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Abstract 

A novel approach to the recognition of the signals degraded by a linear time-inwtriant system with an unknown 
impulse response is proposed. It consists of describing the signals by the features which are invariant to the degradation 
and recognizing signals in the feature space. Unlike the blind-deconvolution techniques, neither the impulse response 
identilication nor the signal restor,'ttion is performed. Two sets of appropriate blur-invariant features (the first one dctincd 
in time domain and the other one in spectral domain) arc introduced in this paper and the optimal algorithm for a robust 
signal classification is proposed. (C 1997 Elsevier Science B.V. 

Zusammenfassung 

Es wird ein ncuartigcs Verfahrcn zur Erkcnnung yon Sigmtlcn vorgestcllt, die durch ein lincarcs zeitinvariantcs System 
mit unbekanntcr Impulsantwort gest6rt wurdcn. Das Vcrfahrcn beinhaltct eincrseits die Beschreibung dcr Signale 
anhand yon Mcrkmalen, die invariant gegeniiber der St6rung sind und andcrerseits die Erkennung der Signale im 
Merkmalsraum. Im Untcrschied zu Tcchnikcn dcr blinden Enthdtung wird wcder eine Identilikation der lmpulsantwort 
noch cinc Signalriickgcwinnung vorgenommen. In dicsem Artikel werden zwei Siitze geeigneter verzerrungsinwtriantcr 
Merkmalc vorgestcllt (wobci einer im Zcitbercich und der andcre im Spektralbereich dctiniert wird) und anschlieBend ein 
optimaler Algorithmus zur robustcn Signalkhtssilikation vorgeschhtgen. ,,i) 1997 Elsevier Science B.V. 

R~um6 

Cet article propose une nouvelle :tpproche de lit rcconmtissance de signaux d~:grad~3s par un syst/:mc invariant dans Ic 
temps lin6aire fi r6ponse impulsionelle inconnue. Cette approche eonsiste fi d~crire Its signaux ~i raide de caract6ristiques 
invariantcs ~i llt d/:gradation ct fi rcconnaitre cos signaux dans respace des caract/:ristiqucs. A la diff/:rence des techniques 
de d,2convolution a raveugle, ni ridcntilication de llt r/:ponsc impulsionelle ni la rcstauration du signal ne sont effectu6es. 
Deux ensembles de caract/:ristiqucs appropri/:cs invariantcs au flou (le premier d/:lini darts le domaine temporel, le second 
dans Ic domaine spectral) sont introduits, et nous proposons ralgorithme optimal pour une classilication robuste des 
signaux. C 1997 Elsevier Science B.V. 
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1. Introduction 

A very frequent task in digital signal pro- 
cessing is the classification of I-D finite {i.e. time- 
limited) signals {experimental curves) with respect 
to the template curves stored in a database. This 
task appears in EEG and ECG processing, speech 
recognition as well as in many other application 
areas. 

Since the acquisition system and other condi- 
tions are usually not ideal, the acquired curve rep- 
resents only some degraded version of the original 
signal. The standard model of a time-invariant lin- 
ear system I-3-] describes the acquisition process by 
the convolution of an unknown original signal f ( t )  
with the system impulse response h(t): 

y(t) = ( f  *h)(t) + n(t), {1) 

where g(t) represents the observed (i.e. blurred) 
signal and n(t) is an additive random noise. How- 
ever, the impulse response h(t) is unknown in most 
cases. Our objective is to analyze the original signal 
f(t). 

There are basically two different approaches to 
degraded signal analysis: blind restoration and di- 
rect analysis. 

Blind signal restoration hits been discussed 
extensively in previous works (sec [7] for a survey}. 
It is the process of estimating both the original 
signal and the PSF from the degraded signal using 
partial information about the acquisition system. 
However, this is an ill-posed problem, which does 
not have a unique solution and the computational 
complexity of which might be extremely high. 

There are several groups of blind restoration 
methods. One of them is based on the modeling 
of signals by stochastic processes. The original 
signal is modeled as an autoregressive (AR) process 
and the blur as a moving average (MA) process. 
The blurred signal is then modeled as a mixed 
autoregressive moving average (ARMA) process 
and the MA process identitied by this model is 
considered as the description of the PSF. In this 
way the problem of PSF estimation is transformed 
into the problem of determining the parameters of 
the ARMA model [8,9, II]. Other authors sugges- 
ted blind deconvolution methods based on cumu- 
lant extrema [2] or various techniques of the 

impulse response estimation in frequency domain 
It, 10]. 

A direct analysis of the degraded signal is based 
on a different idea: in many cases, one does not 
need to known the whole original signal, one only 
needs to recognize, for instance, some part of it 
{typical examples are the classification of experi- 
mental curves against a database of templates or 
recognition of blurred characters). In such cases, 
knowledge of only some {partial) representation of 
the signals is sufficient. However, such a representa- 
tion should be independent of the acquisition sys- 
tem and should really describe the original signal, 
not the degraded one. In other words, we are look- 
ing for a functional I which is invariant to convolu- 
tion, i.e. 

l ( f )  = l ( f  , h) 

for any allowable h(t). The blurred signal is then 
classified in the Euclidean feature space (by min- 
imum distance rule for instance) without any im- 
pulse response identification and signal restoration. 

There have been described only few invariants to 
blurring in the literature. Most of them are related 
to very special types of the impulse responses in 
2-1) and are derived in a heuristic manner. The set 
ofinvariants to linear motion blur was presented in 
[5]. Recognition of defocused facial photographs 
by another set of invariants was described in [6]. 
All those invariants were constructed in spatial 
domain only. 

The major objective of this paper is to derive blur 
invariants in the case of symmetric impulse re- 
sponse h(t) both in Fourier as well as time domains, 
to demonstrate a relationship between them and to 
introduce a novel algorithm for signal classifica- 
tion. 

2. Signal characterization by its moments 

In the following text, by signal we understand 
any absolutely integrable function f{ t )  which is 
non-zero on bounded support and the integral of 
which is non-zero: 

I ': f ( t ) d t  # O. 
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Its pth-order regular moment m~, I) and central 
moment/a~ s' are defined as S 5 =/.t 5 

lto 

m'/' = f =_ ~ tp f ( t ) d t ,  (2) 
21/ts/.t2 35,u3/t,~ 2 lO/t3/.t 2 

$7 =/~7 /~o /~o /~" 

P~f) = f~-~o (t - cql))~ f ( t ) d t '  (3) 

where c ' I '  is the mean value (centroid) of f ( t ) .  
The moments of a blurred signal g(t) = ( f  * h)(t) 

can be expressed in terms of moments of the orig- 
inal signal and the impulse response 

~=o ~k)  ' 'p-* lt~ • (4) 

3. Invariants in the time domain 

In this section, we derive the moment-based 
signal features which are independent of the degra- 
dation, i.e. independent of the type and parameters 
of hit). 

Let us deal with symmetric and eneryy-preservino 
impulse responses only, i.e. let h( t )=  h ( - t )  and 
l,~o h' = 1. Then, due to the symmetry, t,~ h' = 0 ifp is 
odd. 

If we use the regular moments instead of the 
central ones, Theorem 1 is still valid but the invari- 
ants Sp are no longer invariant to a time-shift. 

4. Signal classification 

In this section, we introduce an algorithm for 
robust signal classification by the blur invariants. 

Although continuous signals were used to derive 
the invariants, in practice, we deal with discrete 
ones. The well-known approximation formula 

N 

mp = ~ j P f ( j )  
j = t  

is usually employed to calculate the discrete mo- 
ments and the moment invariants (N denotes the 
number of samples of the signal). Moreover, in 
practical tasks, we use normalized invariants 

, Sp 
Sp tlo(N/2) p, 

Theorem I. Let f ( t )  be a siqnal and p be an odd 
integer. Let us define the fidlowin9 fimction 
S~/': N - .  R: 

- .= 1 2n -2nI12n " (5) 

Then Sp is a blur invariant fi~r any odd p. 

For the proof of this theorem see our recent 
paper [4]. 

Evaluating the recursive formula (5) we can de- 
rive the invariants in the explicit form. The first four 
of them are listed below: 

S 1 ~ 0 ,  

which are invariant to multiplication of the signal 
by a constant and, due to the factor (N/2)  n, the 
values of which are roughly in the same range 
regardless of p. 

Let f t  . . . . .  f~ be given discrete signals of the 
same length N and let y be an acquired signal of the 
same length. In pattern recognition terminology, 
f~ . . . . .  fx are the representatives of K individual 
classes and ff is the pattern to be classified. The task 
is to find such index io so that for some symmetric 
h it holds 

g = h.f / , ,  + n 

with maximum likelihood. 
Let us define for any odd p the distance dp in the 

signal space as 

$3 = 113, d e ( f  ,g) = '~ t.q{I~ .~¢~q 
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where ~ is a vector of the normalized blur invari- 
ants ~ = (S'~,S'3 . . . . .  S'~) and OA, is Euclidean met- 
ric in lz((p + 1)/2) space. The distance dp has the 
properties of a quasi-metric: it is non-negative, 

function which satisfies the triangular 
However, dp(f,g)= 0 does not imply 

symmetric 
inequality. 

f = g .  
Now we 

tance rule: 
classify the signal g by minimum-dis- 

dp(fio,g)= min dp(f .9) .  
i = ' .... .  K 

The only open question is how to choose the ap- 
propriate p, i.e. how many invariants to use for 
classification. The solution depends on the given 
templates f~ . . . . .  fx and can be found as follows. 

In the noise-free case we define the optimal Po as 
the lowest p for which 

dp(J~,fj) > 0 V(i,j)(i ~ j ) .  

The situation is more complicated if the acquired 
sigmd ,q is corrupted by an additive random noise. 
It is well known that the higher-order moments are 
less robust to noise than the lower-order ones. It 
implies that the higher-order blur invariants are 
less robust too. On the other hand, some signals 
which are 'similar" to each other can be distin- 
guished only by the higher-order invariants. 

Provided that the noise has normal distribution 
with zero mean and that signal-to-noise ratio 
(SNR) is known (or that we are able to estimate it 
somehow) we propose the following algorithm for 
determining the optimal number of the invariants: 
(1) For each J'i generate M its noisy versions 

f (  I ) .(M ) i . . . . .  l i , where 

=11 + n '-), 

such that the SNR of each J l  "~ is the same as 
the SNR of the signal 9. The n "~ is a realization 
of a zero-mean Gaussian noise and M is a user- 
delined parameter. 

(2) Choose the upper bound P of the number of the 
invariants you want to consider. 

(3) F O R p =  1,3 . . . . .  P DO 
(a) For each i = 1 . . . . .  K calculate r~, such that 

the total number of J'f~ m~ having the distance 
is greater than 0.95M. from fl less than rp 

Provided that f~,"~ are normally distributed 

i around f~ in the feature space, rp can be 
estimated as follows: 

i 2.46 ~, _ .~,,~, 
= Z.  d p ( J i , J i  I" 

rp  ~ m = l  

(b) IF 

2r~ < d~(f~,fj) V(i,j)(i ~ j ) ,  

T H E N  

i L"-_, ,-, 
E,= L ' , - ,  

Xj =, 

ELSE Ep = I. 
E N D F O R  

(4) Find Po such that 

Epo = rain Ep. 
P 

The Po obtained by this algorithm ensures the 
optimal separability of the templates f) . . . . .  fK in 
a noisy environment. If the SNR is high, Po also 
becomes high and vice versa. 

5. lnvariants in the spectral domain 

In Section 3, we introduced the blur invariants 
working in the time domain. In this section, we 
show that another set of invariants can be found in 
the Fourier spectral domain. Moreover, we demon- 
strate a close relationship between both kinds of 
the invariants and prove that they are theoretically 
equivalent. 

Theorem 2. Tangent of  the Fourier transfi)rra phase 
is the blur invariant. 

Proof. Due to the well-known convolution the- 
orem, the corresponding relation to Eq. (1) in the 
spectral domain (provided that no noise is present) 
has the form 

G(u) = F(u)H(u), (6) 

where G(u),F(u) and H(u) are the Fourier 
transforms of the functions ~t(t),f(t) and h(t), 
respectively. Considering only the phase, we get 
(provided that G(u) ~ 0) 

ph G(u) = ph F(u) + ph H(u). (7) 
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Due to the symmetry of h(t), its Fourier transform 
H(u) is real (that means ph H(u) E (0; n}). It follows 
immediately from the periodicity of tangent that 

tan(ph G(u)) = tan( ph F(u) + ph H(u)) 

= tan(ph F(u)). (8) 

Thus, tan( ph G(u)) is invariant with respect to con- 
volution of the original signal with any symmetric 
impulse response. 0 

The following theorem shows the relationship 
between the time-domain and the spectral-domain 
blur invariants. 

Theorem 3. Tangent of the Fourier tran&orm phase 

of any signal f(t) can be expanded into the power 
series (except the points in which F(u) = 0 or 

ph F(u) = + 7r/2): 

tan(ph F(n)) = 2 c,u”. 
n=O 

where 

(9) 

(- ,p- y -24” 

c, = 
n ! m,, 

s 
n 

if n is odd and c,, = 0 i/n is even. 

(10) 

Proof. The definition of the Fourier transform im- 
plies that the spectrum of any signal f(t) can bc 
expressed by means of moments as the power scrias: 

14 
F(u) = f Ok - 

2niur dt 

- z 

‘X = 
-f. 

f(t) f ( -;iu)” r”& 

n=O 

Thus, 

tan( ph F(u)) 

Im F(u) 
=- 

Re F(u) 

fj (- I)“(- 2TC)Zn+‘)?lZn+luLn+‘/(2n + l)! 
= n=o 

“io( - I)“( - 2rc)““m,,u2”/(2n)! . 

Since the series in the numerator and the denomin- 
ator are absolutely convergent, their ratio can also 
be expressed as the power series 

tan(ph F(u)) = f c,u”, 
n=o 

(11) 

which must accomplish the relation 

m 
c 

( - I)“( _27p+ * 
mzn+ ru 

2n+l 

n=O (2n + l)! 

= “E. c~u’~$~ ( - 1’~&!2”2” m2.u2n. (12) 

It follows immediately from (12) that c,, = 0 for any 
even n. 

Let us the prove by induction that c, has the 
form (10). 

n=l 

It follows from (12) that c, = - Zrcm,/m,. On the 
other hand, 

(- I)“( -2X)’ s _ -27rm, 
l!mo l--=c 1. 

m. 

Let us suppose the assertion has been proven for 
cr,c,, . . . , c,,_*. It follows from (12) that 

( - l)‘P_ ‘j/2( -2n)P 

P! 
% 

=cpmO + C 
‘p - ‘)‘* ( - l)“( -2X)2” cp_ 2”m2” 

II= I (2n)! 

Substituting (IO) into the right-hand side we get 

CpmO = ( - 1p- I)‘*( - 2n)P 

P! 
??lp 

- ‘Liy’ ((Ii:15 rJ:ir2nip Sp_2nm2n, 

cp = (- I)‘p-‘)‘*( -2rc)P 

p!m, 

( 
1 cp- IV2 

* mp-- 
m. 4) “=l 

2; sp- 2S2” 1 

> 

cp = (- I)-I”*( -21xys 

p! mo P' 0 
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Fig. I. The signals used in the experiment: the templates f t , f z  and fj and the blurred and noisy signal g. 

6. Numerical  experiment 

T o  demons t ra te  the per formance  of the above-  
ment ioned technique, the following exper iment  was 
carried out. 

Fig. 1 shows three template  signals f t , f 2  and 
f3 of the length N = 256 samples. The  signal ff (Fig. 
1 bo t tom right) was generated from f3 by averaging 
over  9-point  ne ighborhood  and adding Gauss ian  
noise (SNR = 10dB). The  question was to assign 
g to its non-degraded  counte rpar t  by means of the 
t ime-domain  blur invariants.  

Table I 
The values of the normalized invariants S~, (multiplied by 102) of 
the signals from Fig. I 

f, A f,  a 

Table 2 
The distances (multiplied by 10') between the blurred and noisy 
sigmd g and the templates f l . f2, f3,  respectively 

/', A A 

d~ ,(Jl,g) 13.3 5.41 0.64 

First, the a lgor i thm described in Section 4 was 
employed  to calculate the op t imal  n u m b e r  of  in- 
variants.  The  result in this case was Po = 1 I. Sec- 
ond,  the invariants  S~, S~ . . . . .  S'It were calculated 
for each signal (we do not  use S't, because it is zero 
everywhere).  Thei r  values are summar ized  in Table  
1. Tab le  2 shows the distances d l ~ ( f , g )  between 
g and each template .  Classifying by m i n i m u m  dis- 
tance, the signal g was assigned correct ly to f3- 

S~ 1.55 3.18 5.66 5.67 
S'~ 1.85 4.55 7.28 7.19 
S~ 1.69 5.29 7.97 7.77 
S:, 1.39 5.73 8.37 8.03 
S'~ t 0.98 6.04 8.70 8.20 

7. Summary 

In this paper,  the new technique for recognit ion 
of  signals degraded by a linear t ime- invar iant  
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system is presented. The proposed approach does 
not require impulse response identification and sig- 
nal restoration. 

Two groups of the invariant features for signal 
representation were introduced. It has been shown 
that both groups of features are theoretically equi- 
valent in the following sense: a set {Sp}p==t of 
moment invariants in the time domain is unam- 
biguously determined by phase tangent and vice 
versa. 

The novel algorithm for robust signal classifica- 
tion in the space of the invariants is also presented. 
To demonstrate practical applicability of the theor- 
etical results of the paper, they were approved by 
the numerical experiment. 
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