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Abstract

This paper provides a unified background of probabilis-
tic modeling methods which should serve to model-based
fault detection (FD). This background should help in ori-
entation within within the set of the problems to be ad-
dressed when developing a novel method as well as within
a wide set of available methods and in recognition of their
suitability to a particular problem in hands.

1 Introduction

Early recognition/isolation of a faulty behavior of a dy-
namic system is the main task of fault detection (FD). Its
importance, which cannot be exaggerated, stimulated a
lot of engineering/research activities which led to a chain
of general as well as specific results. For reviews see [1, 2].
Availability of plenty of clever methods and their variants
makes the choice of an appropriate method and its tuning
difficult. A lack of a unified formalized framework is par-
tially responsible for it. This paper makes a step in this
respect. The presented, seemingly abstract, formulation
help us to understand the individual elements involved
and put a proper perspective on them.

2 Role of modeling in FD

The final goal considered is model-based fault detection.
Definitely, the aim of modeling has to be considered in
the model building since it determines the desired accu-
racy and complexity of the model. The model inaccuracy
can be and will be represented as the uncertainty of the
model. Traditionally, modeling (in a broad sense) includes
a description of deterministic relationships (modeling in
a narrow sense) as well as disturbance representations,
which are adequate with respect to the modeling goal and
reflect knowledge incompleteness. The key elements of the

model-based fault detection are:

Modeling of relationships of observable data, system state
and fault labels varies according to the degree and way of
knowledge exploitation.

White box models describe the relationships using
available physical knowledge (first engineering principles)
only.

Note that robust models may belong to this class if the
model structure and uncertainty boundaries are set using
a priori physical knowledge only.

Grey box models tend to describe these relationships in
the same manner as white box models do. However, for
various reasons, the description is incomplete and some
parts of the system state remain unknown. The con-
sequences of the incomplete knowledge have to be sup-
pressed by a learning process. Learning can be viewed as
an experience accumulation with the help of the observed
data and other information sources. Temporal changes of
the learned unknowns have to be much slower than the
learning process itself. Otherwise, no success can be ex-
pected. This implies that the unknown quantities may un-
dergo only known changes. Typically, they are supposed
not to change at all. Then they are called parameters.

Black box models face an incomplete knowledge simi-
larly as grey box models do. They are constructed without
relying on physical insight. Instead of it, a sufficiently rich
parameterized class of models is used. It should have “uni-
versal” approximation property, i.e. the ability to describe
a sufficiently wide class of studied relationships.

Description of uncertainties should respect objective &
subjective ingredients. Incomplete knowledge met in
modeling can be labeled as subjective uncertainty as it
can be (potentially) removed by subject’s learning. Ob-
jective uncertainties are also present in the majority of the
real cases. These uncertainties cannot be removed com-
pletely. Their “expected” influence can only be considered
when designing a fault detection rule. In fact, they do not
differ from the subjective uncertainties in an operational
sense. At least during the learning period, they can be
treated identically with subjective uncertainties.



The concept of grey box modeling has emerged in many
sub-fields, often independently. Its handling, however, dif-
fers according to the background of the model builder.
Here, we restrict ourselves to probabilistic paradigm: All
uncertainties are treated as random variables and de-
scribed in probabilistic terms [3]. Prior information on
the physical phenomena behind the data can be taken into
account both by selecting the appropriate parameterized
systems model and by setting a suitable prior distribu-
tion to the parameters. For computational reasons, the
parameterized model is often of black box type and the
prior distribution is used only for enforcing physical con-
straints on the parameters involved [4].

3 Fault detection problem

This section formulates fault detection in a general for-
mal way which allows us to understand the problem bet-
ter. The presentation essentially translates the general
decision-problem under uncertainty [5] to FD.

3.1 Formalization of fault detection

The following general notation is adopted:

Sets are marked by ∗. It means X∗ is a set of all Xs.
Time is denoted by t, τ ∈ t∗ where t∗ = {0, 1, . . . , T} in
the discrete time case and t∗ = [0, T ] in the continuous
time case. The horizon T may be infinite.
Trajectory of a variable xτ on the closed time interval
0 ≤ τ ≤ t is denoted X[t]. The symbol X[t) is used if the
half-closed time interval 0 ≤ τ < t is considered.
Symbol p(•) denotes a probability (density) function
(p(d)f); p(•|•) is a conditional version.
Indicator symbol χY ∗(•) denotes a characteristic func-
tion of the set Y ∗ ⊆ <Y .

The problem formulation uses the following elements:

System S is a part of the real world we are interested
in, here, in order to detect faults. Some data trajecto-
ries D[T ] ∈ D[T ]∗ are observed on it. They are used
for deciding whether the system behavior differs substan-
tially from a normal one. Formally, S : (X[T ], D[T ])∗ →
(X[T ], D[T ])∗ where X[T ] is a trajectory of the (internal)
state xt of the system.

The system is specified by the user who asks for solving
the fault detection/isolation problem. The specifications
of system “boundaries”, of the measured data and their
sampling, influence definitely the final detection problem.
They are assumed to be given for the task addressed.
State classificator C labels errors ft ∈ f∗t ≡
{non-faulty, fault1, . . . , faultmF } to the system state.
Formally, C : X[T ]∗ → F [T ]∗. The trajectory F [T ] con-
sists of faulty-state labels ft.

The error classification is a part of the technical prob-
lem specification provided by the user.
Model M describes formally the system behavior by a

mapping M : (X[T ], D[T ])∗ → (X[T ], D[T ])∗ which re-
lates unknown system state and observed data. It serves
as an auxiliary tool for deciding whether the system is in
a good or faulty state. Its construction is a key discussed
part of the detection design.
Detection rule or detection strategy R[T ] ≡
R(F̂ [T ], D[T ]) is a collection of mappings Rt :

(F̂ [T ], D[T ])∗ → f̂∗t , t ∈ t∗. It generates estimates f̂t
of the fault labels ft without knowing the internal state
of the system and the “true” labels of faults. The set of
possible label estimates equals to the set of faults.
Causal detection rule is a rule fulfilling

f̂t ≡ Rt(F̂ [T ], D[T ]) = Rt(F̂ [t), D[t)), t ∈ t∗ where

F̂ [t) is the restriction of the trajectory F̂ [T ] to time in-
stants before t, {0 ≤ τ < t}. D[t) is defined similarly.

The (usually causal) detection rule is the main outcome
of the fault detection design. Modeling activities discussed
here serve to its construction.
Ranking of detection rules O provides preferences
among different detection rules. Usually, it is specified
by a loss function measuring a distance of the involved
trajectories of the true labels and their estimates:

O : C(X[T ])∗ ⊗R(F̂ [T ], D[T ])∗ → [0,∞].

The interpretation of the loss-function-specified rating is
as follows. For a given system state and observed data
realization (X[T ], D[T ]), a detection rule R acts better
than the detection rule R̃ if

O(C(X[T ]),R(F̂ [T ], D[T ])) ≤ O(C(X[T ]), R̃(
˜̂
F [T ], D[T ]))

The rating reflects user’s wishes and as such it is provided
by him. The designer of the FD strategy has to take care
of the feasibility of the tasks influenced by this option.

3.2 The problem formalization

A systematic design of the best or at least good fault de-
tection strategy is the final technical problem addressed.
The design is to be based on the elements specified above.
They do not allow us to give a consistent formulation yet.
Any understanding of the “best” or a “good” strategy is
inherently based on the distance of a considered strategy
behavior to the optimum one. It cannot, however, be mea-
sured as the system state (and thus correct classification)
is unknown a priori and often even a posteriori.

Two interrelated activities are used to overcome this:

Modeling (in a narrow sense) quantifies the relation-
ships of the observed data to the (unknown) system state
or at least to images of sets corresponding to various fault
types. Ideally, it should replace the missing information
on the trajectory of the system state.
“Expectation”- based rating is used for completion
of the partial rating induced by O. For each trajec-
tory of data and labels generated by a detection rule,



F̂ [T ] ≡ R(F̂ [T ], D[T ]), O(C(X[T ]), F̂ [T ]) is a function of
X[T ] belonging to the set O∗ = {X[T ]∗ → [0,∞]}. It is
completely ordered by an “expectation”

E : O∗ → [0,∞].

It means that the values of the rating O, which are un-
known because of the lack of knowledge about labels
C(X[T ]), are “replaced” by their “expected” values. This
completion of the partial rating is a specialized sub-part of
modeling, the modeling of uncertainties.

These steps cover modeling in a broad sense.
With the given elements and the selected “expectation”

operator, the design of the best detection rule R[o] becomes
the optimization task

R[o] ∈ Arg min
R∈R∗

EO(C(•),R(•, •)).

3.3 Free options

The presented general formulation of fault detection offers
some free options. They can be categorized as:

Model of deterministic relationships describes con-
nections of involved quantities, i.e. oobserved data and
unknown state. It may fall in the white, grey as well
as black box category. The adequate option is dictated
by the available knowledge and by the restrictions on the
complexity of the final model and, consequently, of the
optimal fault detection rule.
Model of uncertainties introduces a specific description
of incomplete knowledge. There is no unique way of “sub-
stituting” expectations instead of unknown quantities, no
unique way of describing uncertainties. A consistent way
should, however, fulfill:

Monotonicity requirement If ∀ X[T ] ∈ X[T ]∗ and given
R, R̃ holds

O(C(X[T ]),R(F̂ [T ], D[T ])) ≤ O(C(X[T ]), R̃( ˆ̃
F [T ], D[T ]))

then E [O(C(•),R(•, •))] ≤ E [O(C(•), R̃(•, •))].

Without meeting this condition, we might take as the op-
timal a detection rule which is uniformly worse than an-
other detection rule. This requirement leaves still a lot of
freedom in choosing the expectation operator. The arbi-
trariness can be decreased by:

Objectivity requirement

The selected description of uncertainties should be
(almost) independent of the rating O, i.e. it should
be applicable to a rich set of ratings.

Unlike the previous one, this requirement is not an abso-
lute necessity. It reflects either a pragmatic viewpoint (a
model should serve for various criteria) or an objectivist’s
one (there are uncertainties inherent to the considered sys-
tem and state of the knowledge about it).

4 Probabilistic modeling

Under general technical conditions, the monotonicity and
objectivity requirement single out so called stochastic rat-
ing [6, 7] induced by the mathematical expectation, i.e. by
a positive linear functional on possible ratings.

E [O(•)] ≡

∫
O(C(X),R(F̂ ,D)) p(X, F̂ ,D) dX dF̂ dD.

The time argument is suppressed in order to see the struc-
ture of operations. The symbol

∫
denotes multivariate

integration over the set (X, F̂ ,D)∗. The weighting factor
p(·) is probability density function (pdf). For simplicity,
the same notation and terms are used even for discrete val-
ued arguments for which the integration reduces to sum-
mation and p(·) is the probability function (pf). Note that
such pdf is justified by the solved decision problem, not
by frequency considerations.

For sake of simplicity, we shall mostly restrict ourselves
to the discrete-time case with at most countable time set
t∗ = {0, 1, . . . , T}. Recall that the values of particular
quantities at particular time-instants τ, t ∈ t∗ are denoted
xτ for X[T ] and similarly for other variables.

Proposition 1 [ Algebra of pdfs ] It holds

Chain rule: p(X[T ], F̂ [T ], D[T ]) =
∏T
t=0

p(dt|X[t], F̂ [t], D[t))p(ft|X[t], F̂ [t), D[t))p(xt|X[t), F̂ [t), D[t))

Marginalization:
p(F̂ [T ], D[T ]) =

∫
p(X[T ], F̂ [T ], D[T ]) dX[T ].

Bayes rule: p(x0|F [0), D[0)) ≡ p(x0), p(xt|F̂ [t], D[t]) ∝

p(dt|xt, F̂ [t], D[t))p(ft|xt, F̂ [t), D[t))p(xt|F̂ [t), D[t))

4.1 Demands implied by design

Let us consider the design of causal detection rules. The
optimization of the expected rating is described by the fol-
lowing proposition whose proof is based on monotonicity
of the expectation and chain rule only:

Proposition 2 [ Dynamic programming ]

Let the indicated operations be well defined. Then, the
strategy R[o][T ] generating the minimizing arguments in

H(t− 1) = min
f̂t∈f̂∗t

E [H(t)|F̂ [t], D[t)] is E − optimal.

H(T ) ≡ O(•) starts the backward recursion.
At the time T , the evaluation of the expectation in the

dynamic programming requires to know the pdf

p(X[T ], dT |F̂ [T ], D[T )) = (1)

= p(X[T ]|F̂ [T ], D[T ])p(dT |F̂ [T ], D[T )).

The right-hand side of (1) is implied by the chain rule.



For any t < T , the evaluation of the expectation in the
dynamic programming requires to know the pdf

p(dt|F̂ [t], D[t)).

This pdf is one-step ahead predictor of data trajectory. It
is object is denoted by p(dt; f̂t) ≡ p(dt|F̂ [t], D[t)) (∝ de-
notes proportionality). This main input of the design is
gained from the modeling (in a broad sense). It is dis-
cussed in next section dealing with p(X[T ]|F̂ [T ], D[T ]).

4.2 Filtering and prediction

The factor p(X[T ]|F̂ [T ], D[T ]) entering the design of the
optimal fault-detection strategy can be interpreted as an
estimate of the unknown-state trajectory X[T ]. This sec-
tion outlines how it can be constructed from simpler el-
ements. Essentially, state filtering and prediction tasks
are solved. The inspection of general (non-causal) fault
detection rules would lead to the task of smoothing, too.

The chain rule implies the following factorization of the
pdf of interest p(X[T ]|F̂ [T ], D[T ]) ∝

∏T
t=1

p(dt|X[t], F̂ [t], D[t))︸ ︷︷ ︸
c)

p(ft|X[t], F̂ [t), D[t))︸ ︷︷ ︸
b)

p(xt|X[t), F̂ [t), D[t))︸ ︷︷ ︸
a)

The factor a) The quantity xt can be called system state
if its value determines fully the corresponding future tra-
jectory. Formally, it means that

p(xt|X[t), F̂ [t), D[t)) = p(xt|xt−1) ≡m(xt;xt−1).

The function m which describes time-evolution of the sys-
tem state can be called state model and has to result from
the system modeling.
The factor b) The pdf p(f̂t|X[t], F̂ [t), D[t)) describes the
probability with which a fault label is selected. It extends
detection rules to randomized detection rules.

As the system states are assumed to be inaccessible to
the considered rules the rules have to fulfill so called nat-
ural conditions of control [3]

p(f̂t|X[t], F̂ [t), D[t)) = p(f̂t|F̂ [t), D[t)) ≡ r(f̂t).

The factor c) It relates the observable data to the un-
known system states. The definition of the state implies
that dt is fully determined by f̂t and xt only.

p(dt|F̂ [t], X[t], D[t)) = p(dt|f̂t, xt) ≡ o(dt; f̂t, xt).

This observation model is the main input to be supplied
from modeling. The given state model m(•), the initial
pdf of the state p(x0) ≡ i(x0) and the observation model
o(•) determine the predictor p(•) (see next Proposition).

The pdfs m, o, i, forming the complete probabilis-
tic model of the system, are the key ingredients
needed for the determination of the optimal (ran-
domized) fault-detection rule r.

Proposition 3 [ Filtering and prediction ] Under the natu-
ral conditions of control, the output predictor is

p(dt; f̂t) =

∫
o(dt; f̂t, xt)s(xt) dxt

where the state predictor is described by s(x0) = i(x0) and

s(xt+1) ≡ p(xt+1|F̂ [t], D[t]) =

=

∫
m(xt+1;xt)o(dt; f̂t, xt)s(xt) dxt

p(dt; f̂t)
.

Note the non-standard dependence of models on the de-
cision made: formally, it is often omitted, however, prac-
tically our decision of fault state leads to related action
(e.g. stopping of the production process).

5 Problems of modeling

This section discusses practical problems of the proba-
bilistic modeling and their possible remedies. The crucial
problem of mismodeling when the system S is not in the
set of models M∗ is discussed in the next section.

5.1 Completeness and complexity

The complete probabilistic model consists of the state
model m(xt;xt−1), of the pdf of the initial state i(x0)

and of the observation model o(dt; f̂t, xt). Its construc-
tion does not belong to the standard engineer’s tool set.

At the same time, the deterministic modeling is a well
developed art which provides equations relating the in-
volved quantities. Typically, the relationships are given
in the form of parameterized differential equations

dxt = F(xt, θ, ut) dt, yt = G(θ, xt)

where F and G are nonlinear vector functions. Data items
dt = (ut, yt) t ∈ t∗ are split into the system inputs ut
(manipulable part of data) and system outputs yt. The
introduced unknown parameters θ can be interpreted as a
time-invariant part of the state.

The random influences (objective uncertainties) in the
state equation can be relatively universally introduced by
interpreting the state equations as stochastic differential
equations. External influences are taken as a part of the
system state. The random sources have to be Wiener-type
process [8] if the requirement of a stationary influence of
the system environment is satisfied and xt is the system
state. The distribution of X[T ] results from the transfor-
mation of this process by the system dynamics.

The choice of the initial pdf i(x0) and of the observa-
tion model o(dt; ft, xt) is less definite. Mostly, a range of
the involved variables can be a priori judged and expec-
tation of some simple functions of the involved quantities
guessed. For instance, the output equation is extended to



the stochastic case by relating the expected output to the
parameters and state

E [yt|θ, xt] = G(θ, xt).

The options available for the completion to full pdfs are:

• Black box type approach selects a rich class of pdfs
parameterized by this expectation and some addi-
tional parameters, say σ. Consequently, the overall
model contains the unknown parameters Θ = (θ, σ).

• The observation o (initial i) pdf is found by optimiz-
ing some additional criterion (like entropy) within the
class restricted by the given form of the expectation.

• Whole set of pdfs is considered in one shot, e.g. if
they are specified by supports only, the problem can
formally be described by fuzzy type evaluations [9].

All these completion procedures can be understood as a sort
of “smooth” interpolation between firm knowledge items.

It is fair to say that the problem of computational com-
plexity drives the modeling art in majority of cases. It
stems from the fact that probability density functions
are infinite-dimensional objects which either have to be
treated analytically or handled approximately in digital
computer. To be more specific let the considered system
be described by the uncontrolled Itô differential equation

dxt = F(xt, t) dt+H(xt, t) dβt

where F , H are sufficiently smooth vector functions and
βt is the vector Wiener process with the unit intensity.

Under mild technical conditions, it can be shown that
this equation generates Markov process (xt is state) with
the transition pdf (state model) x(xt;xτ ), τ < t, solving
the forward Kolmogorov equation

∂x(xt;xτ )

∂t
= L(x(xt;xτ )).

The introduced forward diffusion operator L has the form

L(•) = −∇xt(•F) + 0.5∇2
xt

(•H′H)

where ∇ denotes gradient, ∇2 the Laplace operator and
′ transposition. The same equation is fulfilled by the
marginal pdf p(xt) of the state xt.

This form demonstrates explicitly that even for systems
with a finite dimensional state (lumped parameter case),
the probabilistic description requires to solve partial dif-
ferential equation. The modeling and consequently esti-
mation and fault-detection problems are generally compu-
tationally hard. Possible ways out are discussed below.

5.2 Analytically tractable cases

For the fault detection design, the (state) estimation prob-
lem has to be solved. For specificity, let us think of the

most realistic case of continuous time system and discrete
time measurements (digital processing).

Having a given state estimate p(xt|F̂ [t), D[t)), the mea-
surement updates it at time t according to the Bayes rule

p(xt|F̂ [t], D[t]) ∝ o(dt; f̂t, xt)p(xt|F̂ [t), D[t)).

The state estimate evolves according to the Kolmogorov
equation between measurement moments. Thus, its solu-
tion is a part of the estimation.

It is known that the separation of variables is the only
sufficiently general technique for analytic solution of such
equations. This observation forms the basis of the anal-
ysis made in [10] where the analytically tractable cases
were characterized. Essentially, the analytic solution – if
it exists – belongs to the so called exponential family

p(xt|F̂ [t), D[t)) = exp[s′(xt)h(F̂ [t), D[t))]

where s, h are finite-dimensional vector functions acting
on x∗t and (F̂ [t), D[t))∗.

It restricts very substantially the tractable system mod-
els. The linear-Gaussian model (LG) is a dominant mem-
ber of this set. LG model is described by the linear time-
variant stochastic differential equation

dxt = (Atxt +Btut) dt+Htdβt, yt = Ctxt +Gtβt

where A,B,H,C,G are known functions of time. The
state estimation is described by Kalman filter [8].

Note, that even a partial lack of knowledge of some
entries inAt, Bt,Ht, Ct, Gt makes the analytical treatment
impossible. These entries become the part of the state.
Consequently, products of state entries occur in the model.

6 Local and multiple modeling

Previous section dealt with the standard but unrealistic
assumption that the system S belongs to the assumed
model set M∗. But at least the model approximations,
necessary for reaching the computation feasibility, cause
that this conditions is violated as a rule. It can be shown
[6] that the predictor constructed is in a sense the best
possible within the model class considered. The best, how-
ever, need not be good enough: the error is given by the
relationship between reality an model set. In this respect,
only an improved modelling may help but up the bound-
ary created by the “curse of dimensionality”. The best we
can hope for are locally valid models. They are, however,
insufficient for fault detection as it inspect just the situa-
tions when the modelled quantities go out of their usual
range. It means that a bunch of local models is needed
for fault detection purposes: this adds an explanation to
the fact why multi-model approaches are so popular for
solving fault detection tasks.

Usually, single local (tractable) model is sufficient for
describing single faulty mode. Then, we can use a novel
quasi-Bayes estimator of mixtures [11] for detecting faults



at least for input-output models parameterized by un-
known parameters θ[ft] and “selected by the unknown
time-varying fault label ft occurring with unknown prob-
ability αft . Let us sketch this case. The considered ob-

servation model is
∏
f∈f∗ [o(dt; f̂t, θ

[f ])]δ(f,ft) where Kro-
necker δ is used. Let the prior pdf on unknown Θ =
[θ[1], . . . θ[f []), α1, . . . αmf∗ ] has a product form

s(Θ, ft+1) =
∏

f∈f∗

s(θ[f ])α
κf+δ(ft+1,f)−1
f

with some pdfs p(θ[f ]|F̂ [t + 1), D[t + 1)) = s(θ[f ]) and
positive scalars κf . The Bayes rule gives the posterior pdf

p(Θ, ft+1|F̂ [t+1], D[t+1]) ∝
∏

f∈f∗

s(θ[f ])δ(ft+1,f)α
κf+δ(ft+1,f)−1
f

By Marginalization we get probabilities of particular faults

p(ft+1 = f |F̂ [t+ 1], D[t+ 1]) ∝ p(dt+1; f̂t+1)κf

where p is predictor computed for the fth parameterized
model as given in Proposition 3.

It remains to update the probabilities on individual
models. The exact evaluation destroys the nice product
form. The used quasi-Bayes approach [11] replaces simply
the unobservable δ(ft+1, f) by its conditional expectation,
i.e. by wt+1(f) ≡ p(ft+1 = f |F̂ [t+ 1], D[t+ 1]). Then the
product form is preserved and updating is performed by
the weighted Bayes rule

p(θ[f ]|F̂ [t+1], D[t+1]) ∝ [s(θ[f ])]wt+1(f)p(θ[f ]|F̂ [t+1), D[t+1)).

The “counters” κf are increased by wt+1(f): i.e. all mod-
els are updated with a weight on data that is proportional
to probability that the model should be applied at this
moment. The point estimate of probability of occurrence
of fth error can be shown to be proportional to κf .

The procedure is tractable when analytically tractable
parameterized models are considered as factors.

7 Conclusions

This paper inspects modelling for fault detection purposes.
The problem is studied from the probabilistic perspec-

tive. It underlines less stressed fact that the trajectory of
occurrences of faults has to be modelled.

The probabilistic description is undoubtedly the most
general and universal one. It suffers, however, from com-
putational burden related to it. For this reasons, avail-
able options for reaching acceptable degree of computa-
tional complexity are judged. Use of multiple local models
taken from analytically tractable classes seems to be most
promising. Essentially, single local model is attached to
each among finite amount of faulty-states. Then, the com-
plexity problem become the problem of on-line estimation
of the overall model obtained by a random jumps between

them. It is, however, solvable by a novel quasi-Bayes es-
timation of mixtures.
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[6] L. Berec and M. Kárný, “Identification of reality in
Bayesian context”, in Computer-Intensive Methods in
Control and Signal Processing: Curse of Dimension-
ality, K. Warwick and M. Kárný, Eds. Birkhauser,
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[9] J. Mošna, “The concept of a general estimation the-
ory for system with set membership uncertainty”,
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