
Mixture Based Outlier Filtration
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Abstract

Success/unsuccess of adaptive control algorithms, especially those based
on Linear Quadratic Gaussian design, depends on the quality of process
data used. One of the most harmful types of process data corruptions,
are outliers, i.e. ”wrong data” lying far from the range of real data and
bringing totally wrong information about the process dynamics. These
data, when grouped into blocks, can completely destroy estimation and
consequentially the whole adaptive control. This paper proposes an al-
gorithm for outlier detection and filtration. It is based on modelling of
corrupted data by two-component mixture. The first component models
pure process data, while the second one models outliers. Whenever dur-
ing the filtration, the outlier component is declared as active, a prediction
from the pure data component is computed and generated as filtered data
item. Comparison of the suggested filter with other methods, tested on
artificial and real data, illustrates the power of the proposed algorithm.
It exhibits excellent properties, especially in the case of grouped outliers.
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1 Introduction

Automation is an inevitable tool when dealing with complex systems. Adap-
tive control systems are mostly work in feedback and the control quality heav-
ily depends on a quality of the measured process data. The used process
data are corrupted by various disturbances caused by uncertain elements of
the process, measurement noise, malfunctions of measuring devices etc. These
signal corruptions often completely devalue the performance of the resulting
automatic system. This is why problems of data pre-filtration are of great
importance e.g. [1] or [2] and need special attention. One of the most danger-
ous corruptions of measured data are represented by outliers. They are wrong
data, bringing zero information about the process, with values far from the
range of real process data. Two type of outliers are distinguished: i) caused
by entirely wrong measurements which result in singular outliers; ii) caused
by by total breakdown of a measuring device. Unlike easily detected single
outliers, the second type is more difficult because it produces grouped outliers,
which can be easily mistaken for big, but normal data.

The approach proposed in the paper is based on Bayesian identification [3]
of mixture models [4, 5, 6], specifically on its approximate version capable of
estimating dynamical mixtures [7, 8, 9, 10, 11].

Aim and outline of the solution
The task solved in this paper is detection of outliers in measured data and
their correction. The solution of this task is based on modelling of filtered data
with a mixture model consisting of two components. One of them models pure
data, the second one describes outliers. The detected outliers are substituted
by predictions from the pure data component.

2 Principle of mixture model estimation

The Bayesian approach to recursive mixture model estimation has been devel-
oped and introduced like quasi-Bayes algorithm recently [12]. It works with
a model expressed as a mixture of weighted linear components, described as
a set of linear regression models. The weights of components are stationary
probabilities of the components.

Mixture models
The mixture model is described as a conditional probability density

f(dt | d(t− 1), θ, α) =
c̊∑

i=1

αifi(dt | ϕt−1, θi) (1)

where

f(· | ·) denotes conditional probability density function (pdf),
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d is modelled (and filtered) variable; dt is actual value at time t,
ϕt−1 is a vector of historical data on witch dt depends,

θ = [θ1, θ2, . . . , θ̊c] are parameters of individual components,

α = [α1, α2, . . . , αc̊] are probabilities of components weight,

c̊ is number of components.

The main advantage of such model is that it is able to describe a system
with a finite amount of different states, even if relations between the states
are very complex.

Bayes rule for mixture models
Direct application of the well known Bayes rule

f(θ, α | d(t)) ∝ f(dt | d(t− 1), θ, α)f(θ, α | d(t− 1)) (2)

to mixture model (1) leads to unfeasible computations. The reason is that
repetitive utilization of the Bayesian update (2), which is represented by a
sum, produces products of sums. Thus, the structure of evaluated statistics
blows up with the increasing length of data sample.

Model approximation
To solve the above problem, an approximation of the mixture model is used.
It consists in three steps: (i) introducing a random variable ct that indicate
the active component at the time instant t, (ii) formal rewriting the model of
the active component into a product form

fct(dt | ϕt−1, θ, α) =
c̊∑

i=1

fi(dt | ϕt−1, θi)δ(i−ct) (3)

and (iii) approximating the Kronecker delta function δ(i − ct) in (3) by its
conditional mean value

E[δ(i− ct)|d(t)] =
c̊∑

i=1

δ(i− ct)f(ct|d(t)) = Pr(ct = i|d(t)) = wi,t, (4)

where Pr(·) denotes probability. This computation is realizable with the mod-
els at disposal. For more details see [7] or [13].

Effect of the approximation
The mean value computed in (4) is a vector of probabilities wi,t of individ-
ual components. Thus, at each time instant, instead of looking for a single
valued point estimate of the true component ct, all components are taken
into account. The statistics of all components are updated with the actual
data item weighted by the corresponding probability weight. For components
from exponential class [7], the estimation leads to the weighted least squares
technique.
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Initiation of the estimation
The relation (2) describes the process of Bayesian estimation. It incorporates
the information carried by data into the parameter description representing by
conditional pdf f(Θ, α|d(t)) for time instants t = 1, 2, . . . , d̊, where d̊ is number
of measured data items. The recursion starts in t = 1 with pdf f(Θ, α|d(0))
which is called prior pdf. This pdf reflects our prior knowledge about the
parameters Θ and α. On the other way, it can also be used to force the
estimated model some features we want to be preserved during the process of
estimation. For more information about this, see [14].

3 Algorithm of approximated estimation

The algorithm of estimation for exponential class components of the mixture
model can be sketched in the following scheme:

A. Initial off-line part

• Choose number and form of mixture components.

• Set initial statistics of parameter estimation.

• For data component, get prior data for its regression vector.

B. On-line time loop

1. Measure current data item.

2. Compute probabilistic weights of all components with respect to the
measured data item; the label of component with maximum weight
can be considered a current point estimate of the label of active
state.

3. Update parameter statistics for each component separately, using
data weighted the corresponding probability weights.

C. Concluding off-line part

• Compute point estimates of parameters from updated statistics (if
they are needed).

4 Principle of the filtration

The process of Bayesian mixture estimation, indicated above, is used for outlier
filtration.

Idea of the filter
The main idea is to use a mixture with two components as the filter. One
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of them (the data component) models pure data and the other (the outlier
component) describes outliers.

Initiation of the filter
The initial definition of the components can be done through an initiation of
the mixture. The data component is pre-set with relatively small data variance
derived from prior analysis of the filtered data and it is not allowed to change
much. The outlier component is pre-set with rather large data variance and
it is left relatively free, to be able to ”catch” all that does not belong to the
pure signal – mainly the outliers.

Naturally, to distinguish the useful data from the rest of erroneous signals,
it is necessary to model them well. Dynamic models describe the variable
in dependence on its historical values while static description is without it.
According to our experience with data mixture modelling [15], even those
data that are almost static, deserve to be described by dynamic models, to
achieve high quality of the description. From this fact it follows, that the
data component should be dynamic – the first order regression model seems
to be fully sufficient. The structure of the outlier component is relatively loose
and is chosen as static. Its only task is to ”cover” all possible errors, mainly
outliers.

Operation of the filter
As described in the previous paragraph, the estimation of mixture model is
based on weighting the data with respect to individual components. From
this, the point estimate of the active component can be constructed. Thus, it
is possible to recognize wether the actual data item is an outlier or not. If the
dominant weight belongs to the outlier component, the actual data item is an
outlier and at the output of the filter it is substituted by a value generated like
a simulated realization of the data component. At this moment, the weight of
the data component is small, so the outlier influences it in a negligible way.
The problem occurs if in the following step the data item is not an outlier.
Then the dominant weight belongs to the data component and it would be
influenced by the old data item, which now is the outlier, through its regression
vector. So, this value going to the regression vector of the data component
must be substituted by the filtered value, too.

5 Algorithm of the filtration

The work of the filter can be summarized in the following algorithm which is
just a modification of the above algorithm for mixture estimation.

A. Initial off-line part

• Set initial statistics of two component mixture,
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- first component with small data covariance (data component),
- second component with large data covariance (outlier compo-

nent).

• For data component, get prior data for its regression vector.

B. On-line time loop

1. Measure current data item.

2. Compute probabilistic weights of both components with respect to
the measured data item.

3. Choose the component with the larger weight.

4. If the chosen component is that of data, go to 6.

5. If the chosen component is that of outliers,

- generate data item from the data component,
- use the generated value as the filtered data item,
- replace the generated value into the regression vector of the data

component.

6. Recompute parameter statistics for each component separately, using
data weighted by the corresponding probability weight.

C. Concluding off-line part

• The data sample is filtered.

6 Experiments

This section describes testing of the proposed algorithm of filtering on real
data. A sample of data from traffic miniregion in the center of Prague has been
chosen for experiments. They are intensities of traffic flow measured in a single
point of the miniregion. The noise, corrupting the data, is represented mainly
by standard irregularities of the traffic (interactions between neighbouring
control lights, accidental accumulations of cars, small accidents etc.).
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Figure 1. Pure transportation data.
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The data sample is 1000 items long and it contains data measured each 5
minutes. It involves data for approximately 3,5 days, which can be clearly
seen form the periodicity of the signal. The maxima of the intensity reflect
the traffic load during a day. The noise mentioned causes dissimilarities of the
courses for individual days. Different daily courses (visible at the beginning
of the fourth day) are caused by different type of days, like weekdays and
weekends.

Not so frequent, but very important disturbances, due to their devastat-
ing effect, are outliers. They are caused either by accidental breakdowns of
detectors or by their failure for several periods of measurements. Especially
the latter ones are very difficult to distinguish automatically from the normal
signal.

To test the filter ability, the data without outliers, artificially corrupted by
various types of outliers, used. Basically, singular and block outliers are used
in all experiments. Then, various outlier amplitudes are used – big, medium,
small – and their combination in one data sample. Results of all examples are
compared to those obtained with standard filters. These filters are based on a
window, moving along the current time, and giving some data characteristics
for comparison with the newly measured data to decide whether it is an
outlier or not. These characteristics mostly are either mean value or median
computed over the window. The characteristics are computed either equally
for all data or a kind of forgetting is applied. A description of such filters
can be found e.g. in [16, 17, 18, 19, 20, 21]. A lot of preliminary experiments
were performed to compare the suggested mixture filter to the standard
ones. All of them gave comparable results for singular outliers but almost
all standard filters were quite unsuitable for filtering of the block ones. They
mostly consider them normal data and copied them. Of all those standard
competitors, two were selected as the only ones that can be compared to
the proposed mixture filter. The standard filter No 1 is a special one for
detecting block outliers. After detecting the borders of a block outlier, it
models the data before and after the outlier with a simple regression model
and substitutes the outlying values by a combination of predictions from
both these models. The standard filter No 2 is a median filter with window
size 200 (time periods) and without forgetting. For demonstration of filtering
results in this paper, only these two of all standard filters are used.

Example 1: All big outliers
The fist experiment was chosen as a standard one. It uses outliers with big
amplitudes. The level of the outliers is about 5000, which is approximately
100 times the level of the pure data. The filter completely substitutes outliers
and leaves normal data without any change. The filtered variable is plotted
in figure 2.
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Figure 2. Filtered data.

The filtering gives practically identical data (cf. figure 1), up to 20 singular
outliers and two short blocks (first 100-200 items and second 650-700 items)
where groups of outliers were located. All substitutions for outliers are in
a proper range. For evaluation of the results in other than visual way and
making use of the fact, that the outliers were introduced artificially, the pure
data are compared to their predictions from a model estimated on the basis of
filtered data sample. This quality evaluation is done through the prediction
error PE coefficient which is square root of sum of squares of prediction error
divided by variance of data. The results for the suggested mixture filter and
the two chosen standard filters are in the following table.

Table 1: PE coefficients for all big outliers.

filter PE coefficient
The mixture filter 0.49
The standard filter No 1 0.72
The standard filter No 2 4.80

R e m a r k: The results of PE coefficient for the other standard filters were
from 8 to 170. The big difference is caused by the fact, that the standard
filters are not able to recognize the blocks of outliers and they copy them.

Example 2: All small outliers
Outlier is a value lying ”far” out of the range of the pure data. What happens
if ”far” is not so far as in the previous experiment? Now, outliers of an am-
plitude about 5 times of the pure data amplitude are tested. The composition
of data and outliers is the same. The results are

Table 2: PE coefficients for all small outliers.
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filter PE coefficient
The proposed filter 0.50
The best standard filter 1.52
The second best standard filter 1.36

The proposed filter wins again. The differences are not so big because
even if the filters dos not remove the whole block outlier and consequently
the outliers are predicted, the prediction error is not so big.

Example 3: First big and then small outliers
This last case is the most difficult, because the filter could ”calibrate” the size
of the outliers according to the first suspicious data and miss all that is smaller
then its pattern. Will the filter be able to recognize smaller outliers that follow
the bigger ones? The results are again in the table.

Table 3: PE coefficients for first big and then small outliers.

filter PE coefficient
The proposed filter 0.49
The best standard filter 1.52
The second best standard filter 1.36

Also in this example, which is most difficult for suggested filter, the results
are stable and best.

7 Conclusions

A new type of filter for detection and adaptation of outliers has been described
and demonstrated on a serial of examples. The filter is based on modelling of
the filtered signal by a mixture model with two components – one for pure data
and the second for outliers. The experiments prove that the results of filtration
are very good, even in the case of block outliers. This type of outliers arise
from temporary breakdowns of measuring devices which are rather frequent
in transportation. The results of performed experiments exhibit high quality
of filtration. In all cases demonstrated, both single and block outliers were
completely detected and substituted by reasonable values, generated from the
data pure component. The comparison of the results with classical filters
proved that block outliers are difficult for filtration. Mostly, those filters were
not be able to substitute the whole block of outliers. The best classical filters
usually copied several outlier values from the block before they ”realized” that
it is an outlier. And this is the reason why the suggested mixture based filter
was better in all performed experiments.
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[11] I. Nagy, P. Nedoma, and M. Kárný, “Factorized EM algorithm for mixture
estimation”, in Artificial Neural Nets and Genetic Algorithm. Proceed-
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