
A TOOLBOX FOR MODEL-BASED FAULT DETECTION

AND ISOLATION

L. Tesa�r
�
, L. Berec

�y
, G. Dolanc

+
, G. Szederk�enyi

��
, J. Kadlec

�
,

D. Juri�ci�c
+
, K. Hangos

��
and M. Kinnaert

yy

�Institute of Information Theory and Automation AV CR, P.O.B. 18, 182 08
Prague 8, Czech Republic

yDepartment of Theoretical Biology, Institute of Entomology AV CR, Brani�sovsk�a 31,
370 05 �Cesk�e Bud�ejovice, Czech Republic

+Department of Computer Automation and Control, J. Stefan Institute,
Jamova 39, SI-1001, Ljubljana, Slovenia

��Computer and Automation Research Institute MTA, P.O.B. 63, H-1518
Budapest, Hungary

yyLaboratoire d'Automatique et d'Analyse des Syst�emes, Universit�e Libre de
Bruxelles, CP 165/55, 50 Av. F.D. Roosevelt, B-1050 Brussels, Belgium,

Fax : +322 6502677 and e-mail : kinnaert@labauto.ulb.ac.be

Keywords : Fault detection, Fault isolation,
Computer-aided diagnosis, Software tools.

Abstract

A toolbox for model-based fault detection and isolation
(FDI) has been developed in the MATLAB/SIMULINK
environment. It includes methods relying on analytical or
qualitative models of the supervised process. A demon-
stration of each approach can be performed on a simula-
tion of either a three-tank system, a cocurrent or a coun-
tercurrent heat exchanger. The results are displayed in a
common format, which allows performance comparison. A
user manual including guidelines for tuning method spe-
ci�c parameters is available.

1 Introduction

In the manufacturing and the process industries, there is a
growing awareness of the bene�t brought by on-line mon-
itoring of the state of the installation with fault detection
and isolation systems. The latter allow one to detect in-
cipient faults, and hence to remedy them in due time, so
that breakdown or reduced product quality are avoided.

Fault detection and isolation (FDI) systems di�er from
classical alarm systems by the fact that they give early
warning of faults. Alarm systems essentially process mea-
sured signals separately by comparing them to thresholds
or by computing their trend. FDI systems take into ac-
count the correlation existing between those signals by

using a mathematical model of the supervised process.

Thanks to such systems, a preventive maintenance pol-
icy can be replaced by a predictive (or on-condition) main-
tenance policy. The �rst approach consists of regular in-
spections and maintenance of components during plant
shutdown, according to a periodicity advised by the man-
ufacturers. On the other hand, in a predictive mainte-
nance approach, the maintenance actions are planned on
the basis of information deduced from on-line monitoring
of the physical state of each component and from predic-
tion of the state evolution. Unnecessary replacements and
maintenance operations are thus avoided.

The aim of the toolbox presented in this paper is to pro-
vide a user friendly software to design, test and compare
FDI systems based on various methods. The emphasis
has been to develop MATLAB functions of which the out-
put explicitly indicates whether a fault is present or not.
This means that, in the case of observer based fault detec-
tion for instance, the residual generator is combined with
suitable statistical tests for decision purpose. Indeed, a
residual signal has zero mean in the absence of fault, and
its mean becomes signi�cantly di�erent from zero upon
occurrence of speci�c faults. It is thus necessary to pro-
cess it with an adequate detector in order to decide on the
possible presence of a fault. It should be noticed that not
all the implemented methods can tackle fault isolation, i.e.
the location of the faulty component.

The paper is organized as follows. Section 2 gives an
overview of the methods implemented in the toolbox. The



user interface is described in section 3. Finally the applica-
tion of some of the methods to the three-tank benchmark
is reported in section 4.

2 Fault detection methods

2.1 Methods based on analytical models

These approaches can be separated into two classes:

� parameter identi�cation based methods

� methods based on �xed models (including observer
based methods)

For the sake of conciseness, the name indicated in the
software menu will be used to designate each approach.

Two methods were considered in the �rst class : RLS
and Hinkley. In the �rst one, parallel recursive-least-
squares estimation of a set of N linear regression models is
performed. Each model is estimated with di�erent length
of data history. These lengths are de�ned by a set of expo-
nential weighting factors linearly distributed from 'min to
'max. A time-recursive adaptive computation of the prob-
ability p(h); h = 1; � � � ; N , that the model h is actually
correct is performed using a Bayesian approach. The sys-
tem is classi�ed to be in faulty/transient state in the time
instances where the mean of the probability mass func-
tion p(h) is associated to a forgetting factor below 'thres.
The constant 'thres is speci�ed by the user. The second
method uses a recursive-least-squares algorithm with for-
getting to track a slowly time-varying system. Sudden
jumps in the identi�ed parameters are detected with a
Hinkley test. Upon occurrence of this phenomenon, the
forgetting factor is decreased to allow the estimated pa-
rameters to reach their new value faster. This method
was developed speci�cally for monitoring the heat trans-
fer coe�cient of heat exchangers. Indeed, in an old heat
exchanger, big chunks of settled material can break away
from the surface, causing the heat transfer coe�cient to
rise sharply; hence the need for Hinkley test.

The approaches in the second class can be further sep-
arated into multi-model and single-model methods. The
former typically require a model of the plant in healthy
working mode, and a model for every faulty situation,
while the latter are based on a single-model in which
the faults are represented either by unknown inputs or
unknown parameters. Among the multi-model methods,
three approaches were considered. The �rst relies on in-
novation evaluation by either cumulative sum, �2 or se-
quential probability ratio tests (CUSUM, chi-square and
SPRT). The second is based on Bayesian decision mak-
ing (RMMA). Finally the third is using bootstrap �lters
(BOOT2 and BOOT3). The single-model approaches can
be separated in two categories: a method based on a boot-
strap �lter (BOOT1), and an innovation generator in the

presence of unknown inputs combined with the general-
ized likelihood ratio (GLR) test (GLR-linear and GLR-
bilinear). Each of these methods corresponds to a MAT-
LAB function which is now brie
y presented.

CUSUM, �2 and SPRT [1] assume that the system is
described by linear stochastic models in its healthy work-
ing mode, and in faulty conditions. A Kalman �lter is
designed for each model and the resulting innovations are
processed. More precisely, log-likelihood ratios between
faulty and healthy state are computed from the innova-
tions. The cumulative sum of log-likelihood ratios is used
for decision making. When this cumulative sum is growing
above a given threshold, an alarm is triggered to indicate
a faulty state. The di�erence between CUSUM, �2 and
SPRT lies in the way this cumulative sum is tested.

In RMMA, a set of linear stochastic models is used,
one for the healthy mode, and one per each faulty sit-
uation. Such a model set can also be seen as a linear
time-varying model, the parameter variations correspond-
ing to changes in working mode. At each new acquisition
of measurements, the maximum a posteriori estimate of
the plant working mode is computed recursively using the
innovation of a Kalman �lter designed on the basis of the
linear time-varying model. Such a computation is based
on a Bayesian approach. The problem formulation results
in an exponentially growing tree of possibilities, as the
process can be in any working mode at each time instant.
The less probable branches of the tree are cut in order to
keep a tractable algorithm [2].

The two multi-model bootstrap methods, BOOT2 and
BOOT3 are similar respectively to RMMA and CUSUM.
The main di�erence is that, unlike RMMA and CUSUM,
these methods can work with nonlinear stochastic state
space models. Instead of Kalman �lters, Bayesian boot-
strap �lters are used [3], [4]. The state and output
equations are given in the form of a sampler and the
following two probability density functions: pf (x(t +
1)jx(t); u(t)); pg(y(t)jx(t); u(t)), where x(t); u(t); y(t) de-
note respectively the plant state, known input and mea-
sured output.

The single-model bootstrap method is also based on a
Bayesian bootstrap �lter. It assumes knowledge of the
healthy model only. It can detect any fault that is sta-
tistically visible, but cannot distinguish between di�erent
faults. The decision is based on recognition of highly im-
probable outputs.

The GLR-linear and GLR-bilinear methods are based
on a stochastic state space model of the supervised process
in which the faults appear as step-like inputs of unknown
magnitude. The model might also contain unknown in-
puts, possibly to represent modelling uncertainties. As is
obvious from their name, GLR-linear is based on a linear



model, while GLR-bilinear uses a bilinear model. Both
approaches contain a residual or innovation generator for
a system subject to unknown inputs [5]. The resulting
innovation vector is processed by a generalized likelihood
ratio (GLR) test which provides, upon occurrence of a
fault, an estimate of the fault appearance time and of its
magnitude [6], [1].

2.2 Methods based on qualitative models

Two methods were developed and implemented in this
framework.

The �rst method supports the purely rule-based ap-
proach. It serves to process the diagnostic rules expressed
in the form IF symptom]1 AND symptom]2 AND : : :

AND symptom]n THEN fault]j. Symptoms are assumed
to take qualitative values from the set f�1; 0; 1; ug mean-
ing low, none, high and unimportant. Unimportant symp-
toms are usually addressed to variables insensitive to par-
ticular faults. The misleading diagnostic results which
might be caused by such variables are thus avoided. Qual-
itative values of the symptoms are determined by com-
paring the quantitative values of the corresponding terms
with some thresholds. The reasoning mechanism which
maps symptoms to faults makes use of the Transferable
Belief Model (TBM). This is an approach which derives
from the Dempster-Shafer mathematical theory of evi-
dence [7]. Hence, belief masses are associated to each
fault of the ranked list, and a measure called strength of
con
ict indicates the possible occurrence of unmodelled or
not foreseen faults [8]. The �rst method can be applied as
a fault isolation module in a number of FDI schemes. The
rule base can be derived in many ways, e.g. heuristically
or from signed directed graphs (SDG's, [9]).

The second method originated from an attempt to im-
prove the diagnostic resolution of the Multilevel Flow
Modelling (MFM) approach described in [10], hence its
name \Extmfm". MFM was retained as a modelling
framework, but the diagnostic resolution of the method
was increased by taking account of the qualitative consis-
tency relationships among the measured process variables
expressed in terms of con
uences [11]. Con
uences are
qualitative algebraic equations in which each term takes
values from the set f�1; 0; 1g, the elements meaning re-
spectively negative, zero and positive deviation from the
nominal value. \Extmfm" provides a ranked list of fault
candidates on the basis of a set of measurement samples
and of a qualitative plant model. This is achieved in two
steps. In the �rst step the consistency of each con
uence
is veri�ed. Then, in the second step, the list of consistent
and inconsistent con
uences is matched to possible fault
sources by making use of the incidence matrix and TBM
reasoning. The �nal result is a list of suspected faults with
associated belief masses.

3 Software demonstration

Each of the above mentioned methods has been imple-
mented as a MATLAB function. Typically the arguments
of such functions consist of one or several plant models,
measured data and a set of design parameters. In order
to help the user getting acquainted with the di�erent FDI
algorithms, a software demonstration was developed.

All methods have been con�gured for fault detection
and isolation on a three-tank system. This system is de-
picted in �gure 1. It is a pilot plant for which a complete
nonlinear model has been determined and validated with
experimental data [12]. This model is used to perform a
simulation of the process using the MATLAB/SIMULINK
environment. Both healthy and faulty working modes can
be simulated. Di�erent fault magnitudes and occurrence
times can be considered. Three faulty conditions are se-
lected for the demonstration: a leak in the tank R1, a par-
tial clogging in the pipe with pump P2 and a bias on the
sensor for measurement of the level in tank R3. Besides,
the levels in tanks R1 and R3 are kept at their set point
value by PI controllers. Some of the methods have also
been con�gured for leak and fouling detection in counter-
current or cocurrent heat exchangers. These devices have
been simulated by standard lumped approximations of the
energy balances using the method of lines [13],[14].

Upon starting of the toolbox demonstration, the user
�rst has to choose data from a pull-down menu in order
to test one of the FDI methods. Such data can be ob-
tained by running a simulation of the three-tank system,
the countercurrent or cocurrent heat exchanger. An al-
ternative to the simulation is to use experimental data
recorded on the actual three-tank pilot plant in healthy
and faulty working modes. Once the data are loaded,
they can be processed by one of the FDI methods avail-
able in a second pull-down menu. The results of this op-
eration are provided in a format common to each method
(see �gure 2). The evaluation criteria that are used have
been de�ned in such a way that they can be easily com-
puted. Hence the terms missed alarm, false alarm and
detection delay do not correspond to their classical de�ni-
tions. They re
ect point-wise comparison of the estimated
and the true trajectory of the faults. Both trajectories
are plotted in the bottom left part of the window. A zero
value of the fault signal corresponds to the healthy work-
ing mode, while the values 1, 2 and 3 indicate di�erent
faulty modes (namely the three above mentioned faults in
the case of the three-tank system). The three-dimensional
plot on the right gives the \weight" associated to each
fault as a function of time. Depending on the algorithm,
this weight can be the probability or a belief associated
to each fault, or simply a boolean indicating whether the
algorithm has detected that particular fault. Besides this
standard window, each MATLAB demonstration function
also generates other plots which are used to illustrate the
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principle behind each method, and to help tuning the de-
sign parameters. A few illustrative examples are given in
the next section.

4 Method speci�c displays

Details of the results of the application of two methods,
namely RLS and GLR-linear, are given here.

The RLS method o�ers the advantage of simplicity of
con�guration and use, when a single fault has to be de-
tected. It is primarily an adaptive detector. For con-
�guration one has to determine from the available mea-
sured signals the structure of a regression model of which
the transfer function is signi�cantly modi�ed upon occur-
rence of the fault to be detected. Should several faults
have to be detected and isolated, it is further required
that the model associated to each fault be insensitive to
the other faults. The latter requirement might be di�-
cult to meet and demands insight on the actual system
behaviour upon occurrence of faults. As for all system
identi�cation based methods, persistency of excitation of
the model inputs is crucial. Yet the approach can detect
both abrupt and slow changes in the behaviour of the su-
pervised process. Abrupt changes will make the mean of
p(h) correspond to forgetting factors very close to 'min,
while slower changes are associated to models obtained
with longer data length. A suitable adjustment of 'thres
allows one to distinguish between normal process changes
and faulty working modes. Figure 3 is obtained by pro-
cessing simulation data from the three-tank system. These
data, namely the level in each tank and the 
ow into the
�rst tank, are plotted in the upper left graph. A bias of
water level measurement, a leak in tank R1, and a clog in
the pipe with pump P2 are simulated respectively in the
time intervals [300, 600], [900,1200] and [1500,1800]. The
controller is seen to compensate for the leak fault, as is
clear from the step in the 
ow (the most noisy signal in the

L2 FDI characteristics:

FD L2 false alarms:302

FD L2 missed alarms:33

FI L2 false alarms:

  [126 128 48]

FI L2 missed alarms:

  [2 4 27]

Detection delays(Dd):

  [2 90 4 41 27 38]

(rounded) mean of Dd =34
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Figure 2: Standard display of results

upper left plot). The other three plots show the evolution
of the mean of p(h) for the regression model associated to
each fault. The mean of the probability mass function is
shifted towards low model numbers (corresponding to low
forgetting factors) each time a fault occurs. If its value
falls below the indicated threshold, a fault is signaled.

The GLR-linear approach requires the user to determine
a linear state space model of the supervised process, which
is obviously more demanding than providing the model
structure needed for RLS. Such a model can be obtained
by linearizing a nonlinear model of the plant around a
given set point. It could also be deduced from experimen-
tal data using identi�cation methods, provided the data
are su�ciently rich. Faulty behaviours should be repre-
sented in the model by additive terms. GLR-linear will
only work properly in the working range where the linear
model is valid. The method consists of two steps. First
a residual signal sensitive to one fault and insensitive to
the others is generated. Next this residual is processed by
a GLR test. A fault is declared when this test crosses its
threshold and the estimated fault magnitude is larger than
a given tolerance. For the three-tank application the oper-
ation is repeated three times, once for each fault. Figure 4
illustrates the approach for the residual generator and the
GLR test aimed at detecting and isolating the sensor level
bias. The data are the same as in �gure 3. The upper left
plot in �gure 4 shows the residual signal. It is seen to be
only sensitive to the sensor fault and not to the leak and
clog occurring respectively in the time intervals [900,1200]
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Figure 3: Speci�c plots displayed for RLS method

and [1500,1800]. The FDI system only starts processing
the data after the �rst 100 time instants. Indeed, a large
transient is taking place during this initial time period,
and hence the linear model cannot describe the system
behaviour accurately in this time interval. That is why
the GLR-linear method cannot be properly initialized if
it processes the �rst 100 data samples. The zero value of
each plotted function in �gure 4 during the �rst 100 time
instants is thus arti�cial. The upper right plot depicts the
GLR test function and the decision threshold. The lower
left plot indicates the estimated fault magnitude and the
tolerance. Finally the lower right plot presents the true
and estimated fault signals. In this case the estimated
fault signal indicates that fault 1 (sensor bias) has oc-
curred in the appropriate time period.

Upon occurrence of a fault, the residual is updated by
taking into account the estimated fault magnitude, and
the GLR test is reinitialized. This mechanism is both a
strength and a weakness of the method. Indeed, contrarily
to RLS, one does not only detect a change in the process,
but one can quantify this change and determine possi-
ble fault disappearance. However, the quality of the fault
magnitude estimate depends on the validity of the linear
model in the faulty mode, and on the signal to noise ratio
of the residual. Should this quality be poor, the resid-
ual will not be close to zero mean after its update, and
the GLR test will immediately be triggered again. This
is the reason why GLR-bilinear has been developed [5],
[15]. Working with a bilinear model allows one to widen
the range of validity of the model, and hence the domain
in which the FDI system is working properly [15]. How-
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Figure 4: Speci�c plots displayed for GLR-linear method

ever the modelling task is more involved in the case of a
bilinear model.

5 Conclusion

A software toolbox for fault detection and isolation has
been developed in the MATLAB/SIMULINK environ-
ment. It contains classical methods as well as new original
approaches to the problem. A user manual gives guide-
lines on how to tune the design parameters associated to
each method. It also contains a qualitative comparison of
the di�erent approaches in the form of tables, which can
be used as a �rst screening tool for the determination of
appropriate methods for a given application. Preliminary
results on a quantitative study resulting from the appli-
cation of all algorithms to the three-tank system are also
provided in this manual, but they are quite di�cult to
analyze given that the information needed for con�gura-
tion of each method is di�erent. For instance, CUSUM,
�2 and SPRT are con�gured assuming exact knowledge of
the fault magnitude, which is not realistic. Further work
is thus needed to analyze the robustness of each approach
in the presence of modelling uncertainties. This is a fun-
damental issue in characterizing the e�ectiveness of FDI
systems. We believe that the FDI toolbox o�ers a good
basis to start such a study.
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