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Abstract: We present a construction of prior information for Bayes identification of linear
regression model with normal noise. We apply this methodology for modelling of time-
activity function A(t) of thyroid after administration of radioactive iodine 131I in nuclear
medicine. The model is tested on 2 355 data sequences, containing 4–9 pairs of (ti, Ati).
3 pairs are used for identificaion, activity of the 4th one is predicted. Excluding 0.81 % of
outlying sequences, the mean of relative prediction error is−0.0004, median−0.0544 and
standard deviation 0.42. Distribution of integral of A(t), proportional to absorbed dose, is
numerically simulated using MCMC and approximated by log-normal pdf.

Keywords: fictitious data, information matrix, Gauss-inverse-Wishart, MCMC

1. INTRODUCTION

Linear regression model is a widely used tool for probabilistic modelling. Its identification
using Bayes methodology (Peterka, 1981) enables to formulate prior information improving
precision of estimated parameters or, as shown, allowing the estimation if there is not enough
data to match some necessary conditions.

In nuclear medicine and radiation protection, for determining absorbed dose of radiation caused
by a radioactive source (particularly 131I in thyroid gland) with the standard MIRD methodology
(Loevinger et al., 1988), it is necessary to know integral of the source activityA(t) as a function
of time. Logarithm of A(t) is described by a static linear regression model with normal noise.

The task is specific by a low amount (usually 3–5) of measured data pairs (ti, Ati). For predic-
tion of activity, the model must be identified even with the 2–3 initial measurements, ideally
with specified uncertainty of the prediction. Bayes methodology can be successfully applied for
estimation tasks with a few noisy data, e.g. (Fonseca, 1991; Heřmanská and Kárný, 1997). The-
ory of prior information in linear regression models exists, e.g. (Kárný et al., 2001; Kracı́k and
Kárný, 2005). But Bayes methodology leaves subjective space for its construction, therefore
the prior knowledge and a limited information in a few noisy data must be carefully balanced.

The bi-phasic model of A(t) dominates over the classical mono-exponential model in the study
using long sequences {(ti, Ati)} measured twice as more often as usually (Heřmanská et al.,
2001). However, its identification using data of usual amount and frequency leads to physically
meaningless estimates in about 40 % of cases. Therefore, a robust approach has to be developed
to utilise all the data available in clinical practice.
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2. MATERIALS AND METHODS

2.1 Aim of the work

The aim is to estimate probaility density function f(ξ|data, prior), where

ξ =

+∞∫

0

A(t) dt. (1)

Data are represented by a measured sequence {(t, At)} ≡ {(ti, Ati)}ni=1, where 2 ≤ n <∼ 9.

2.2 Model description

The bi-phasic model of A(t) is a linear regression model

lnA(t) = k1 + k2 ln t+ k3 t
2
3 ln t− t

Tp
ln 2, (2)

ϑ ≡ (k1, k2, k3)′, where ′ means transposition, is a vector of regression coefficients and Tp is a
physical half-life of 131I (8.04 days). Unit of activity is MBq, unit of time is day, t > 0.

The equation (2) can be formally rewritten as

dt = ψ′tϑ+ et, (3)

dt = lnAt + t/Tp ln 2 and ψt = (1, ln t, t2/3 ln t)′. The term et ∼ N (0, r) represents normal
noise with variance r unknown but constant. Let us denote data vector Ψt = (dt, ψ

′
t)
′. Vector

of unknown parameters is Θ = (ϑ′, r)′.

2.3 Conjugated system and posterior pdf

The conjugated posterior pdf is Gauss-inverse-Wishart (or Normal-inverse-Gamma)

f(ϑ, r|L,D, ν) = I(L,D, ν)−1 ×
× r− ν2 exp

{
− 1

2r

[(
bψLϑ− bdψL

)′ bψD
(
bψLϑ− bdψL

)
+ bdD

]}
(4)

with a normalising constant I(L,D, ν) and r > 0. Data are expressed by finite sufficient
statistics: extended information matrix V (decomposed into V ≡ L′DL, where L is a lower
triangular matrix with unit diagonal and D is a diagonal matrix) and a count statistics ν

Vt = Vt−1 + ΨtΨ
′
t νt = νt−1 + 1. (5)

Without a prior information, V0 is a zero matrix 4×4 and ν0 = 0 (so called improper prior).
We introduce partitioning of V (and also L and D) into submatrices bdV of size 1×1, bψV of
size ψ̊ × ψ̊ and bdψV of size ψ̊×1, where ψ̊ = 3 is a length of the regression vector, like

V =

( bdV bdψV ′
bdψV bψV

)
. (6)

Then, (4) is obtained by algebraic operations on the multidimensional normal pdf.
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If ϑ̂ = bψL−1 bdψL, the marginal pdf of (4) on ϑ is (∝ means proportional up to a constant)

f(ϑ|L,D, ν) ∝
[
1 +

(
bdD

)−1 (
ϑ− ϑ̂

)′ bψL′ bψD bψL
(
ϑ− ϑ̂

)]− 1
2

(ν−2)

. (7)

First and second central moment of r and ϑ is

E(r) =
bdD

ν−ψ̊−4
≡ r̂, var(r) = 2r̂2

ν−ψ̊−6
,

E(ϑ) = bψL−1 bdψL ≡ ϑ̂, cov(ϑ) = r̂ bψL−1 bψD−1
(
bψL′

)−1
.

(8)

If ψ̊ = 3, then for existence of I(L,D, ν), cov(ϑ) or var(r), must ν > 5, 7 or 9 respectively.

2.4 Prior information

Prior information is expressed by two means: the prior restriction of ϑ domain (support) and
construction of the prior statistics V0 (resp. L0 and D0) and ν0.

Domain restriction. The function A(t) must meet the following requirements (see Figure 1):

1. A(t) = 0 for t = 0 and t→ +∞,

2. A(t) has a single global maximum A(tmax) in tmax,

3. td < tmax < tu, where, according to medical experience (Heřmanská, 1993), td = 4 hours
(0.167 days) and tu = 72 hours (3 days),

4. given t1 > tmax, A(t) decreases for t > t1 faster than decrease caused by a simple
physical decay, i.e. by the term − t

Tp
ln 2.

The first two requirements are fulfilled if k2 > 0 and k3 < 0. Because the form of (2) disables
the analytical solution, the approximate procedure for g(t) = lnA(t) + t/Tp ln 2 is shown. The
first derivative ġ(t) = 0 gives

k2 + k3t
2
3

(
2

3
ln t + 1

)
= 0 (9)

with solution denoted t1b. Requiring td < t1b < tu and considering conditions above, we get

− k3t
2
3
d

(
2

3
ln td + 1

)
< k2 < − k3t

2
3
u

(
2

3
ln tu + 1

)
. (10)

For k3 < 0 < k2 and t < tm ≡ exp(−3/2) days ≈ 5 hours 21 mins, g(t) is always increasing,
therefore, td is replaced by tm in (10). The decay term is included by adding t/Tp ln 2 with
corresponding values of tm and tu to the leftmost and rightmost side of (10), i.e.

0.019 < k2 < −3.6 k3 + 0.26.

The requirements 1.–4. are then summarised in the linear form

M ϑ < b, M =




0 1 3.6
0 −1 0
0 0 1


 , b =




0.26
−0.019

0


 . (11)

This constraint provides support for (7), i.e. the characteristic function χ(ϑ) equal 1 iff (11)
holds. The modified normalising constant neednot be considered in the numerical solution.
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Prior statistics. As shown in (8), the statistics ν have sharp lower bounds so that the posterior
pdf or its momets exist. With zero priors V0 and ν0 in (5), at least 6 data pairs must be processed
if the posterior pdf exists, even with infinite mean noise, and at least 8 if the noise should be
finite. According to the Bayes rule, we split the statistics νt = ν0 + nt, where nt is number of
processed data, and similarly Vt = V0 +

∑nt
t=1 ΨtΨ

′
t, where V0 and ν0 are constructed so that

the prior pdf exist. The form of (4) allows the corresponding separation

f(ϑ, r|Lt, Dt, νt) ≡ f(ϑ, r|Vt, νt) ∝ L(Ψ(t);ϑ, r) f(ϑ, r|V0, ν0), (12)

where Ψ(t) ≡ (Ψ1,Ψ2, ...,Ψnt),L(Ψ(t);ϑ, r) is the likelihood (must be finite) and f(ϑ, r|V0, ν0)
is the prior pdf (must be pdf with finite appropriate moments).

Theory of merging data based knowledge of multiple participants can be used for construction
of V0 (Kracı́k and Kárný, 2005). One participant (“expert”) yields fictitious data (Kárný et al.,
2001; Kárný et al., 2005), expressing the requested typical properties of a A(t) and the model
noise, to another participant (“estimator”) assigns his belief (weight) to these data and processes
them with the weights like real measured data. Specifically applied to this particular task,

V0 =
m∑

i=1

Ψ0
i Ψ0

i
′
, Ψ0

i = λiΨ
fict
i + ρi, (13)

where λi ∈ 〈0, 1〉 is a weight of the i-th fictitious data vector Ψfict
i and ρi = (rfict

i , 0, 0, 0)′ where
rfict
i is a noise of the i-th log-activity (zeros in the ψ̊-part of ρ express “exact” measurement of

time) and m is the number of ficititious data vectors. For V0 regular, m ≥ ψ̊ + 1 ≡ 4. As
the fictitious data, some representative data pairs from averaged historical measurements were
chosen to describe the initial, maximum and terminal stages of accumulation. rfict is a usual
uncertainty of one measurement observed from the same data.

For existence of finite prior mean noise (8), ν0 was chosen 7.05. After processing 2 pairs of
real data, finite posterior noise covariance exists. The part of subjectivity is the performance-
optimum choice of Ψfict

i , λi = 0.01 and rfict
i = 0.0015.

2.5 Algorithmic solution

All the computations were done by square-root algorithms operating on the matrices L and D,
directly constructed from the data vector Ψ (Kárný et al., 2005) because of stability. Measured
activities were divided by administered activities for a similar scaling. The space of ϑ was
transformed in ϑ∗ for zero mean and unit covariance of (7). With entry-wise

√
bψD,

T =
√

ν−2
bdD

bψD bψL ϑ∗ = T (ϑ− ϑ̂). (14)

Similarly (11), M ∗ = MT−1, b∗ = b − Mϑ̂ so that M∗ϑ∗ < b∗. The transformed pdf (7)
with the support restriction (14) was sampled using Langevin diffusion algorithm (Roberts and
Tweedie, 1996) which does not require normalising constant. The optimum Markov Chain
(MC) step size could not be determined analytically for the posterior pdf, it was estimated by
a heuristic rule obtained from multiple runs of the MC with different step sizees on 3 876 data
sequences. MCs perform close to their optimum. Initial point of MC was chosen by optimiza-
tion of the quadratic form in the denominator of (7) with the constraints (11). 5 000 samples
were found sufficient after 500 of burn-in. Each parameter sample ϑ∗j was, after the inverse
transformation, substituted into (2) and integral ξj (1) was computed from 0 to 70 days using
the adaptive step-size algorithm. For each data sequence, samples ξj and ln ξj created two his-
tograms, distribution of which was tested by Kolmogorov-Smirnov test, Bayes-based test and
skewness of both histograms was computed.
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3. RESULTS

First, prediction of the model was tested both with nontrivial (presented) and trivial (V0 =
diag(10−12), ν0 = 5) prior statistics on 2 355 data sequences of at least 4 data pairs. 3 pairs were
used for identification and the 4th one, usually following after 1–3 days, was predicted. This
choice is justified by usually not more than 3 measurements after a diagnostic administration.

Without the prior constraints (11) and with trivial prior statistics, 40 % of data sequences were
excluded for leading to estimates violating the requirements for physical behaviour of A(t).
Despite the best predictions, number of outlied predictions (relative error >3) is high. Then,
the prior constraints were considered, either with trivial or nontrivial prior statistics. All the data
sequences led to meaningful estimates. The case with nontrivial prior statistics performs lower
both relative prediction error and its standard deviations (see Table 1) and decrease standard
deviation of f(ln ξ) by 64 % in average compared to the trivial ones.

Table 1: Relative prediction errors in cases: 1) no prior constraints, 2) prior constraints and trivial prior
statistics, 3) prior constraints and nontrivial prior statistics

# mean median st.dev. data outliers

1) 0.0576 −0.0066 0.475 1 403 2.28 %
2) −0.0968 −0.1456 0.431 2 355 0.85 %
3) −0.0004 −0.0544 0.416 2 355 0.81 %

Next, distribution f(ξ) in (1) was tested. Kolmogorov-Smirnov test did not prove normality of
either ξ or ln ξ. Bayes test preferred log-normal pdf of ξ but on a narrow space normal vs. log-
normal. Then, a skewness comparison of f(ξ) and f(ln ξ) after excluding samples out of ξ̂±3σ
was done. For f(ξ), mean, median and standard deviation of skewness were 1.66, 0.84 and 3.53
respectively, whereas for f(ln ξ) 0.29, 0.24 and 0.61 respectively. Although the distribution
was not classified, normal pdf (zero skewness) might correspond better with f(ln ξ). Practical
experience shows this approximation sufficient with respect to existing uncertainty.

Figure 1 shows an example of A(t) identified on 2 initial data pairs, other data are predicted.
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Figure 1: Example of A(t) (one sample) identified on 2 data pairs
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4. CONCLUSIONS

Robust and stable probabilistic identification of bi-phasic model of thyroid activity A(t) after
131I administration was presented. The model was tested by prediction of future data. Prior in-
formation guarantees physical meaningfullness of A(t) and the prior statistics improve predic-
tive abilities of the bi-phasic model (2) and variance of f(ξ) (1). Although standard deviations
of relative prediction errors seem high (above 40 % of activity magnitude), we must take into
accout limited quality and relatively high natural uncertainty of measured data. It was observed
that reliable predictions are given even after 2 measurements.

Algorithmic solution appears robust and stable. Impossibility of analytic f(ϑ)→ f(ξ) requires
numerical transformation outlined in the paper. On contemporary PCs, one determining of
f(ϑ) takes 1–2 seconds in MATLAB and fractions of seconds in C++. To estimate distribution
of absorbed dose by MIRD, f(ξ) is directly applicable for its linear dependence on the dose.

Use of the model can contribute to treatment planning and quality, radiation protection and
quality of future data. Further work would focus on improvement of prior information, better
analysis of convergence using a stopping rule and more exact analytical approximation of f(ξ).
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