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Abstract: In nuclear medicine, estimation of doses ab-
sorbed in target tissues serves for both medical and
radio-hygienical purposes. Dose is proportional to
time integral of the target tissue activity. Therefore,
a suitable specific model describing ability of the con-
sidered tissue to absorb radioactive substance, partic-
ularly thyroid gland and 131I, is essential. The pa-
per shows the bi-phasic model of time-activity course
as a linear regression model for logarithm of activity
with normal noise, estimated by Bayes methodology.
We present algorithmic solution of the model identi-
fication using MCMC sampling, formulation of hard
constraints of the prior probability density function
(pdf ) for unknown model parameters (regression co-
efficients) and testing of pdf of the time integrals for
each parameter sample. The identification was val-
idated on predictive ability of the model. We used
2 355 data sequences, each containing 4–9 pairs of
time-activity mesured within a few days. The model
was identified using 3 data pairs, activity of the 4th

measurement was predicted. After omitting 0.81 % of
data with gross measurement errors, the mean of rela-
tive prediction error is −0.0004, median −0.0544 and
standard deviation 0.42. Because of prior informa-
tion, even 2 measurements give reliable predictions in
cases inspected. Distribution of the time integral log-
arithms is approximated by the normal pdf.

Introduction

Use of radioactive iodine 131I is one of the steps in di-
agnosis and treatment of thyroid gland carcinoma, among
biochemical, endocrinological, histological and other ex-
aminations. 131I is used for imaging and destruction
of thyroid-like tissues accummulating iodine, either as
elimination of thyroid remnants after removing the tumor
by surgery or radiodestruction of tumor re-appearence or
metastases [1].

The 131I is administered to a patient orally as a water
solution of sodium- or potassium-iodide salt. The radio-
logic procedure consists of two major steps:

• Diagnosis: A low (tracer) activity about 50–
100 MBq is administered to a patient. Its distribu-

tion over the organism is monitored by a whole-body
imaging using γ-camera and/or measurement of ac-
tivity in selected regions. The measurements can be
repeated in time to obtain activity sequence. This
stage informs about accummulating sites, their size,
activity kinetics etc. and helps in decision about sub-
sequent treatment. The γ-radiation produced by 131I
is detected.
• Therapy: A high administered activity of 2–10 GBq

causes destruction of accummulating tissues by their
huge impact by β -radiation.

The activity decided for therapy must be balanced for
sufficient destructive effect and, at the same time, for
minimizing secondary radiation risks for the patient and
medical staff as well. Individual response to 131I activity
administrated to the patient’s organism requires individ-
ual mathematical processing of activity values in a tis-
sue measured after the administration. The information
gained is used for estimation of the absorbed radiation
dose, for the treatment decision support, etc.

The standard methodology for doses estimation is
MIRD [2] (Medical Internal Radiation Dose). It requires
time integral of activity in thyroid gland. Due to limited
number of diagnostic thyroid activity measurement A in
time t practically available (usually 3 (A, t)-pairs within
two days) and uncertainty of the data, adequate mathe-
matical modelling of A(t) must be used.

The bi-phasic model of activity A in time t was pub-
lished e.g. in [3]. Although its dominance over classi-
cal mono-exponential model was obvious, its identifica-
tion was very sensitive to quality and amount of measured
data. Therefore, a robust approach had to be developed
so that all the data available in clinical practice could be
used.

Probabilistic modelling in combination with Bayes
methodology appears to be suitable for solution of this
task. Its strength is in respecting random nature of the
data and in possibility to add expert knowledge (prior in-
formation) on the model parameters to be estimated. It
proved to be successfully applicable to estimation tasks
with a few noisy data, e.g. [4], [5].

There is a developed theory about prior information
in linear regression models (e.g. [6], [7]). However, this
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 practical estimation task is specific by a very low num-
ber of data potentially (and quite frequently) loaded with
other measurement errors than random. Bayes methodol-
ogy furthermore leaves subjective space for the formula-
tion of prior information. Therefore, a careful approach
must be adopted to balance between the prior informa-
tion improving the identification and a limited informa-
tion carried by a few pieces of data that must not be dis-
torted by any subjective influence.

Materials and Methods

The aim is to estimate probaility density function
f (ξ |data, prior), where

ξ =

+∞∫

0

A(t) dt. (1)

Data are represented by a measured sequence
{(ti,Ati )}n

i=1, where 2 ≤ n <∼ 9. Prior information
will be discussed below.

The bi-phasic model of A(t) [3] is a linear regression
model with normal noise

lnA(t) = k1 + k2 ln t + k3 t
2
3 ln t− t

Tp
ln2, (2)

where ϑ ≡ (k1,k2,k3)′ is a vector of unknown parameters
and Tp is a physical half-life of 131I (8.04 days). Unit of
activity is MBq, unit of time is day, t > 0.

The equation (2) can be formally rewritten as

dt = ψ ′t ϑ , (3)

where ′ means transposition, dt = lnA(t) + t/Tp ln2 and
ψt = (1, ln t, t2/3 ln t)′. Let us denote data vector Ψt =
(dt , ψ ′t )′.

According to a general theory of Bayesian estimation
of the linear regresion model with normal noise [8], [9],
the posterior pdf of ϑ is

f (ϑ |L,D,ν) = I −1(L,D,ν) ×
[
1 +
(bdD

)−1 (ϑ − ϑ̂
)′ bψL′ bψD bψL

(
ϑ − ϑ̂

)]− 1
2 (ν+ψ̊)

,

(4)
where I −1(L,D,ν) is a normalizing constant, ϑ̂ =
bψL−1 bdψL is the least squares estimate of E ϑ , ψ̊ = 3
is length of the regression vector and V ≡ L′DL and ν are
sufficient statistics evolving in time t like

Vt = Vt−1 + ΨtΨ′t
νt = νt−1 + 1, (5)

where V0 and ν0 are prior statistics. V is called extended
information matrix. The decompositionV = L′DL, where
L is a lower triangular matrix with unit diagonal and D is
a diagonal matrix, is used because of numerical stabil-
ity and computational comfort. Fast algorithms for direct
update of L and D without explicit construction of V can
be found e.g. in [9]. The matrix V , as well as L and D, is

decomposed into a scalar bdV , a ψ̊× ψ̊-matrix bψV and a
ψ̊×1-column vector bdψV :

V =

( bdV bdψV ′
bdψV bψV

)
. (6)

Covariance of ϑ is given by

cov(ϑ |L,D,ν) =
bdD

ν−2
bψL−1 bψD−1

(
bψL′

)−1
. (7)

The pdf (4) is a marginal of a joint pdf of ϑ and model
noise (Gauss-inverse-Wishart (GiW) pdf ). The notation
used in (4) guarantees existence of first two moments of
noise in GiW.

The prior information can be formulated as con-
straints for the parameter vector ϑ and as values for the
prior statistics V0 and ν0.

Let us now formulate constraints for ϑ . The function
A(t) must fulfil the following requirements:

(1) A(t) = 0 for t = 0 and t→+∞,
(2) A(t) has a single global maximum A(tmax) in tmax,
(3) td < tmax < tu, where, according to medical experi-

ence [10], td = 4 hours (0.167 days) and tu = 72 hours
(3 days),

(4) given t1 > tmax, A(t) decreases for t > t1 faster than
decrease caused by a simple physical decay, i.e. by
the term − t

Tp
ln2.

The first two requirements are fulfilled if k2 > 0 and
k3 < 0. The straightforward solution of the rest of the
requirements is exactly analytically impossible because
of form of (2). We will present an approximate solution
by analyzing g(t) as lnA(t) = g(t)− t/Tp ln2. Putting the
first derivative of g(t) equal zero gives

k2 + k3t
2
3

(
2
3

ln t + 1
)

= 0 (8)

with solution denoted t1b. Requiring td < t1b < tu and con-
sidering conditions above, we get

−k3t
2
3

d

(
2
3

ln td + 1
)
< k2 < −k3t

2
3

u

(
2
3

ln tu + 1
)
.

(9)
The analysis says that for k3 < 0 < k2 and t < t0 ≡
exp(−3/2) days ≈ 5 hours 21 mins, g(t) is always in-
creasing, therefore, t0 must be substituted into (9) instead
of td. To include the decay term, t/Tp ln2 with corre-
sponding values of td and tu must be added to the leftmost
and rightmost side of (9), i.e.

0.019< k2 <−3.6 k3 + 0.26. (10)

All these conditions can be written in the linear form

A ϑ < b,

A =




0 1 3.6
0 −1 0
0 0 1


 , b =




0.26
−0.019

0


 .

(11)
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 This constraint ensures the requirements (1)–(4) fulfilled.
The constrained posterior pdf f̃ (ϑ |L,D,ν) is obtained
from (4):

f̃ (ϑ |L,D,ν) = f (ϑ |L,D,ν) χ(ϑ ) (12)
χ(ϑ ) = 1 if A ϑ < b,

0 otherwise.

The modified normalization constant neednot be consid-
ered, as shown below.

Let us now focus on prior statistics V0 and ν0. The
element bdD, which is the least-squares remainder, is pro-
portional to the model noise and to covϑ in (7). To keep
the prior covariance high, either bdD must be high, which
will negatively influence the noise even after real data up-
date, or terms of bψD must be low. This is in agreement
with [7], where fictitious data used to create V0≡ L′0D0L0
are scaled by a coefficient, representing weight or belief
in these data, and the term bdD (scaled as well) is then ad-
ditionally increased by assumed (i.e. usual) noise. As the
fictitious data, we used three pairs of average data: two
within the first day after administration and the third one
after several days when activity of thyroid gland is almost
zero. The vectors of these fictitious data Ψfict were multi-
plied by a scale factor 0.01 to make the prior flat enough
but to keep a prior point estimate of ϑ in a range leading
to meaningful courses of A(t). The term bdD0 was ad-
ditionally increased by 3×0.0015 which was an average
noise contributed by one data pair. The value of ν0 was
chosen 1.05 as best performing. However, topic of prior
information is still a matter of research.

Now, the algorithmic solution of the model iden-
tification will be described. For convenience and nu-
merical reasons, the parametric space of ϑ was linearly
transformed into ϑ ∗ so that the (unconstrained) posterior
pdf (4) had zero mean and unit covariance

T =

√
ν−2
bdD

bψD bψL, (13)

ϑ ∗ = T (ϑ − ϑ̂). (14)

where
√
bψD means square root by elements.

The constraint (11) was transformed

A∗ = AT−1, (15)
b∗ = b−Aϑ̂ , (16)

so that A∗ ϑ ∗ < b∗ is corresponds to (11).
The transformed pdf (12) was sampled using

Langevin diffusion algorithm [11]. This improvement
of random walk Metropolis-Hastings algorithm shifts the
proposed sample deterministically towards the gradient
which increases the acceptance rate and makes conver-
gence faster. The normalizing constant I −1(L,D,ν)
in (4) is not required in the sampling algorithm.

However, the analysis of MC properties including
derivation of optimum chain step size [12] assumes mem-
bership of the posterior pdf in exponential family, exis-
tence of one-dimensional factors of the pdf and uncon-

strained domain. Unfortunately, all of these assumptions
are violated in this task.

A rule for the optimum step size was constructed
experimentally by numerical analysis of 3 876 data se-
quences. The rule is quite complex, although alge-
braically simple. We observed that the optimum step
size depends on the statistics ν and distance of the un-
constrained posterior mean from the planes (11) in the
transformed space. Testing of the heuristic rule proved
performance of MCs close to their optimum.

Initial point of MC was chosen by optimization of the
quadratic form in the denominator of (4) with the con-
straints (11). 5 000 samples were found sufficient after
500 of burn-in. Each parameter sample ϑ ∗j was, after the
inverse transformation, substituted into (2) and integral
ξj (1) was computed from 0 to 70 days using the algo-
rithm QUANC8 [13]. The samples ξj created a histogram,
distribution of which was tested.

Kolmogorov-Smirnov test of normality was applied
to the samples ξj and ln ξj for each data sequence. Also,
skewness for both sets of samples was computed.

Results

First, prediction ability of the model was tested both
with and without the prior information. 2 355 data se-
quences that contained at least 4 data pairs were selected.
3 data pairs were used to identify the model and the
4th one, usually following after 1–3 days, was predicted.
This choice is justified by the fact that after a diagnostic
administration, usually not more that 3 measurements are
performed.

Without the prior constraints, 40 % of data sequences
had to be excluded as they did not lead to estimates
matching the requirements for physical behaviour of A(t).
No prior statistics were used in this case. Although the
prediction is the best, number of outlied predictions (rel-
ative error >3) is high. Then, the prior constraints were
considered, either with empty or non-empty prior statis-
tics. As expected, all the data sequences led to mean-
ingful estimates. The case with prior statistics performs
lower both relative prediction error and its standard devi-
ations. These results are shown in the Table 1. Standard
deviations are similar in all the cases, although the best in
case 3.

Table 1: Relative prediction errors in cases: 1) no prior
constraints, 2) prior constraints and empty prior statistics,
3) prior constraints and statistics

# mean median st.dev. data outliers

1) 0.0576 −0.0066 0.475 1 403 2.28 %
2) −0.0968 −0.1456 0.431 2 355 0.85 %
3) −0.0004 −0.0544 0.416 2 355 0.81 %
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 Next, distribution f (ξ ) in (1) was tested.
Kolmogorov-Smirnov test of normality did not give
satisfactory significance level of null hypothesis (i.e.
data are normal) neither for ξ nor for ln ξ . Another
approximate test was done by comparing skewness of
both f (ξ ) and f (ln ξ ) after excluding samples out of
ξ̂ ±3σ . The comparison is shown in Table 2.

Table 2: Skewness of distributions { f (ξj)} and { f (ln ξj)}

f (·) mean median st.dev.

ξj 1.66 0.84 3.53
ln ξj 0.29 0.24 0.61

Although these results correspond to the non-
significant levels of the Kolmogorov-Smirnov test, it is
obvious that normal pdf (with zero skewness) describes
better the distribution of ln ξ . Practical experience shows
that such an approximation is sufficient with respect to
existing uncertainty.

Figure 1 shows an example of A(t) identified on 2 ini-
tial data pairs, other data are predicted.
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Figure 1: Example of A(t) (one sample) identified on
2 data pairs

Discussion

The bi-phasic model (2) has been so far considered as
the best known tool for modelling of activity kinetics in
thyroid gland. The Bayes methodology used for its prob-
abilistic identification has advantage in decreasing uncer-
tainty by prior information. However, the freedom in its
construction requires awareness, on the other hand, orig-
inal and specific approaches can be applied.

It was shown that the values of prior statistics, cho-
sen in accordance to the recent theory, can improve pre-
dictive abilities of the model. Although standard devia-
tions of relative prediction errors seem high (above 40 %
of activity magnitude), we must take into accout limited

quality and relatively high uncertainty of measured data.
Radioactive decay is a random process which becomes
significant especially in case of low activities in diagnos-
tic administration and late measurements.

Analytical approximation of the resulting distribution
f (ξ ) is another subject of more testing. Nevertheless, its
log-normal form seems to be sufficient in practice.

Algorithmic solution appears robust and stable. Un-
fortunately, impossibility of analytic transformation of
f (ϑ ) into f (ξ ) requires numerical transformation which
was outlined in the paper. Although the numerical proce-
dure seems complicated, on contemporary PCs one iden-
tification takes 1–2 seconds in MATLAB and fractions of
seconds in C++, which makes possible to use it on-line in
clinical practice.

Conclusions

Robust and stable probabilistic identification of bi-
phasic model of thyroid activity A(t) after 131I admin-
istration was presented. The model was tested using pre-
diction of future data. Prior information guarantees phys-
ical meaningfullness of A(t) and increases precision of
the predicitons.

To estimate distribution of absorbed dose evaluated
according to the MIRD methodology, the pdf f (ξ ) is di-
rectly applicable because it depends linearly on the dose.

It was observed that reliable predictions are given
even after 2 measurements. Due to this, the model can
be used for prediction of time interval when a required
activity would be reached, which might be important for
planning of a patient’s stay in the clinic, or for checking
correctness of data typed by staff into the software sup-
porting activity measurements.

Further work would focus on improvement of prior
information, better analysis of convergence and more ex-
act analytical approximation of f (ξ ). Initial phase of
A(t) as well as overall performance might be improved
by change of the time scale and, potentially, activity scale
which is under consideration.

Use of the model can contribute to treatment quality,
radiation protection and quality of future data.
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37:83–97, 1991.
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