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Degraded Image Analysis:
An Invariant Approach

Jan Flusser and Tomáš Suk

Abstract—Analysis and interpretation of an image which was acquired by a nonideal imaging system is the key problem in many
application areas. The observed image is usually corrupted by blurring, spatial degradations, and random noise. Classical methods
like blind deconvolution try to estimate the blur parameters and to restore the image. In this paper, we propose an alternative
approach. We derive the features for image representation which are invariant with respect to blur regardless of the degradation PSF
provided that it is centrally symmetric. As we prove in the paper, there exist two classes of such features: the first one in the spatial
domain and the second one in the frequency domain. We also derive so-called combined invariants, which are invariant to
composite geometric and blur degradations. Knowing these features, we can recognize objects in the degraded scene without any
restoration.

Index Terms—Degraded image, symmetric blur, blur invariants, image moments, combined invariants, object recognition.

——————————���F���——————————

1 INTRODUCTION

1.1 Motivation
NALYSIS and interpretation of an image which was ac-
quired by a real (i.e., nonideal) imaging system is the

key problem in many application areas such as remote
sensing, astronomy and medicine, among others. Since real
imaging systems as well as imaging conditions are usually
imperfect, the observed image represents only a degraded
version of the original scene. Various kinds of degradations
(geometric as well as radiometric) are introduced into the
image during the acquisition by such factors as imaging
geometry, lens aberration, wrong focus, motion of the
scene, systematic and random sensor errors, etc.

In the general case, the relation between the ideal image
f(x, y) and the observed image g(x, y) is described as g =
'(f), where ' is a degradation operator. In the case of a
linear shift-invariant imaging system, ' is realized as

g(τ(x, y)) = (f * h)(x, y) + n(x, y),                        (1)

where h(x, y) is the point-spread function (PSF) of the sys-
tem, n(x, y) is an additive random noise, τ is a transform of
spatial coordinates due to projective imaging geometry and
* denotes a 2D convolution. Knowing the image g(x, y), our
objective is to analyze the unknown scene f(x, y).

1.2 Present State-of-the-Art
First, let us suppose for simplicity that no geometric distor-
tions and no noise are present, i.e.,

g(x, y) = (f * h)(x, y).                                     (2)

In some rare cases, the PSF is known explicitly prior to
the restoration process or it can be easily estimated, for in-
stance from a point source in the image. This classical im-
age restoration problem has been treated by a lot of tech-
niques, the most popular of which are inverse and Wiener
filtering [1] and constrained deconvolution methods [2], [3].
However, this is not the subject of this paper.

In most applications the blur is unknown. Partial infor-
mation about the PSF or the true image is sometimes avail-
able—the symmetry of h(x, y), its bounded support or the
positivity of f(x, y), for instance. There are basically two
different approaches to degraded image analysis in that
case: blind restoration and direct analysis.

Blind image restoration has been discussed extensively in
the literature (see [4] or [5] for a basic survey). It is the proc-
ess of estimating both the original image and the PSF from
the degraded image using partial information about the
imaging system. However, this is an ill-posed problem,
which does not have a unique solution and the computa-
tional complexity of which could be extremely high.

There are several major groups of blind restoration
methods. Well-known parametric methods assume that a
parametric model of the PSF is given a priori. Investigating
the zero patterns of the Fourier transform or of the cep-
strum of g(x, y), the unknown parameters are estimated [6],
[7], [8], [9]. This approach is very powerful in motion and
out-of-focus deblurring, for instance.

Promising results were achieved by the zero-sheet separa-
tion method, which was firstly introduced in [10] and fur-
ther developed in [11]. The method is based on the proper-
ties of Z-transform. It was proven that the zeros of the Z-
transform of each f(x, y) and h(x, y) lie on distinct continu-
ous surfaces called zero sheets. Separating these two zero
sheets from each other, we can restore both f(x, y) and h(x, y)
up to a scaling factor. The weakness of the method is in its
numerical implementation—it is very sensitive to noise and
time-consuming. A more detailed study on the practical
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applications of the zero-sheet separation method can be
found in [12]. An attempt to make the method more robust
to noise is described in [13].

Another group of methods is based on modeling of the
image by a stochastic process. The original image is mod-
eled as an autoregressive (AR) process and the blur as a
moving average (MA) process. The blurred image is then
modeled as a mixed autoregressive moving average
(ARMA) process and the MA process identified by this
model is considered as a description of the PSF. In this way
the problem of the PSF estimation is transformed onto the
problem of determining the parameters of an ARMA
model. The methods of this category differ in how the
ARMA parameters are estimated. Basic approaches are
maximum likelihood estimation [14], [15], [16], and generalized
cross-validation [17].

Projection-based approach to blind deconvolution pro-
posed in [18] attempts to incorporate prior knowledge
about the original image and the PSF through constraint
sets. This method was proven to perform well even if the
prior information was not perfect. However, the solution
may be not unique. Except the projection-based method,
there is a number of other nonparametric algorithms which
also use prior deterministic constraints, such as image
positivity or the size of the PSF support. Iterative blind de-
convolution [19], [20], [21], and simulated annealing [22] fall
into this category. A group of deconvolution methods based
on higher-order statistics (HOS) was designed particularly for
restoring images with textures [23], [24].

Direct analysis of the degraded image is based on the dif-
ferent idea: In many cases, one does not need to know the
whole original image, one only needs for instance to local-
ize or recognize some objects on it (typical examples are
matching of a template against a blurred aerial image or
recognition of blurred characters). In such cases, only
knowledge of some representation of the objects is suffi-
cient. However, such a representation should be independ-
ent of the imaging system and should really describe the
original image, not the degraded one. In other words, we
are looking for a functional I which is invariant to the deg-
radation operator, i.e., I(g) = I(f). Particularly, if the degra-
dation is described by (2), then the equality

I(f) = I(f * h)

must hold for any admissible h(x, y).
There have been described only few invariants to blur-

ring in the literature. Most of them are related to very spe-
cial types of h(x, y) and derived in a heuristic manner. No
consistent theory has been published so far. A set of invari-
ants to motion blur was presented in [25]. Recognition of
defocused facial photographs by another set of invariants
was described in [26]. All those invariants were constructed
in spatial domain only. First attempt to find blur invariants
in Fourier domain was published in [27], but that paper
dealt with 1D signals only.

1.3 The Aim of the Paper
The major attention of this paper is devoted to the follow-
ing topics:

•� To find blur invariants defined in Fourier as well as
spatial domains and theoretically prove their property
of invariance.

•� To find combined blur-geometric invariants (i.e., the
features invariant also to some group of spatial trans-
formations of the image plane).

•� To approve experimentally the capability of the in-
variants to recognize objects in a blurred and noisy
scene.

The rest of the paper is organized as follows. In Section 2,
some basic definitions and propositions are given to build-
up necessary mathematical background. Sections 3, 4, and 5
perform the major theoretical part of the paper. Blur invari-
ants in the Fourier domain and in the spatial domain are
introduced in Sections 3 and 4, respectively. A close rela-
tionship between both classes of invariants is shown in
Section 5. Discriminative power of the invariants and their
robustness to additive noise are investigated in Sections 6
and 7. Section 8 is devoted to the so-called combined in-
variants, i.e., invariants to various composite degradations.
Finally, Sections 9 and 10 describe numerical experiments.

2 BASIC NOTATIONS AND MATHEMATICAL
PRELIMINARIES

In this section we introduce some basic terms and relations
which will be used later in this paper.

DEFINITION 1. By image function (or image) we understand any
real function f(x, y) ∈ L1 which is nonzero on bounded
support and

f x y dxdy,1 6
−∞

∞

−∞

∞
> 0 .

DEFINITION 2. Ordinary geometric moment mpq
f1 6  of order (p + q)

of the image f(x, y) is defined by the integral

m x y f x y dxdypq
f p q1 6 1 6=

−∞

∞

−∞

∞
, .                    (3)

DEFINITION 3. Central moment µ pq
f1 6  of order (p + q) of the image

f(x, y) is defined as

µ pq
f
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denote the centroid of f(x, y).

DEFINITION 4. Fourier transform (or spectrum) F(u, v) of the
image f(x, y) is defined as
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where i is the complex unit.

Since f(x, y) ∈ L1, its Fourier transform always exists.

LEMMA 1. Let f(x, y) and h(x, y) be two image functions and let
g(x, y) = (f * h)(x, y). Then g(x, y) is also an image func-
tion and it holds for its moments

m
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g
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kj
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for any p and q.

LEMMA 2. Let h(x, y) be a centrally symmetric image function,
i.e., h(x, y) = h(−x, −y). Then

•� µ pq
h

pq
hm1 5 1 5= for every p and q;

•� If p + q is odd, then µ pq
h1 5 = 0 .

LEMMA 3. The relationship between the Fourier transform of an
image and the geometric moments is expressed by the fol-
lowing equation:

F u v
i

k j m u v
k j

kj
f k j

jk

, ! !0 5 0 5 1 6=
−

⋅ ⋅
+

=

∞

=

∞

∑∑ 2

00

π
.

The assertions of Lemmas 1, 2, and 3 can be easily
proven just using the definition of moments, convolution
and Fourier transform.

In the following text, we will assume that the PSF h(x, y)
is a centrally symmetric image function and that the imag-
ing system is energy-preserving, i.e.,

h x y dxdy,1 6
−∞

∞

−∞

∞
= 1.

The invariants with respect to such a system will be called
blur invariants.

The assumption of centrosymmetry is not a significant
limitation of practical utilisation of the method. Most real
sensors and imaging systems, both optical and nonoptical
ones, have the PSF with certain degree of symmetry. In
many cases they have even higher symmetry than central
one, such as axial or radial symmetry. Thus, the central
symmetry is general enough to describe almost all practical
situations. On the other hand, if we restrict ourselves to PSF
with radial or axial symmetry, we derive another set of blur
invariants (see Appendix A). Generally, the higher degree
of symmetry of the PSF is assumed, the more invariants can
be obtained.

3 INVARIANTS IN THE SPECTRAL DOMAIN

In this section, blur invariants in the Fourier spectral do-
main are investigated.

THEOREM 1. Tangent of the Fourier transform phase is a blur
invariant.

PROOF. Due to the well-known convolution theorem, the
corresponding relation to (2) in the spectral domain
has the form

G(u, v) = F(u, v) ⋅ H(u, v),                            (5)

where G(u, v), F(u, v), and H(u, v) are the Fourier trans-
forms of the functions g(x, y), f(x, y), and h(x, y), re-
spectively. Considering the amplitude and phase sepa-
rately, we get

|G(u, v)| = |F(u, v)| ⋅ |H(u, v)|                   (6)
and

phG(u, v) = phF(u, v) + phH(u, v)                  (7)

(note that the last equation is correct only for those points
where G(u, v) ≠ 0; phG(u, v) is not defined otherwise).

Due to the central symmetry of h(x, y), its Fourier
transform H(u, v) is real (that means the phase of
H(u, v) is only a two-valued function):

phH(u, v) ∈ {0; π}.

It follows immediately from the periodicity of tangent
that

                tan(phG(u, v)) =

tan(phF(u, v) + phH(u, v)) = tan(phF(u, v)).      (8)

Thus tan(phG(u, v)) is invariant with respect to con-
volution of the original image with any centrally
symmetric PSF. o

Note, that the phase itself is not invariant with respect to
blur and therefore it cannot be directly used for blurred
image description and recognition.

4 INVARIANTS IN THE SPACE DOMAIN

In this section, blur invariants based on image moments are
introduced.

THEOREM 2. Let f(x, y) be an image function. Let us define the
following function C(f): Z × Z → R.

If (p + q) is even then

C(p, q)(f) = 0.

If (p + q) is odd then

         C p q
f

,1 61 6 =

µ
µ

µpq
f

f

f

m
n m p q

q

n
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nm
fp

n
q
m C p n q m1 6

1 6
1 6 1 61 6− �

�
�
�
�
�
�
� − − ⋅

=
< + < +

=
∑∑1

00 0
0

0

, .(9)

Then C(p, q) is a blur invariant for any p and q. The num-
ber r = p + q is called the order of the invariant.

For proof of Theorem 2, see Appendix B.
Applying (9), we can construct the invariants of any or-

der and express them in the explicit form. The set of invari-
ants of the third, fifth, and seventh orders is listed below:
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•� Third order:

C(3, 0) = µ30,

C(2, 1) = µ21,

C(1, 2) = µ12,

C(0, 3) = µ03.

•� Fifth order:

             C 5 0
10

50
30 20

00
,1 6 = −µ

µ µ
µ ,

             C 4 1
2

3 241
00

21 20 30 11,1 6 2 7= − +µ µ µ µ µ µ ,

C 3 2
1

3 632
00

12 20 30 02 21 11,0 5 2 7= − + +µ µ µ µ µ µ µ µ ,

            C 2 3
1

3 623
00

21 02 03 20 12 11,1 6 2 7= − + +µ µ µ µ µ µ µ µ ,

             C 1 4
2

3 214
00

12 02 03 11,1 6 2 7= − +µ µ µ µ µ µ ,

            C 0 5
10

05
03 02

00
,1 6 = −µ

µ µ
µ .

•� Seventh order:

C 7 0
7

3 5
210

70
00

50 20 30 40
30 20

2

00
2,1 6 2 7= − + +µ µ µ µ µ µ

µ µ
µ

,

C 6 1
1

6 15 15 2061
00

50 11 41 20 40 21 31 30,1 6 2 7= − + + + +µ µ µ µ µ µ µ µ µ µ

              
30

3 4
00
2 21 20

2
30 20 11µ

µ µ µ µ µ+4 9 ,

C 5 2
1

10 10 2052
00

50 02 30 22 32 20 31 21,1 6 2= − + + + +µ µ µ µ µ µ µ µ µ µ

              10 5
10

3 241 11 40 12
00
2 12 20

2
30 20 02µ µ µ µ

µ
µ µ µ µ µ+ + +7 4

             + +4 1230 11
2

21 20 11µ µ µ µ µ 9 ,

C 4 3
1

18 12 443
00

40 03 21 22 31 12 30 13,1 6 2= − + + + +µ µ µ µ µ µ µ µ µ µ

              3 12 6
6

441 02 32 11 23 20
00
2 03 20

2
30 11 02µ µ µ µ µ µ

µ
µ µ µ µ µ+ + + +7 4

             + + +12 12 621 11
2

12 20 11 21 02 20µ µ µ µ µ µ µ µ 9 ,

C 3 4
1

18 12 434
00

04 30 12 22 13 21 03 31,0 5 2= − + + + +µ µ µ µ µ µ µ µ µ µ

               3 12 6
6

414 20 23 11 32 02
00
2 30 02

2
03 11 20µ µ µ µ µ µ

µ
µ µ µ µ µ+ + + +7 4

              + + +12 12 612 11
2

21 02 11 12 20 02µ µ µ µ µ µ µ µ 9,

C 2 5
1

10 10 2025
00

05 20 03 22 23 02 13 12,1 6 2= − + + + +µ µ µ µ µ µ µ µ µ µ

              10 5
10

3 214 11 04 21
00
2 21 02

2
03 02 20µ µ µ µ

µ
µ µ µ µ µ+ + +7 4

              + +4 1203 11
2

12 02 11µ µ µ µ µ 9 ,

C 1 6
1

6 15 15 2016
00

05 11 14 02 04 12 13 03,1 6 2 7= − + + + +µ µ µ µ µ µ µ µ µ µ

             
30

3 4
00
2 12 02

2
03 02 11µ

µ µ µ µ µ+4 9 ,

C 0 7
7

3 5
210
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05 02 03 04
03 02

2

00
2,1 6 2 7= − + +µ µ µ µ µ µ

µ µ
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THEOREM 3. Let f(x, y) be an image function. Let us define the
following function M(f): Z × Z → R.

If (p + q) is even, then

M(p, q)(f) = 0.

If (p + q) is odd, then

        M p q
f

,2 71 6 =

m
m

p
n

q
m M p n q m mpq

f

f

f
nm

f

m
n m p q

q

n

P1 6
1 6

1 6 1 62 7− �
��
�
��
�
��
�
�� − − ⋅

=
< + < +

=
∑∑

1

00 0
0

0

, . (10)

(M(p, q) is formally similar to C(p, q) but ordinary geo-
metric moments are used instead of the central ones.)

Then M(p, q) is a blur invariant for any p and q.

PROOF. The proof of Theorem 3 is very similar to that of
Theorem 2.

THEOREM 4. Let f(x, y) be an image function. Let us normalize
the above mentioned blur invariants as follows:

′ =M p q
M p q

m

f
f

f
,

,2 7 2 71 6
1 6

1 6
00

,

′ =C p q
C p qf

f

f
,

,2 7 2 71 6
1 6

1 6µ00

.

Then M′(p, q) and C′(p, q) are blur invariants for any p and
q, even if the imaging system is energy nonpreserving (i.e.,
the system PSF h(x, y) is an arbitrary centrally symmetric
image function).

PROOF. Let’s define a new PSF

h x y
h x y

m h1
00

,
,2 7 2 7
1 6= .

Then

g x y f h x y m f h x yh, , ,1 6 1 61 6 2 71 61 5= ∗ = ∗00 1

and

M p q m M p q m M p q
g h f h h f

, , ,2 7 2 7 2 71 6 1 6 2 7 1 6 1 6= =∗
00 00

1

because h1(x, y) is energy-preserving. It follows from
Lemma 1 that
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m m mg f h
00 00 00
1 6 1 6 1 6= .

Thus,

                                      ′ = ′M p q M p q
g f

, ,2 7 2 71 6 1 6 .    o

The proof of invariance of C′(p,q) is similar.

5 RELATIONSHIP BETWEEN FOURIER DOMAIN
INVARIANTS AND SPATIAL DOMAIN INVARIANTS

In this section, a close relationship between the Fourier
transform phase and the moment-based blur invariants is
presented.

THEOREM 5. Tangent of the Fourier transform phase of any image
f(x, y) can be expanded into power series (except the points
in which F(u, v) = 0 or phF(u, v) = ±π/2)

tan ,phF u v c u vkj
k j

jk

0 52 7 =
=

∞

=

∞

∑∑
00

,                    (11)

where

c k j M k jkj

k j k j

=
− ⋅ −

⋅ ′
+ − +1 21 20 5 0 5 1 6
1 6 π

! ! ,                  (12)

if k + j is odd and

ckj = 0

if k + j is even.

For proof of Theorem 5 see Appendix B.
Theorem 5 demonstrates that from theoretical point of

view both groups of blur invariants are equivalent. How-
ever, their suitability for practical usage depends on their
numerical behavior, noise robustness, geometric distortions
of the input patterns, given object classes, etc., and will be
investigated experimentally later in this paper.

6 DISCRIMINATIVE POWER OF THE INVARIANTS

In the previous sections, we dealt with the property of in-
variance of the functional I and we proved that under cer-
tain conditions I(f) = I(f * h) for any function f(x, y) and for
an arbitrary centrally symmetric function h(x, y). In this
section, an inverse problem will be investigated.

Let’s consider the feature vector of the normalized mo-
ment invariants

I(f) = {M′(p, q)(f);    p, q = 0, 1, L, ∞}.

The following theorem shows the structure of the set of
image functions the feature vectors of which are identical.

THEOREM 6. Let f(x, y), g(x, y), and h(x, y) be three image func-
tions such that

g(x, y) = (f * h)(x, y)

and let I(f) = I(g). Then h(x, y) is centrally symmetric.

PROOF. Since I(f) = I(g), it follows from Theorem 5 that

tan(phF(u, v)) = tan(phG(u, v)).

Due to the periodicity of tangent,

phG(u, v) = phF(u, v) + φ(u, v),

where φ(u, v) ∈ {0; π}. Since g(x, y) = (f * h)(x, y), it
holds G(u, v) = F(u, v) ⋅ H(u, v) and, particularly,

phG(u,v) = phF(u, v) + phH(u, v).

Comparison of last two equations implies that H(u, v)
is a real function. Thus, h(x, y) is centrally symmetric.o

Theorem 6 says that under certain conditions we are al-
ways able to distinguish between two different image func-
tions (modulo convolution with a centrally symmetric PSF).
However, it does not say anything about the discriminative
power of I in general. In other words, it does not follow
from Theorem 6 that I is a unique functional. Anyway, in
practice I(f) is a finite set of features and, consequently, the
discriminative power of I is limited.

The following Lemma deals with a null space of blur in-
variants. It shows that the null space of the functional I
contains centrally symmetric functions only. As a conse-
quence of Lemma 4 we can see that any two different
centrosymmetric functions cannot be discriminated from
each other. The invariants to radially or axially symmetric
PSF have a similar property: The null space is always
formed by those functions having the same type of sym-
metry as the PSF.

LEMMA 4. The image function f(x, y) is centrally symmetric if
and only if I(f) = 0.

PROOF. If f(x, y) is centrally symmetric, then all odd-order
moments mpq are zero. Consequently, all M′(p, q)(f) are
equal to zero too. On the other hand, if all M′(p, q)(f)

are equal to zero, then also all odd-order moments mpq
are zero. Lemma 3 implies that F(u, v) is real and, con-
sequently, f(x, y) must be centrally symmetric. o

7 ROBUSTNESS TO ADDITIVE NOISE

Thus far we have considered a noise-free case only, but in
practical applications the noise of various kinds is always
present. In this section, we study the influence of additive
zero-mean random noise on the values of the blur in-
variants.

Let g(x, y) be a blurred and noisy version of original im-
age f(x, y):

g(x, y) = (f * h)(x, y) + n(x, y).                     (14)

Since the image g(x, y) is then a random field, all its mo-
ments and all invariants can be viewed as random vari-
ables. It holds for any p and q

E mpq
n1 64 9 = 0,

E m mpq
g

pq
f h1 6 1 6�� �� = ∗

and, consequently,

E(M(p, q)(g)) = M(p, q)(f)

where E(⋅) denotes the mean value. Thanks to this, if a suf-
ficient number of realizations of g(x, y) is available, we can
estimate the invariants of the original image as the mean
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value of the invariants of all noisy realizations of blurred
image.

In practice, however, only a single realization of g(x, y) is
available in most cases. The undesired noise impact on the
value of the invariant is characterized by its relative error

re
M p q M p q

M p q

g f

f
=

−| , , |

,

1 6 1 6
1 6
1 6 1 6

1 6 .                     (15)

Mostafa and Psaltis [28] and Pawlak [29] studied relative
errors of moments. They showed that as the order of mo-
ments goes up, the relative error becomes higher. The blur
invariants behave in the same way.

In practical applications the usability of the invariants
depends on how big the relative error is in comparison with
a relative distance between two different object classes. As
it is demonstrated by experiments in Section 9, the invari-
ants are robust enough to be used for object recognition
under “normal” conditions (i.e., SNR higher than 10 dB and
relative inter-class distance higher than 0.01).

8 COMBINED INVARIANTS

In this section, we deal with the invariants to the degrada-
tions, which are composed from two degradation factors.
Centrally symmetric blur is always supposed to be one of
them, the other one can be either a geometric transform of
spatial coordinates or an image intensity transform.

More formally, let’s suppose that g ≡ '(f) = '0(f * h),

where '0 is some operator acting on the space of image
functions. The features invariant to ' will be called combined
invariants. Clearly, if the functional I is invariant to blurring
and simultaneously to '0, then it is also invariant to '.

In the following text, we will concern with various '0

operators describing common degradations in imaging.
Although the invariants to those degradations are usually
well-known from classical image processing literature and
the invariants to blurring have been introduced in previous
sections, it is not always straightforward to derive com-
bined invariants.

8.1 Change of Contrast

In the case of image contrast global change, '0(g)(x, y) =
α ⋅ g(x, y), where α is a positive constant.

THEOREM 7. M′(p, q) and C′(p, q) defined in Theorem 4 are com-
bined invariants for any p and q.

PROOF. Let p + q be odd (the statement is trivial otherwise).
It is sufficient to prove that both M′(p, q) and C′(p, q)
are '0-invariants. Let g(x, y) be an image function and

let g1(x, y) = α ⋅ g(x, y); α > 0. This means that

g1(x, y) =(h1 * g)(x, y),

where h1(x, y) = α ⋅ δ(x, y). Since h1(x, y) is centrally

symmetric, ′ = ′M p q M p q
g g

, ,1 6 1 62 7 1 61 . The proof of '0-

invariance of C′(p, q) is similar. o

It follows from Theorem 5 and Theorem 7 that tangent of
the Fourier transform phase is also a combined invariant.

8.2 Change of Brightness
A global change of image brightness is described as

'0(g)(x, y) = g(x, y) + β ⋅ ψg(x, y) , where β is an arbitrary

constant and ψg(x, y) is a characteristic function of the sup-
port of g. According to Definition 1, support of g is
bounded. Consequently, it is correct to consider silhouette
moments

m x y x y dxdypq
p q

g=
−∞

∞

−∞

∞
ψ ,1 6 .

We can construct '0-invariants easily as

B p q s t m m m mpq st st pq, , ,1 6 = − .

However, they do not generate any combined invariants.
If we allow an infinite support of g, then

)('0(g))(u, v) ≡ G′(u, v) = G(u, v) + β ⋅ δ(u, v)

and, consequently,

phG′(u, v) = phG(u, v).

Thus, tangent of the Fourier transform phase is a combined
invariant.

8.3 Translation

Translation of the image g(x, y) by vector (x0, y0) is de-

scribed as '0(g)(x, y) = g(x − x0, y − y0). Clearly, C(p, q) as
well as C′(p, q) are combined invariants. Unfortunately,
there is no straightforward correspondence with frequency
domain.

8.4 Translation and Scaling

In this case, the distortion is expressed as '0(g)(x, y) =

g(ax − x0, ay − y0), where a > 0 is a scaling factor.

THEOREM 8. Let g(x, y) be an image function. Let us define the

following function N(g): Z × Z → R.

If (p + q) is even then

N(p, q)(g) = 0.

If (p + q) is odd then

        N p q
g

,1 61 6 =

ν νpq
g

m

q

n

p
g

nm
gp

n
q
m N p n q m

n m p q

1 6 1 6 1 61 6− �
�
�
�
�
�
�
� − − ⋅

==
< + < +

∑∑
00

0

, ,   (16)

where

ν
µ

µ
pq

pq

p q
=

+ +
00

2 21 6 .

Then N(p, q) is a combined invariant for any p and q.
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For proof of Theorem 8 see Appendix B. Note that N(p, q) is
formally similar to C(p, q), but the normalized moments are
used instead of the central ones.

8.5 Translation, Scaling, and Contrast Change

In this case, the distortion operator '0 has the form

'0(g)(x, y) = α ⋅ g(ax − x0, ay − y0). According to the previ-

ous cases, the simplest solution seems to be N(p, q)/µ00.
Unfortunately, this feature is invariant neither to scaling nor
to change of contrast.

THEOREM 9. Let r be an odd integer and let p, q, s, and t are arbi-
trary integers such that r = p + q = s + t. Then

T p q s t
N p q
N s t

, , ,
,
,

1 6 1 6
0 5=

is a combined invariant.

PROOF. Due to Theorem 8, T(p, q, s, t) is invariant to blur,
translation, and scaling. Let’s prove its invariance to
the change of contrast by an arbitrary positive factor α.

Let g(x, y) be an image function. Then (21) implies

N p q
C p qg

g

r g
,

,1 6 1 6
4 9

1 6
1 6

1 6
α

α

α
µ

=
′

00
2

.

Theorem 7 says that C′(p, q)(α g)= C′(p, q)(g). Thus,

N p q
C p q

N p q
g

g

r r g
r g

,
,

,1 6 1 6
4 9

1 61 6
1 6

1 6
1 6α

α µ
α=

′
= −

2
00

2

2

and, consequently,

   T p q s t
N p q

N s t

N p q

N s t
T p q s t

g
g

g

g

g

g
, , ,

,

,

,

,
, , ,1 6 1 6

0 5
1 6
0 5 1 61 6

1 6

1 6

1 6

1 6
1 6α

α

α
= = = . o

Using (21) we can derive the useful relation between the
functionals T and C:

T p q s t
C p q
C s t

, , ,
,
,

1 6 1 6
0 5= .

8.6 Translation, Rotation, and Scaling
This very frequent distortion is described by the operator

'0(g)(x, y) =

g(ax cos θ + ay sin θ  − x0, − ax sin θ + ay cos θ − y0),

where θ is a rotation angle.
There have been described lot of '0-invariants based on

various approaches (see [30], [31] for a survey). A large
group of them is based on moments. Hu derived seven
moment-based '0-invariants in his fundamental paper [32]
which have been employed by many researchers. Recently,
Wong [33] has proposed a method how to generate an infi-
nite sequence of rotation moment invariants and has shown
Hu’s invariants are just particular represantatives of them.
It can be proven that some odd-order Wong’s invariants (or
certain simple functions of them) are also blur invariants.

We present here the most simple combined invariants:

Φ1 = (ν30 − 3ν12)
2 + (3ν21 − ν03)

2,

Φ2 = (ν30 + ν12)
2 + (ν21 + ν03)

2,

Φ3 = (ν30 − 3ν12)(ν30 + ν12)((ν30 + ν12)
2 − 3(ν21 + ν03)

2) +

         (3ν21 − ν03)(ν21 + ν03) (3(ν30 + ν12)
2− (ν21 + ν03)

2),

Φ4 = (3ν21 − ν03)(ν30 + ν12)((ν30 + ν12)
2− 3(ν21 + ν03)

2) −

         (ν30 − 3ν12)(ν21 + ν03) (3(ν30 + ν12)
2− (ν21 + ν03)

2),

Φ5 = [ν50 − 10ν32 +5ν14 − 10(ν20ν30 − ν30ν02 −  3ν12ν20 +

          3ν12ν02 − 6ν11ν21 + 2ν11ν03)]
2 + [ν05 − 10ν23 + 5ν41

           − 10(ν02ν03 − ν03ν20 − 3ν21ν02 + 3ν21ν20

           − 6ν11ν12 + 2ν11ν30)]
2.                                                         (17)

Another set of combined invariants can be derived in the
frequency domain provided that there occurs no transla-
tion. In such a case,

) '0 2

1
g u v

a
G u

a
v
a

u
a

v
a1 63 80 5 3 8, cos sin , sin cos= + − +θ θ θ θ .

Thus, the Fourier transform phase of a rotated and scaled
image is the rotated and inverse-scaled phase of the original
one. Consequently, any '0-invariant computed from the
tangent of the FT phase is a combined invariant. Particu-
larly, we can apply all Hu’s moment invariants. However,
in practical implementation they are unstable because of
phase discontinuity.

8.7 Affine Transform
Distortion caused by an affine transform is the most general
one we consider in this paper. It is described by the fol-
lowing operator:

'0(g)(x, y) = g(a0 + a1x + a2y, b0 + b1x + b2y)

where aj and bj are arbitrary real coefficients.
We refer to our previous work [34] in which a set of '0-

invariants called affine moment invariants was introduced. It
can be proved that some of them are also invariant to blur-
ring. The most simple combined invariant has the form

A = − + + −
1

6 4 4 3
00
10 30

2
03
2

30 21 12 03 30 12
3

03 21
3

21
2

12
2

µ
µ µ µ µ µ µ µ µ µ µ µ µ4 9 .

9 EXPERIMENT 1—TEMPLATE MATCHING

To demonstrate the performance of the above described
invariants we apply them to the problem of matching a
template with a blurred and noisy scene.

9.1 Problem Formulation
Our primary motivation comes from the area of remote
sensing. The template matching problem is usually for-
mulated as follows: Having the templates and a digital
image of a large scene, one has to find locations of the
given templates in the scene. By template we understand



8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL. 20,  NO. 6,  JUNE  1998

-�?352'8&7,21?73$0,?��,1352'?������?������B��'2& UHJXODUSDSHU���GRW 6% ��������� ���������������$0 ������

a small digital picture usually containing some significant
object which was extracted previously from another image
of the scene and now is being stored in a database.

There have been proposed numerous image matching
techniques in the literature (see the survey paper [35] for
instance). A common denominator of all those methods is
the assumption that the templates as well as the scene im-
age have been already preprocessed and the degradations
like blur, additive noise, etc., have been removed. Those
assumptions are not always realistic in practice. For in-
stance, satellite images obtained from Advanced Very
High Resolution Radiometer (AVHRR) suffer by blur due
to a multiparametric composite PSF of the device [36].
Even if one would know all the parameters (but one usu-
ally does not) the restoration would be hard and time-
consuming task with an unreliable result.

By means of our blur invariants, we try to perform the
matching without any previous deblurring. The current
experiment demonstrates that this alternative approach
outperforms the classical ones in the case of blurred scene
and that it is sufficiently robust with respect to noise.

9.2 Algorithm
For computer implementation, we have to convert the defi-
nitions of image moments into the discrete domain first.
Among several possibilities how to approximate central
moments we employ the most simple one:

µ pq
f

t
f

p

t
f

q

ij
j

N

i

N

i x j y f1 6 1 6 1 6= −�� �� −�� ��
==
∑∑

11

,                     (18)

where fij denotes a gray-level value in the pixel (i, j) and N
is the size of the image.

We use the normalized invariants C′(p, q) because of
their invariance to image contrast. Moreover, further nor-
malization is necessary to ensure roughly the same range
of values regardless of p and q. If we would have enough
data for training, we could set up the weighting factors
according to interclass and intraclass variances of the
features as was proposed by Cash in [37]. However, this is
not that case, because each class is represented just by one
template. Thus, we normalized the invariants by (N/2)p+q

that yields a satisfactory normalization of the range of
values.

Let’s define for any odd r the following vectors:

C C r C r C rr = ′ ′ − ′0 1 1 0, , , , , ,0 5 0 5 2 73 8L

and, consequently,

C r C C Cr0 5 3 8= 3 5, , ,L .

Note that the size Kr of C(r) is equal to 1
4 (r + 5)(r 1)− .

Let’s define the distance dr(f, g) between two images as

dr(f, g) = i C(r)(f) − C(r)(g) i

where i ⋅ i is Euclidean norm in ,2(Kr) space. The distance dr
has the properties of a quasimetric: it is nonnegative, sym-
metric function which satisfies the triangular inequality.
However, dr(f, g) = 0 does not imply f = g.

Our matching algorithm can be described as follows:

Algorithm Invar_Match
1) Inputs:

g – blurred image of the size N × N,
f – template of the size L × L, N @ L,
r – maximal order of the invariants used.

2) Calculate C(r)(f).
3) for i = 1 to N − L + 1

        for j = 1 to N − L + 1
t = g(i : i + L − 1, j : j + L − 1);
Calculate C(r)(t);
Dij = dr(f, t);

        end;
end;
4) Find (i0, j0) such that

D Di j ij0 0
= min .

5) Output:
(i0, j0)–position of the template in the scene (upper-left
corner).

There are several possible modifications of this algo-
rithm. In Step 4, we can interpolate in the distance matrix D
over some neighborhood of the minimal element Di j0 0

 to

find the template location with subpixel accuracy. To speed
up the computation, Step 3 can be implemented as a hierar-
chical procedure. On a coarser level, only a few invariants
are used to evaluate the distance matrix. On a finer level,
the matching is carried out by means of more invariants,
but only in the neighborhood of “hopeful” locations. In
some cases we can specify the approximate location of the
template and restrict the matching procedure to a search
area which is smaller than the entire image.

The only open question is how to choose an appropriate
r, i.e., how many invariants should be used for the match-
ing. It is well-known that higher order moments (and, con-
sequently, higher-order invariants too) are more vulnerable
to noise. On the other hand, they contain the detail infor-
mation about the image. It was shown by Pawlak [29] that
there exists the optimal number of the moments yielding
the best trade-off between those two opposite factors, i.e.,
giving the best image representation for the given noise
variance. The Pawlak’s method can be extended to find the
optimal number of the moment invariants. However, the
features giving optimal representation may not ensure op-
timal discriminability. Nevertheless, if the signal-to-noise
ratio (SNR) is known, we can use the Pawlak’s method to
find the optimal number of the invariants to represent the
given template and employ the same set of the invariants
for matching. In most practical cases, such a number of
features is too high (often more than 100) to be used for
computation. Thus, a user-defined value of r is in common
use. In this experiment we used r = 7, that means we ap-
plied 18 invariants from third to seventh order.

9.3 Data
The experiment was carried out on a simulated AVHRR
image. As an input for a simulation, the 512 × 512 SPOT
HRV image covering the north-western part of Prague
(Czech capital) was used (see Fig. 1). To simulate AVHRR
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acquisition, the image was blurred by a 9 × 13 mask repre-
senting a composite PSF of the AVHRR sensor and cor-
rupted by Gaussian additive noise with standard devia-
tion STD = 10, which yields SNR = 14 in this case (see
Fig. 2). We didn’t scale the image to simulate lower spatial
resolution of AVHRR sensors, because it is not essential in
this experiment. The templates were extracted from SPOT
image of the same scene and represent significant objects
in Prague: the island in Vltava river, the cross of the roads
and the soccer stadium (see Fig. 3). The true locations of
the templates in the original image are shown in Fig. 1.
The task was to localize these templates in the AVHRR
image.

9.4 Results
Matching of the templates and the AVHRR image was per-
formed by two different techniques - by our algorithm In-
var_Match and, for a comparison, by the Sequential Similarity
Detection Algorithm (SSDA) which is probably the most
popular representative of the correlation-like matching
methods [38].

The results are summarized in Table 1. It can be seen that
by Invar_Match all templates were placed correctly or al-
most correctly with a reasonable error 1 pixel. On the other
hand, SSDA did not yield satisfactory results. Only the “Is-

land” template was placed correctly (because of its distinct
structure), whereas the other templates were misplaced.

We have performed a lot of experiments like this one
with various templates, template sizes, blurring masks and
noise variance. The “average” results are summarized in
Fig. 4. The noise standard deviation is on the horizontal
axis, the ratio w between the size of the blurring mask and
the size of the template is on the vertical axis. The value of
w is an important factor. Due to blurring, the pixels laying
near the boundary of the template in the image are affected
by those pixels laying outside the template. The higher w is,
the larger part of the template is involved in this boundary
effect. In principle, the invariants cannot be invariant to
boundary effect and this might lead to mismatch, especially
when w is higher than 0.15.

The area below each graph corresponds to the domain in
which the algorithms Invar_Match and SSDA, respectively,
work successfully. Invar_Match algorithm clearly outper-
forms SSDA, especially when the noise corruption becomes
significant. It proves the fact that our features are not only
invariant to blurring but also robust to additive noise.
However, if the SNR becomes lower than 10 dB, In-
var_Match failed in most cases.

Fig. 1. Original 512 × 512 SPOT scene (band 3) of the north-western
part of Prague, Czech Republic, used for simulation. True locations of
the templates from Fig. 3 are marked.

Fig. 2. Simulated AVHRR image (9 × 13 blurring mask + additive noise
with STD = 10).

TABLE 1
TEMPLATE MATCHING:

SUMMARY OF THE RESULTS OF EXPDRIMENT 1

Template Ground truth Invar_Match SSDA Invar_Match error SSDA error
Island 438,152 438,152 438,152 0 0
Cross 150,265 149,265 59,31 1 251

Stadium 426,225 426,224 401,13 1 213
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10 EXPERIMENT 2—REGISTRATION OF ROTATED
IMAGES

In this section, we demonstrate the capability of the com-
bined invariants for registering rotated and blurred images.

Image-to-image registration usually consists of four
steps. First, specific objects or features are identified either
automatically or manually in the images, and the corre-
spondence between them is established by matching of ob-
ject descriptors. After that, distinctive points, such as win-
dow centers or object centroids, are considered as control
points (CP). The coordinates of corresponding control points
are then used to calculate the coefficients of the parametric
transformation model. In satellite imagery, low-order poly-
nomials are usually employed and their coefficients are
computed by least-square approximation. In the last step,
the sensed image is resampled and overlaid over the refer-
ence one.

Possible application of combined invariants to image
registration is in window matching.

In this experiment, the simulated AVHRR image from
Section 9 served as the reference one. The original SPOT
scene from Fig. 1 was rotated by 30o around its center and

shifted horizontally and vertically by 94 pixels (see Fig. 5)
to get the image to be registered. Two circular windows
containing an island in the river and a runway cross on the
airport, respectively, were selected manually (their locations
are depicted in Fig. 5). The positions of the window centers
were (561, 388) and (100, 375), respectively. Now the task
was to localize these templates in the reference image.

An algorithm similar to that presented in Section 9.2
was used for the window matching. The only difference is
that five combined translation-rotation-blur invariants
(17) were employed instead of C′(p, q). The windows were
localized in the AVHRR image according to minimum
distance in the invariant space on the following positions:
the island at (459, 183) and the runway cross at (53, 401)
(center positions).

Since the geometric difference between the images con-
sists of translation and rotation only, two pairs of control
points are sufficient to estimate the transformation pa-
rameters. The estimated value of the rotation angle is 29.86o

and the estimated translation parameters were 93 and 94.5,
respectively. These results demonstrate sufficient registra-
tion accuracy.

11 CONCLUSION

The paper was devoted to the image features which are
invariant to blurring by a filter with centrally symmetric
PSF. The invariants in the spectral domain as well as in the
spatial domain were derived and the relationship between
them was investigated. It was proven that both kinds of
features are equivalent from the theoretical point of view.
Combined invariants, i.e., invariants with respect to degra-
dations composed from symmetric blur and another geo-
metric or gray-level transform were investigated too. Par-
ticular attention was paid to translation, rotation, scaling
and contrast changes. Finally, original theoretical results of
the paper were approved by numerical experiments on sat-
ellite images.

Practical applications of the new invariants may be
found in object recognition in blurred and noisy environ-
ment, in template matching, image registration, etc.

Basically, there are two major directions of the further re-
search on this field. The first one should be focused on spe-
cial types of degradations such as motion blur, vibration
blur or out-of-focus blur. Knowing the parametric expres-
sions of their PSF, we should be able to derive more in-
variants than for general centrally symmetric PSF. Oppo-

Fig. 4. Experimental evaluation and comparison of Invar_Match and
SSDA algorithms. Horizontal axis: standard deviation of the noise; ver-
tical axis: the ratio between the size of the blurring mask and that of the
template. The area below the graph corresponds to the domain of good
performance of the method.

                                   (a)                                                                         (b)                                                                (c)

Fig. 3. The templates: “Island” (a), “Cross” (b), and “Stadium” (c).
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site direction will be focused on combined invariants
where a general method of their derivation should be de-
veloped, particularly in the case of image rotation and
affine transform.

APPENDIX A
We present here an analogon of Theorem 2 showing blur
invariants in the case of radially symmetric PSF.

If h x y h x y,1 6 4 9= +2 2  then the functional

R p q,1 6 =

µ µ µ µpq qp
m

n m p q

q

n
m n even

p

nma
p
n

q
m R p n q m− − �

�
�
�
�
�
�
� − − ⋅

=
< + < +

=
∧

∑∑1

00 0
0

0
0 5

1 6,

where a = 1 if both p and q are even and a = 0 otherwise is a
blur invariant for any p and q. In this case we get more in-
variants than for centrosymmetric PSF, because invariants
of even order are also defined. On the other hand, R(p, q)
consists of less number of terms than C(p, q) because the
summation goes only over those µnm both indices of which
are even.

Blur invariants for axisymmetric PSF (i.e., h(x, y) = h(−x, y) =
h(x, −y)) are exactly the same as those for radially symmet-
ric PSF if p or q are odd and they are indefined if both p and
q are even.

The proof of these assertions is similar to that of Theo-
rem 2.

APPENDIX B

PROOF OF THEOREM 2. The statement of the Theorem is triv-
ial for any even r. Let us prove the statement for odd r
by an induction.

•� r = 1

C(0, 1)(g) = C(0, 1)(f) = 0,

C(1, 0)(g) = C(1, 0)(f) = 0

regardless of f and h.
•� r = 3

There are four invariants of the third order: C(1, 2),
C(2, 1), C(0, 3), and C(3, 0). Evaluating their recursive
definition (9) we get them in the explicit forms:

C(1, 2) = µ12,

C(2, 1) = µ21,

C(0, 3) = µ03,

C(3, 0) = µ30.

Let us prove the Theorem for C(1,2); the proofs for
the other invariants are similar.

Fig. 5. The original SPOT image from Fig. 1 rotated by 30 degrees with two circular templates extracted for the registration purposes.
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Using the identity
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Using a shorter notation we can rewrite the last equa-
tion in the form
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If k + j is odd then Lemma 2 implies that µkj
h1 5 = 0 . If k

+ j is even then it follows from the definition (9) that
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Consequently,
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Thus, (19) implies that C(p, q)(g) = C(p, q)(f) for every p
and q. o

PROOF OF THEOREM 5. Lemma 3 implies that
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Thus, tan(phF(u, v)) is a ratio of two absolutely con-
vergent power series and, therefore, it can be also ex-
pressed as a power series
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which must accomplish the relation
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It follows immediately from (20) that if k + j is even
then ckj = 0. Let’s prove by an induction that ckj has the
form (12) if k + j is odd.

•� k + j = 1
It follows from (20) that
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•� Let’s suppose the assertion has been proven for all k
and j, k + j ≤ r, where r is an odd integer and let p + q
= r + 2. It follows from (20) that
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Introducing (12) into the right side we get
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and, consequently,
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Finally, it follows from (10) that
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PROOF OF THEOREM 8. Since the normalized moments do not
depend on the scale and the translation, N(p, q) is '0-
invariant for any p and q. Let’s prove N(p, q) is also
invariant to blurring.

To do that, let’s prove by an induction that
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for any odd r = p + q.

•� The assertion is trivial for r = 1 because

N(0, 1) = C(0, 1) = 0.

•� r = 3
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The proofs for N(2, 1), N(1, 2), and N(0, 3) are quite
similar.

•� Provided the assertion has been proven for all N(p, q)
of order 1, 3, L, r − 2. Then for r = p + q we get the
following:
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Since C(p, q) as well as µ00 are blur invariants, N(p, q) is
a combined invariant. o
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