On Efficiency of Learning: A Framework

Jindfich Bicha

Institute of Information Theory and Automation

Pod vodarenskou vézi 4, Prague
bucha@utia.cas.cz

Abstract

The efficiency of learning is approached in the con-
text of a problem solver. The problem is solved as
a problem of integration of all basic cognitive func-
tions. The feasibility of the approach is demon-
strated on examples from a chess environment.

1. Introduction

This paper addresses machine learning (learning)
[6]. In a more complicated environment, require-
ments on learning lead directly to the learning effi-
ciency. Our hypothesis and/or assumption is that
to solve the problem of efficient learning it is nec-
essary and possible to solve it in a wider context,
to solve it as a problem of efficiency of problem
solver (PS). By PS we understand a system inte-
grating all basic cognitive functions, i.e. identi-
fication, planning, implementation, learning, self-
reflection, initialization and utilization of knowl-
edge base (KB) functions. The justification for this
hypothesis is that these basic cognitive functions
could and should support each other to cover the
requirements. (I do not know another way to cover
the requirements.) We are going to test the hypoth-
esis. Up to now, our analysis, experiments [2, 1] and
hand-simulation has shown the feasibility of the ap-
proach. The paper describes the corresponding in-
tegration framework. The framework is presented
on a general and conceptual level. There are many
features characterizing our approach. At the be-
ginning, I want to stress two of them. Two of the
most important features enabling integration are an
object-orientation and self-reflection.

Contemporary learning does not deal with complex
environments, too much. For example, on ECML
97 [7] practically no paper presented learning used
in really complex environment, e.g. in real world.
Current applications of (inductive) learning concen-
trate on the utilization of single techniques [12].
Similarly, no ECML 97 paper presented learning in
a more integrated system. The object-orientation
is very frequent in AT today, but on ECML 97, 1
counted only 16% of learning papers dealing with
this topic. It is not much. However, several systems

are and were more advanced and ambitious [8]. The
most advanced contemporary systems seem to be
PRODIGY [11] and Soar [9]. These systems have
also already showed that the integration of several
cognitive functions is possible, that it is useful and
efficient. They are incrementally extending their
systems. I would characterize the approach of the
corresponding projects as bottom-up.

My proposition is to start from the other end, i.e.
try to apply top-down approach, try thorough de-
sign and only then implement and experiment. I
would characterize this approach as use-case (i-e.
requirement) driven, architecture centric, and it-
erative and incremental. I borrowed this label
from the specification of UML (Unified Modeling
Language) [10] that is a standardized language for
object-oriented analysis and design. The presented
approach could also be characterized as the object-
oriented analysis and design of learning. UML is
used in our approach and in the paper, too.

In this paper, I have no space to follow the de-
tailed systematic PS design. I can refer about some
of its current results, only. The paper has three
main parts. In the first, an overall PS context is
presented. Here, some of currently roughly 90 re-
quirements on PS and learning are mentioned. In
the second part, PS, its functions and relations, i.e.
data model of PS, are described mainly by graphi-
cal means. Some properties of results of integration
are described in the third part. I am going to illus-
trate the internals of PS on its hand-simulated work
in chess environment, denoted EX1. In EX1, PS
starts with about ten concepts, i.e. descriptions of
object classes like Board, Figure, Field, Color, Op-
ponent, and Teacher. Some are very trivial. PS
can learn and use other more sophisticated con-
cepts like fields relations, like Next, Neighboring,
Previous, Row, Column, Diagonal, their Ordering,
Covering, Figure Behavior, Configuration Behav-
ior, Opening, Gambit, Occupied, Freed Field, Ex-
change, Defended Figure. This is our illustration of
the learning efficiency.

2. Problem Solver Context

In this part, I am presenting basic assumptions
about PS context. They have the form of five prin-
ciples. For PS design, they represent requirements
that must be fulfilled.

The first principle: Environment is a network of
many dynamic objects. (Object and network are
primitive concepts of the framework.).

This principle has important consequences: Any
subnetwork of the network can be considered an
object. Objects are composed from objects, again.
There is a tremendous variability and ambiguity in
ways in which Environment and/or object can be
decomposed into lower level objects and in which
set of objects can be composed into higher level ob-
jects. The objects can influence one another. They
have input and output components. A concept of
message can be used, i.e., we can use a mechanisms,
in which a sending object sends a transmitted ob-
ject(s) to a receiving object(s).

EX1: Chess Environment has the following objects:
i) Board with Figures, with its State (Output) spec-
ifying a) PS Color and b) Side (Color) to Move, ¢)
Final Result at the end of a game, d) Beginning of
a game, ii) Teacher, iii) Opponent. The other ob-
jects are composed. They are e.g. Row, Column,
Diagonal, their Ordering, Covering, Figure Behav-
ior, Configuration Behavior, Opening, Gambit, Oc-
cupied, Freed Field, Exchanged, and Defended Fig-
ure.

The second principle: PS is an object of Environ-
ment. PS has a pre-specified goal. PS can control
Environment in accordance with its goal. PS con-
trol is accomplished by means of its (basic) func-
tions and by means of knowledge used by these
functions. Knowledge is stored in knowledge base
(KB). Planning is a PS function, which goal is to
produce plan how to reach a PS goal. Implemen-
tation is a PS function, which goal is to implement
plan by means of outputs applied in Environment
and by using inputs from Environment. Learning is
a PS function, which goal is to produce knowledge.
EX1: PS has input components: 64 compo-
nents indicating field occupation, e.g. Occu-
piedBy(a2,WP), that means field a2 is occupied by
figure white (W) pawn (P), component synchroniz-
ing a game that has 4 sub-components, i.e. PS-
Color, specifying a color PS is playing with, SideTo-
Move specifying which color is to move, FinalResult
specifying a game result and Beginning, specifying
beginning of a game, component specifying Teacher
Evaluation, it can have values ! or ? (good or
bad). PS has three output components: component
MakeMove, specifying that PS is to move, compo-
nent specifying where to move from, e.g. From(a2)
and component specifying where to move to, e.g.
To(a3), that reads move from field a2 to field a3.
The first two principles have important conse-

quences: The whole object-oriented approach can
be applied to PS and its parts, e.g. to KB. PS can
control itself (self-reflexivity). It means, PS func-
tions, e.g. planning, learning, can have recursive
character. PS can have meta-knowledge. Knowl-
edge can play a role of both knowledge and data.
Knowledge has a role of data when it is an object
for recursive PS. Knowledge and PS is more ho-
mogenous, i.e. PS does not need different kinds of
knowledge for external Environment and for itself,
e.g., for PS plans, objects.

The third principle: Knowledge is an approximate
description (of the behavior) of an object.

These principles have again consequences: The
more accurate goal of learning is to improve a pre-
cision of knowledge. Learning is an iterative pro-
cess. It should be possible to describe all kinds of
objects of Environment, as the objects of Environ-
ment are interconnected and the impossibility to
describe one part may cause the impossibility to
describe the whole Environment. Then knowledge
should be general one, e.g., able to describe defi-
nite and/or stochastic, static and/or dynamic, sim-
ple and/or structured objects. Learnt object, which
PS has already knowledge about, can be used as a
tool for PS, e.g., tool for next learning (see later).

The fourth principle: Environment is relatively
very stable, i.e. a very little part of Environment is
changing during PS work.

The fifth principle: PS (learning) should cope with
its complexity.

Some consequences of the previous principles and
corresponding requirements are already oriented on
the solution of complexity. There are additional
possibilities, e.g. induction, focus of attention con-
centrated on changes, focus of attention concen-
trated on identified inconsistencies in descriptions,
imitation, i.e., overtaking knowledge created by
other members of society of similar PS.

3. Problem Solver

In this part, there is a rough proposal how to imple-
ment all identified requirements. It shows relations
among basic KB structures and basic PS functions.
I use graphical language UML (Unified Modeling
Language) in presented Figures, see e.g. Fowler
[3]. The short explanation of used language sym-
bols follows: Named rectangle, with two additional
lines inside, means a class, e.g. Learning. The class
describes its objects. Named man icon means an
active (external) class, e.g. Environment. (Named)
line connecting two classes means an association re-
lation, e.g. Input. It is used for a data flow, event
and other relations. (Named) arrow with a dia-
mond head means that a class is a part of another
class, e.g. IOS is part of Description. (Named)
arrow with a triangle head means a class-subclass

relation; e.g. Learning is a subclass of Basic Func-
tion. For the description, I use the names of classes
corresponding to design entities. The class names
are referenced with capital letters.

The core of Knowledge Base (see Figure 1) is De-

Relation types:
15 A
Agregation
Equivalence
Instantiation
Anchor

Relation type:
154

o.= n.F
Des cription Rule
0.7 4.0 — o
o1

+corresponds

105 Fart | Component

—

Input O utput State Hew Input

Figure 1: Knowledge Model

scription. This is describing a class of objects. This
can be related to other Descriptions via various
kinds of relations, e.g. ISA (generalization), aggre-
gation, association, instantiation, and anchor rela-
tions. Description has Rules. Rule can be general-
ized, i.e. related to other Rule by ISA relation. De-
scription has IOS (Input, Qutput and State) part.
This is divided into four parts: Input, Output,
State and Next Input. Each IOS part has Compo-
nents. For each Component, there is a correspond-
ing Description specifying a range of its values. For
each of these entities, there is a corresponding In-
stantiated entity, when needed. For example, there
can be Instantiated Descriptions corresponding to
Description, Instantiated Components correspond-
ing to Component. Next Input is an alternative to
Output; Output has character of action, Next Input
has character of state. EX1: Input is initial Board
situation, Next Input is a Board situation after the
move.

PS (see Figures 2 and 3) is connected with En-
vironment via its Input and Output (I/O). Out-
puts are produced by Implementation function. Im-

F 5 fnitigalization ec P35 initialization
Initialization Fec P&
_—

Initiator

Identification

7

input

Model

Recent Hiztory

% Flanr
Reazaoning

Enviranm ent
Outaut

Plam

Impleme ntation

Hnowedge

Learning KB

Figure 2: Special Relations of PS Functions

plementation is based on Plan, prepared by Plan-
ning function and on Input provided by Environ-
ment. I/O is stacked in Recent History. All Re-
cent History is input for Identification, Planning
and Learning functions. With this, Identification
produces Model. Planning uses Model to produce
Plan. Learning produces Knowledge. All func-
tions use KB and are controlled by Recursive PS.
I/0, Plan, Model has character of Instantiated De-
scription, Knowledge has a character of Descrip-
tion. These relations are illustrated on figures. Ac-
cording to UML methodology, there are specific and
common views of PS, there. A more detailed func-
tion description follows.

Identification tries to find in KB Description and

Rec P& Recent History KB

Reoc Cortral Hrowledge

Recent Hiztory

Basic Function

T 7S /v W\ v

ldentification Reasoning Implem entation Learning

Figure 3: Common Relations of PS Functions

instantiation of this Description that corresponds
to the I/O behavior of Environment, as gathered in
Recent History. It means it tries to find Model of

Environment. As a part of Model, Problem is iden-
tified, too. Later, we will see that Identification
plays a role of an intelligent PS input. Planning
tries to find Plan that transmits Environment rep-
resented by its Model from current Problem (state)
to the Goal (state). It can create subproblems. Im-
plementation implements prepared Plan. It means,
it produces Outputs, applied in Environment ac-
cording to Inputs from Environment, Plan and Plan
state. Later, we will see that Implementation plays
a role of an intelligent PS output. Knowledge base
functions saves and retrieves knowledge. Learn-
ing creates Description using Recent History as a
source of training set and using identified Problem
as evaluation of this training set. Self-control is
called RecPS, i.e. recursive PS. It works in a similar
way, like PS. It will be implemented as recursive PS.
RecPS Environment is the internals of PS. RecPS
I/Os are PS I/Os and characteristics of PS basic
functions’ Inputs, Outputs and State, e.g. success.
The level of recursion is restricted by necessity to
initialize the work of RecPS. Problem for RecPS is
a not-successful work of some basic function. The
success can be immediate or long-term. For exam-
ple, it can be announced immediately that Learning
was not able to create Description from given train-
ing set. And, it can take some time to recognize
that some Description is wrong. Initialization initi-
ates KB with built-in knowledge. In range of this,
it initializes connection between KB and PS I/O
Components and in similar way, it initializes con-
nection between KB and RecPS I/O Components.
It initializes the work of RecPS, too.

In a simple Environment, to identify (the only one)
object and its state need not be a problem, to plan
solution in this Environment, described as a simple
object, need not be a problem, to learn Descrip-
tion of this object need not be a problem and to
implement Plan need not be a problem. Recursive
control will not be necessary and KB will be triv-
ial. I call the corresponding PS functions simple PS
cognitive functions. However, the real Environment
is different.

EX1: Initial KB (see Figure 4) contains classes
(object descriptions) (Initial) Plan, Environment,
Field, Figure, Color, PS, Opponent. (I am using
Plan here with meaning of Description, not with
meaning of Instantiated Description, as above.)
Some of them are very simple, they have no I0S,
they may (initially) only exist (Figure, Color, PS,
Opponent). From the graph theory viewpoint,
they are leaves of KB graph. These descriptions
have the corresponding I/O components described
above. Input of Plan is Output of Environment
and vice-versa. PS begins practically without any
knowledge. Its moves are selected randomly. There
is not too much chance for successful move.

To implement (full) cognitive functions it is neces-
sary to extend the existing basic functions in such a

o]
I I
1 1

Environment |03

+output
N

+output

Plan Output

Froblam

‘. M ak e owe

OccupiedBy
Final Result

PSColor

Beginning

[Srpanent |
I |

Figure

Figure 4: Initial KB

way to cover the work with both simple and object-
oriented Environment, with both deterministic and
stochastic objects, with both static and dynamic
objects etc. To solve the object-oriented character
of the Environment the concept of using known ob-
ject as a tool will be used: PS will consider the tool
to be a part of its Input or Qutput or both. In this
wav. PS will shift its border with the Environment.

[
i shifted boarder
i
|

| Rest of Environment }—l—x' y' Tool y

X —{]

* |
|
|
Environment i
!
\

real boarder

Figure 5: Shifted Boarder

describe it, little bit more (see Figure 5). Let us
have PS, its Environment, some Tool (as an object
of Environment) and Rest of Environment. PS has
Inputs to perceive Environment, the part of them is
x. PS has Outputs to influence Environment, and
the part of them is y. Together, x and y form the
part of the real border between PS and Environ-
ment, i.e. border between PS and Tool. Let us as-
sume that PS can 1) learn characteristics of Tool in
such a way that it can 2) recognize Tool, if it knows
a sequence of values of x and y, 3) specify a sequence
of values of x’ and y’ (which form the border be-

tween Tool and Rest of Environment, and which are
not accessible to PS). x’ and y’ are called modeled
Inputs and Outputs. The equality of modeled In-
puts and Outputs, both in Environment and in PS,
can be interpreted as a shift of boarder between
Environment and PS. Then PS can control Envi-
ronment in such a way as if it has a shifted boarder
with Environment, i.e. the boarder partially com-
posed from x’ and y’, instead of x and y. From the
assumption that PS can learn and use tools directly
connected to it follows, that it can learn also tools
not directly connected. In addition, it means that
input information for learning, i.e. Outputs and
Inputs, can be iteratively extended by information
about modeled Inputs and Outputs. One of tools
can be a teacher. One of teachers can be a society.
PS can use knowledge created by society of similar
PSs, i.e. learning can have a distributed character.
Some of tools can be tools for communication with
similar PSs. One of tools can be an approach to
creation and/or learning. That tool can be used to
design learning itself.

4. Properties of integrated PS

Here, I am going to mention several examples of PS
work enabled by PS integration.

In a similar way, in which partial Plan descriptions
are created, PS can create Descriptions of behav-
ior of Board and its parts, i.e. partial Descriptions
of Environment. On evaluated examples, teacher
can demonstrate possible behaviors and PS can ob-
serve this behavior and generalize it. Based on In-
put information about Board situation and about
changes of the situation, PS can create Descriptions
in a very similar way as it can create Descriptions
of its Plans: PS is oriented on change. By this way,
it gets information about Field from which a move
was made and to which it was made.

RecPS observes the work of Learning with the goal
to help, e.g. to create a plan how the create De-
scriptions directly. Let us assume, PS can learn a
(partial) Plan WPa2-a3. Moving white pawn from
field a2 to a3. Let us assume that it observes Learn-
ing creating two Descriptions, partial Plans WPa2-
a3 and similar WPb3-b4. RecPS observes parts of
these Descriptions as meta-components indicating
existence of Description, IOS, Input, Output ... By
comparing these two meta-training examples, it can
be found that they differ in values of Fields. De-
scription that is more general can be obtained by
generalizing different parts of Description. Inter-
preted pre-built RecPS plan for Learning instructs
(basic) Learning via its Output meta-components
how to create a new Description, PSPMove. This
is a basis of analogy. Notice that meta-components
have a dynamic character in a sense, that sets of
I/O components are not fixed, not pre-built.

Plan PSPMove specifies a relation between two

M ake bMove Move Fram DoHothdoveTo

-

Flan Environment
Column
P M ave R bt ave KM owe
PSP ove OpponentP Mowe
WP aZ-az P b3-bg BFa7-at

Figure 6: KB Snapshot

objects. Plan OpponentPMove, created in a similar
way, uses (nearly) the same relation. Using above
described analogy, a new Descriptions can be cre-
ated, PMove etc. (see Figure 6).

PS functions are implemented in shifted border con-
text: To identify object from Rest of Environment
it is necessary to identify tool, T and to use T as
a tool to get x’, i.e. use Implementation to apply
y, and Meta-Implementation to derive x’. To learn
object from Rest of Environment it is necessary to
identify tool, T, to use T as a tool to get x’ and ap-
ply y’, i.e. use Meta-Implementation to derive x’,
and Implementation to apply y and indirectly via
tool y’ and learn description on level of x’ and y’.
In accordance with the tool concept, newly created
Description extend the set of components of I/0.
This together with use of KB and recursive control
of Identification and Implementation form a basis
of intelligent I/0.

5. Conclusion

The presented approach showed feasible in a sense
that there has not been found any substantial ob-
stacles impeding the implementation of the frame-
work.

It is necessary to continue in the PS design. Our
proposition is to continue with a detailed analysis
and design of basic functions and KB using con-
temporary software engineering approach, i.e. us-
ing object-oriented CASE (computer aided software
engineering) tool.

In higher cognitive processes, self-reflection plays
an important role. Al is a cognitive process of step-
wise understanding the phenomenon of intelligence.
What is the state of self-reflection in AI? According
to my evaluation - generalization, Al is just on the
edge of its self-reflection. What do I mean by this?
I mean that there are parts of AI community, but
only small parts now that are just beginning to use
specific benefits of AT work, i.e. they are beginning
to interpret the results of AI process to control Al
process itself. I tried to use this knowledge already
here.

6. The references
References

[1] J. Bucha, “Incremental Learning”, Computers
and Artificial Intelligence , vol. 4, no. 4, pp.
325-334, 1985.

[2] J. Bucha, Problem Solving with Knowledge
Represented by Probabilistic Automata Network,
Ph.D. Thesis, Czechoslovakian Academy of Sci-
ence, Prague, p. 110, 1978 (in Czech).

[3] M. Fowler and K. Scott, UML Distilled,
Addison-Wesley, N.Y., USA, 1997.

[4] I. M. Havel, “The Concept of Indirectness in
Artificial Intelligence”, Kybernetika, vol. 8, no.
2, pp. 154-164, 1972.

[5] R. S. Michalski, J. G. Carbonell and T.
M. Mitchell, Machine Learning, An Artifi-
cial Intelligence Approach, Volume II, Morgan
Kaufmann Pub., Los Altos, CA, p.738, 1986.

[6] R. S. Michalski, “Understanding the Nature of
Learning: Issues and Research Directions”, in
[5], pp. 3-25, 1986.

[7] M. wvan Someren and G. Widmer (eds.), Ma-
chine Learning-97, Proceedings of 9th Euro-
pean Conference on Machine Learning, Prague,
Czech Republic, 1997.

[8] “Special Issue on Knowledge Representation
and Reasoning Systems”, SIGART Bulletin,
vol. 2, no. 8, 1991.

[9] The Soar Project at Carnegie Mellon Univer-
sity,
http:/ /www.cs.cmu.edu/afs/cs.cmu.edu/project
/soar/public/ www/home-page.html, 1998.

[10] UML Summary, Rational Software Corpo-

ration, http://www.rational.com/uml/, Septem-
ber 1997.

[11] M. Veloso et al ., “Integrating Planning and
Learning: The PRODIGY Architecture”, J. of
Experimental and Theoretical Artificial Intelli-
gence, vol. 7, no. 1, 1995.

[12] F. Verdenius and M. van Someren, “Applica-
tions of inductive learning techniques: a survey
in the Netherlands”, Al Communications, vol.
10, no. 1, 1997.

