and objective functions are
used to define the ideal controller behavior, which
is searched by optimization using sample path
method.

The control loop simulation is described firstly
rather general and then a particular case of Gaus-
sian ARX model and adaptive LQG controller is

given. The definition of constraint includes the
input limitations as well as output overshoot.

The speed of the computation can be significantly
improved by introducing stopping rules to lower
computation demands of simulation and optimiza-
tion loop.

This method is being developed with the Designer
Toolbox project Novák et al. (2003); Böhm et al.
(1998), which includes other tasks such as system
identification and controller verification to sup-
port the design.
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M. Kárný. Parametrization of multi-output multi-

input autoregressive-regressive models for self-
tuning control. Kybernetika, 28(5):402–412,
1992.
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