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Abstract

A novel approach to the recognition of the signals degraded by a linear time-invariant system with an unknown
impulse response is proposed. 1L consists of describing the signals by the features which are invariant to the degradation
and recognizing signals in the feature space. Unlike the blind-deconvolution technigucs, neither the impulse response
identification nor the signal restoration is performed. Two sets of appropriute blur-invariant features {the first one defined
in time domatin and the other onc in spectrial domain) are introduced in this paper and the optimal algorithm lor a robust
signal classilication is proposed. & 1997 Elsevier Science B.V.

Zusammenfassung

Es wird ein neuartiges Verfuhren zur Erkennung von Signalen vorgestellt, die durch ein lincares zeitinvariantes System
mit unbekannter Impulsantwort gestért wurden. Dias Verfahren beinhaltet cinerseits die Beschreibung der Signale
anhand von Merkmalen, die invariant gegeniiber der Storung sind und andererseits die Erkennung der Signale im
Merkmalsraum. Im Unterschied zu Techniken der blinden Entfiltung wird weder cine Identifikation der Impulsantwort
noch cine Signalriickgewinnung vorgenommen. In dicsem Artikel werden zwei Sitze gecigneler verzerrungsinvarianter
Merkmale vorgestell (wobci ciner im Zeitbereich und der andere im Spektralbereich definiert wird) und anschlicBend vin
optimaler Algorithmus zur robusten Signalklassilikation vorgeschlagen. (3 1997 Elsevier Science B.V.

Risume

Cet article propose une nouvelle approche de la reconnaissance de signaux dégradés par un systéme invariant dans {e
temps linéaire i réponse impulsionelle inconnuc. Cette approche consiste 4 déerire los signiaux a aide de caractéristiques
invariantes 4 la dégradation et d reconnaitre ces signaux dans 'espace des caractéristiques. A la différence des techniques
de déconvolution 4 I'aveugle, ni l'identification de la réponse impulsionelle ni la restauration du signal ne sont effectuces.
Deux ensembles de caractéristiques approprices invariantes au lou (ke premier défini dans le domaine temporel, le second
dans le domaine spectral) sont introduits, et nous praposons lalgorithme optimal pour une classification robuste des
signaux. ¢ 1997 Elscvier Scicnce BV,
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1. Introduction

A very frequent task in digital signal pro-
cessing is the classification of 1-D finite (i.e. time-
limited) signals (experimental curves) with respect
to the template curves stored in a database. This
task appears in EEG and ECG processing, speech
recognition as well as in many other application
areas.

Since the acquisition system and other condi-
tions are usually not ideal, the acquired curve rep-
resents only some degraded version of the original
signal. The standard model of a time-invariant lin-
ear system [3] describes the acquisition process by
the convolution of an unknown original signal £(2)
with the system impulse response f{¢);

g(t) ={f =t} + nle}. (1

where g¢(t) represents the observed (ie. blurred)
signal and #(f) is an additive random noise. How-
ever. the impulse response k(1) is unknown in most
cases. Our objective is to analyze the oniginal signal
fin.

There are basically two different approaches to
degraded signal analysis: blind restoration and di-
rect analysis.

Blind signal restoration has been  discussed
extensively in previous works (see [7] for a survey).
It is the process of estimating both the original
signal and the PSF from the degraded signal using
partial information about the acquisition system.
However, this is an ill-posed problem, which does
not have a unique solution and the computational
complexity of which might be extremely high.

There are several groups of blind restoration
methods. One of them is based on the modeling
of signals by stochastic processes. The original
signal is modeled as an autoregressive (AR) process
and the blur as a moving average (MA) process.
The blurred signal is then modeled as a mixed
autoregressive moving average (ARMA) process
and the MA process identified by this model is
considered as the description of the PSF. In this
way Lhe problem of PSF cstimation is transformed
into the problem of determining the parumeters of
the ARMA model [8.9. 11]. Other authors sugges-
ted blind deconvolution methods based on cumu-
lant extrema [2] or various techniques of the

impulse response estimation in frequency domain
[1,10].

A direct analysis of the degraded signal is based
on a different idea: in many cases, one does not
need to known the whole original signal, one only
needs to recognize, for instance, some part of it
(typical examples are the classification of experi-
mental curves against a database of templates or
recognition of blurred characters). In such cases,
knowledge of only some (partial) representation of
the signals is sufficient. However, such a representa-
tion should be independent of the acquisition sys-
tem and shouid really describe the original signal,
not the degraded one. In other words, we are look-
ing for a functional { which is invariant to convolu-
tion, i.e.

I(f)y=1(f+h

for any allowable k(). The blurred signal is then
clussified in the Euclidean fealure space (by min-
imum distance rule for instance) without any im-
pulse response identilication and signal restoration.

There have been described only few invariants to
blurring in the literature. Most of them are related
to very special types of the impulse responses in
2-12 and are derived in a heuristic manner. The sct
ol invariants to lincur motion blur was presented in
[5]. Recognition of defocused facial photographs
by another set of invariants was described in [6].
All those invariants were constructed in spatial
domain only.

The major objective of this piper is to derive blur
invariants in the case of symmetric impulse re-
sponse h(r) both in Fourier as well as time domains,
to demonstrate a relationship between them and to
introduce a novel algorithm for signal classifica-
tion.

2. Signal characterization by its moments
In the following text, by signel we understand
any absolutcly integrable function f(f) which is

non-zero on bounded support and the integral of
which is non-zero:

J”t Sindr #0.
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Iis pth-order regular moment m}” and central

moment uY' are defined as

mf = [ erwa @

pih = jn (t — 'Y flr)de, (3

where ¢/ is the mean value (centroid) of f{(t).

The moments of a blurred signal gt} = (f = h)(¢)
can be expressed in terms of moments of the orig-
inal signal and the impulse response

e (p h
=3 (k)HLQkﬂR - 4

k=0

3. lavariants in the time domain

In this section, we derive the moment-based
signal features which are independent of the degra-
dation, i.e. independent of the type and parameters
of h(1).

Let us deal with symmetric and energy-preseroing
impulse responscs only, i.e. let k(8) = A{ —1) and
1" = L. Then, duc to the symmetry, g = 0if p is
odd.

Theorem L. Let [{t) be a signel and p be an vdd
integer. Let us define the  Jollowing  function
SYL:N - R:

SUY = 1 S s 0 5
p T M — po’ Z I - 2aM2n - ()]
n=l

Then S, is a blur invariant for any odd p.

For the proof of this theorem see our recent
paper [4].

Evaluating the recursive formula (5) we can de-
rive the invariants in the explicit form. The first four
of them are listed below:

Sl =0.

Sy = ps,

10#3!42
5= jtg ——,
Ho
21 35 21 2
S, = o — TiHsMz  Bdaks O#a.uz_

Ho Ho Ha

[ we use the regular moments instead of the
central ones, Theorem | is still valid but the invari-
ants §, are no longer invariant to a time-shift.

4. Signal classification

In this section. we introduce an algerithm for
robust signal classification by the blur invariants.

Although continuous signals were used to derive
the invariants, in practice, we deal with discrete
oncs. The well-known approximation formula

N
m,= 3 j*f(j)

i=1
is usually employed to calculate the discrete mo-
ments and the moment invariants (N denotes the
number of samples of the signal). Moreover, in
practical tasks, we use normalized invariants

L SF
55 = Ho(N/2)P”

which are invariant to multiplication of the signal
by a constant and, due to the factor (N/2)%, the
values of which are roughly in the same range
regardless of p.

Let fi.....J¢ be piven discrete signals of the
same length N and let g be an acquired signal of the
sume length. In pattern recognition terminology,
Jis oo o Jic are the representatives of K individual
classes and ¢ is the puttern to be classified. The task
is to find such index iy so that for some symmetric
kit holds

g=h=*f +n

with maximum likelthood.
Let us define for any odd p the distance 4, in the
signal space as

d,(f.g) = (ST, 50,
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where 3: is a vector of the normalized blur invari-
ants 5, = (51,55, ....§}) and g, is Euclidean met-
ric in {3{{p + 1)/2) space. The distance d,, has the
properties of a quasi-metric: it is non-negative,
symmetric function which satisfies the triangular
inequality. However, d,(f,g) =0 does not imply
f=g

Now we classify the signal g by minimum-dis-
tance rule:

dol fiy.9) = izqwin xd,(f;.g)‘

The only open question is how to choose the ap-
propriate p, ie. how many invariants to use lor
classification. The solution depends on the given
templates fj, ..., fx and can be found as follows.

In the noise-free case we define the optimal p, as
the lowest p for which

dp(f [) >0 VG # ).

The situation is more complicated if the acquired
signal ¢ is corrupled by an additive random noise.
It is well known that the higher-order moments are
less robust to noise than the lower-order ones. 1t
implics that the higher-order blur invariants are
less robust too. On the other hand, some signals
which are ‘similar® to each other can be distin-
guished only by the higher-order invariants.

Provided that the noise has normal distribution
with zero mean and that signal-to-noise ratio
{SNR} is known (or that we are able to estimate it
somchow) we propose the following algorithm for
determining the optimal aumber of the invariants:
(1) For each f; generate A its noisy versions

{1 M
WY where

=,
such that the SNR of cach f™ is the same as
the SNR of the signal ¢. The n'™ is a realization
of a zero-mean Gaussian noisc and M is a user-
defined parameter.
(2) Choose the upper bound P of the number of the
invariants you want to consider.
3} FORp=1.3,....P DO
(a) Foreachi= I, ...,K calculate r}, such that
the total number of £ ™ having the distance
from f; less than r} is greater than 0.95M.
Provided that f{™ arc normally distributed

around f; in the feature space, rj can be
estimated as follows:

246 X

i _ = . {m)

rp= M mgl dp(.’:w i ]-
(b) IF

L <d,(fi. f) YU DG # D)

THEN

E — ler:’

RN T Y

ELSEE, = L
ENDFOR

{4) Find p; such that

E,, = min E,.

The py oblained by this algorithm ensures the
oplimal separability of the templates f;, ..., fx in
a noisy environment. If the SNR is high, p, also
becomes high and vice versa.

5. Invariants in the spectral domain

In Section 3, we introduced the blur invariants
working in the time domain. In this section, we
show that another set ol invariants can be found in
the Fourier spectral demain. Moreover, we demon-
strate a close relationship between both kinds of
the invariants and prove that they are theoretically
equivalent,

Theorem 2. Tungent of the Fourier transform phase
is the blur invariant.

Proof. Duc to the well-known convolution the-
orem, the corresponding relation to Eq. (1) in the
speetral domain (provided that no noise is present)
has the form

Glu) = Flu)H{u), (6)

where G(w),F(u) and H(u) are the Fourier
transforms of the functions g(1). f(t) and h{).
respectively. Considering only the phase, we get
(provided that G(u) # 0)

ph G(u) = ph F(u) + ph H (u). (7
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Due to the symmetry of h(t), its Fourier transform
H(u) is real (that means ph H(u) € {0; }). It follows
immediately from the periodicity of tangent that

tan(ph G(u)) = tan(ph F(u) + ph H(u))
= tan(ph F(u)). ®)

Thus, tan(ph G(u)) is invariant with respect to con-
volution of the original signal with any symmetric
impulse response. [

The following theorem shows the relationship
between the time-domain and the spectral-domain
blur invariants.

Theorem 3. Tangent of the Fourier transform phase
of any signal f(t) can be expanded into the power
series (except the points in which Fu)=0 or
ph F(u) = + n/2):

tan(ph F(u)) = i cau”, 9)
n=0
where
(n-1)2 n
‘"_( ) ' (=2n)" ¢ s, (10)
nim,

if nis odd and ¢, =0 if n is even,
Proof. The definition of the Fourier transform im-

plics that the spectrum of any signal f(r) can be
expressed by means of moments as the power scrics:

Flu) = f © fem i dr

[ 0 $ 2 g,
i m)”

Thus,
tan(ph F(u))

_Im F(u)
~ ReFu) F(u)

Z (= (= 2r)>" Yy (20 + 1)
_n=0

i (— 1)"(= 2n)* " mp,u3"/(2n)
n=0

Since the series in the numerator and the denomin-
ator are absolutely convergent, their ratio can also
be expressed as the power series

tan(ph F(u)) = i c.u", (11

n=0
which must accomplish the relation

@© (_l)n(_zn)bﬂ-l
,,;0 Q2n + 1)!

L . a0 (—])"(—27!)2" .
= 'I;o Cal "go — (zn)! mZnuz .

It follows immediately from (12) that ¢, = 0 for any
even n.
Let us the prove by induction that ¢, has the

(12)

form (10).
en=1
It follows from (12) that ¢, = — 2nm,/m,. On the
other hand,
(= H°%(—2mn)" —2nm,
1= =Cy.
'm, m,

» Let us suppose the assertion has been proven for
€1 €30 --v 5 Cp 2. [t follows from (12) that

(_ ”lp— l)/Z( __2":)!'

p!

m,
(p—1)2 (_
= CpMmy + Z

=1

l)n( —21[)2"

—TZ—n_)!——— Cp—2aM3y.

Substituting (10) into the right-hand side we get
(___ ”(p- l)/2( —271:)"

iy = o m,

(p-1)2 (_ l)”’_ l)/2( __2,.[)1’

T8 Cn)li(p = 2n)img JpmMam
( —_ l)(p— l)/2( _2n)[1
Cp = ’
plmg

{ p L2 p
' (mp - ;1; "gl (2") Sp' Zn'nln) ’

—_I\e=W2( _y\p
D Gl . [

pimg
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Fig. |. The signals used in the experiment: the templates fi, f; and £, and the blurred and noisy signal g.

6. Numerical experiment

To demonstrate the performance of the above-
mentioned technique, the following experiment was
carried out.

Fig. 1 shows three template signals fi, f; and
[y of the length N = 256 samples. The signal g (Fig.
1 bottom right} was generated from f; by averaging
over 9-paint neighborhood and adding Gaussian
noise (SNR = 10dB). The question was to assign
¢ to its non-degraded counterpart by means of the
time-domain blur invariants.

Table 1
The values of the normalized invariants §, (multiplied by 102} of
the signals from Fig. |

fl fz S q
5 1.55 318 5.66 5.67
s 1.85 4.5% 1.28 7.19
55 1.69 5.29 197 1717
Sy 139 573 337 5.03
S 0.98 604 3.70 8.20

Table 2
The distances (multiplicd by 10%) between the blurred and noisy
signal y and the templates £, 1, f,, respectively

A fa 5

dlfig) 13.3 541 0.64

First, the algorithm described in Section 4 was
employed to calculate the optimal number of in-
variants. The resull in this case was py = 1. Sec-
ond, the invariants §4, 8%, ... ,87, were calculated
for each signal (we do not use §'), because it is zero
everywhere). Their values are summarized in Table
1. Table 2 shows the distances d,(f,g) between
g and each template. Classifying by minimum dis-
tance, the signal g was assigned correctly to f;.

7. Summary

In this paper, the necw technique lor recognition
of signals degraded by a lincar time-invariant
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system is presented. The proposed approach does
not require impulse response identification and sig-
nal restoration.

Two groups of the invariant features for signal
representation were introduced. It has been shown
that both groups of features are theoretically equi-
valent in the following sense: a set {S,};., of
moment invariants in the time domain is unam-
biguously determined by phase tangent and vice
versa.

The novel algorithm for robust signal classifica-
tion in the space of the invariants is also presented.
To demonstrate practical applicability of the theor-
etical results of the paper, they were approved by
the numerical experiment.

Acknowledgements

This work was supported by grants Nos.
102/96/1694 and 205/95/0293 of the Grant Agency
of the Czech Republic.
References

[1) H.C. Aadrews, BR. Hunt, Digital [mage Restoration,
Prentice-Hall, Englewood Clills, NJ, 1977,

[2] J.A. Cadzow. Blind deconvolution via cumulaat extrema,
1EEE Signal Process. Mag. 13 (1966) 24-42.

[3] V. Cappellini et al., Digital Filters and Their Applications,
Academic Press, Londoa, 1978,

[4] J. Flusser, T. Suk, Invariants for recognition of degraded
1-D digital signals, in: Proc. 13th ICPR, Vol. 2, Vienna,
Austria, August 1996, pp. 389-393.

[5] J. Flusser, T. Suk. S. Saic, Recognition of images degraded
by linear motion blur without restoration, Comput. Suppl.
11 (1996) 37-51.

[6] J. Flusser, T. Suk, S. Saic, Recognition of blurred images
by the method of moments, [EEE Trans. Image Process.
5 (1998) 533-538.

[7] D. Kundur, D. Hatzinakos, Blind image deconvolution,
IEEE Signal Process. Mag. 13 (1996) 43—~64.

(8] G. Pavlovic, A.M. Tekalp, Maximum likelihood paramet-
ric blur identification based on a contiruous spatial do-
main model, IEEE Trans. Image Process. 1 (1992)
496-504.

[9] S.J. Reeves, R.M. Mersercau, Blur identification by the
method of generalized cross-validation, IEEE Trans. Im-
age Process. 1 (1992) 301-311,

(10] T.G. Stockham Jr., T.M. Canncn, R.B. Ingebretsen, Blind
deconvolution through digital signal processing, Proc.
[EEE 63 (1975) 678-692.

[11] AM. Tekalp, H. Kaufman, J W. Woods, Identification of
image and blue parameters for the restoration of non-
causal blurs, [EEE Trans. Acoust. Speech Signal Process.
34 (1986) 963972



