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Abstract We consider optimization problems with a disjunctive structure of the
feasible set. Using Guignard-type constraint qualifications for these optimization
problems and exploiting some results for the limiting normal cone by Mordukhovich,
we derive different optimality conditions. Furthermore, we specialize these results to
mathematical programs with equilibrium constraints. In particular, we show that a
new constraint qualification, weaker than any other constraint qualification used in
the literature, is enough in order to show that a local minimum results in a so-called
M-stationary point. Additional assumptions are also discussed which guarantee that
such an M-stationary point is in fact a strongly stationary point.
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constraints - M-stationarity - strong stationarity - Guignard constraint qualification.
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1 Introduction

In the past decade applied mathematicians have been paying increasing interest to
optimization problems where, among the constraints, so-called equilibrium con-
straints occur. This equilibrium is described mostly by a (lower-level) optimization
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problem, a variational inequality or a complementarity problem. Following [13],
all these problems are currently termed mathematical programs with equilibrium
constraints, or MPECs. Most of them can be written down in form of (smooth)
nonlinear programs which, however, do not satisfy most of the standard constraint
qualifications (CQs). This has lead to several weakened stationarity notions that have
been introduced in connection with optimality conditions and numerical approaches.

Among these new stationarity notions an important role is played by a con-
cept associated with the generalized differential calculus of Mordukhovich, cf.
[16, 17, 28, 30]. Following [22], we will call it M-stationarity. The advantage of this
concept consists, above all, in the fact that it requires only very weak constraint
qualifications, cf. [5, 29]. Simultaneously, starting with [13], another, stronger, sta-
tionarity notion has been investigated [18, 24, 27], referred to by the moniker strong
stationarity in [22]. Strong stationarity is the natural candidate for a stationarity
concept for MPECs, because it is equivalent to the standard Karush—-Kuhn-Tucker
(KKT) conditions if the MPEC can be expressed as a standard nonlinear program. As
mentioned above, however, this stationarity concept is too restrictive in the context
of MPECs.

In this paper we will investigate the above mentioned stationarity notions by
means of a general disjunctive program which embeds most MPECs considered in
the literature so far. In particular, we will show that local minimizers are M-stationary
under an appropriate variant of the Guignard CQ [8], known to be the weakest CQ
used in classical nonlinear programming. Moreover, we will derive a new condition
which, together with this variant of Guignard CQ, ensures the strong stationarity of
local minimizers. Our disjunctive structure is not induced by integral variables like,
e.g., in [11]. It is also not related to a family of convex programs like the disjunctive
program investigated in [2].

Finally, these results will then be translated to the language of MPECs where the
constraints are described by a complementarity problem. In particular, we will show
that M- and strong stationarity indeed amount to the well-known conditions common
in the literature of these programs. Additionally, a new constraint qualification is
introduced to such MPECs by transferring the variant of Guignard CQ for our
disjunctive programs to an MPEC setting. This yields the weakest result known to
date, M-stationarity as a first order condition under this very weak CQ.

The organization of the paper is as follows. Section 2 is devoted to some prelimi-
nary results including important definitions and some initial observations. The main
results for the disjunctive program are collected in Section 3. Finally, in Section 4, we
apply the results of Section 3 to a standard MPEC, where the equilibrium is modelled
by a nonlinear complementarity problem. We then close with some final remarks in
Section 5.

Our notation is standard. The n-dimensional Euclidean space is denoted by R”",
its nonnegative and nonpositive orthant by R’} and R, respectively. If unclear from
context, the size of a zero vector is denoted by an appropriate subscript: 0, is the zero
vector in R”. Given a vector x € R”, its components are denoted by x;. Furthermore,
given an index set w C {1, ..., n}, we denote by x,, € Rl the vector consisting of
those components x; corresponding to the indices in w. The same terminology applies
to functions. Given a function F: R" — R, we denote its Jacobian by VF(z) €
R™" If m = 1, the gradient VF(z) € R" is considered a column vector. We call
a set valued function a multifunction. Given such a multifunction ®: R? = RY, its
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graph is defined by gph @ := {(u, v) € RP*¥ | v € ®(u)}. Finally, given an arbitrary
set K € R”, it’s polar is defined by K° := {v € R" | vTw < 0Vw € K}.

2 Preliminaries
For the reader’s convenience we start with the definitions of several basic notions in

variational analysis which will be extensively used throughout the paper.
Let A € R”" be an arbitrary closed set and u € A. The nonempty cone

. A—
T4 (u) := limsup
™\0 T

k

- {deR"|El{uk}cA,EI{fk}\0:uk—>u,u _”—>d}
%

is called the contingent (also Bouligand or tangent) cone to A at u. Consider the
family of closed sets A;,i =1, ..., k,and a point u € ﬂf-‘zl A;. Then it follows directly
from the above definition that

k
Ty @ = T ). (1)
i=1

Furthermore, we use the contingent cone to define the Fréchet normal cone

Na(u) := (Ty(w))° 2)

to A at u. Note that the Fréchet normal cone is sometimes referred to as the regular
normal cone. This is most notably the case in [21]. Again, if we consider the family
of closed sets A;,i=1,...,k,and a point u € ﬂllle Aj;, it follows from Eq. 1 and the
properties of the polar cone that

k k
N a0 = (T 4 ) = (T, @) = () Na,(w) 3)

i=1 i=1

(see [1, Theorem 3.1.9]).
The cornerstone of the generalized differential calculus of Mordukhovich is the
limiting normal cone, also called the Mordukhovich normal cone, defined by

Ny (u) = limsup Ny (i)

,A
u'—u

= { lim w* | 3wF} c A lim o = u, wk e NA(uk)} .
k—o00 k— 00

In contrast to the Fréchet normal cone, Ny(u#) can be nonconvex, but admits a
widely developed calculus, cf. [14, 21]. In this calculus, an important role is played
by stability of multifunctions reflecting the local structure of A. This will become
important when we introduce constraint qualifications further down. Note that if
Ni(u) = NA (u), we say that the set A is (normally) regular at u.
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Consider now the general mathematical program

minimize f(z)

subject to F(z) € A, )

where f: R"—R, F: R”—R™ are continuously differentiable functions and A € R"”
is a nonempty closed (possibly nonconvex) set. It is clear that the constraint F(z) € A
can also incorporate geometric constraints of the form z € ©, where 2 € R” is an
arbitrary closed set.

Utilizing the normal cones introduced above, we are now able to define two
stationarity concepts which will play a central role in this paper.

Definition 1 Let Z be feasible for the program (4).

(a) We say that % is M-stationary if there exists a KKT vector A € Ny (F(2)) such
that

0=V +(VF®) i (5)

(b) We say that % is strongly stationary if (5) is fulfilled with a KKT vector i €
NA(F(2)).

Note that M- and strong stationarity may be expressed as
0e V&) +(VF®) Na(F2)
and
0e Vi) + (VFE) Ny (F®),

respectively.

The name M-stationarity is motivated by the fact that it involves the Mordukh-
ovich normal cone. It was coined in the context of MPECs by Scholtes [23]. Similarly,
we use the name strong stationarity in accordance with [22], where it was also used
in the context of MPECs. In the MPEC setting, strong stationarity is sometimes also
referred to as primal-dual stationarity [18].

As already mentioned, M-stationarity is a weaker stationarity concept than strong
stationarity. However, the limiting normal cone (though nonconvex in general) has
an extensive calculus, whereas the fuzzy calculus, developed for the Fréchet normal
cone does not seem useful for our purposes.

Having introduced stationarity concepts for the program (4), we now turn our
attention to constraint qualifications. To this end, we need the concept of calmness
of multifunctions and the closely related idea of upper Lipschitz continuity.

Definition 2 Let ¢: R? =2 R? be a multifunction with a closed graph and (i, v) €
gph ®. We say that ® is calm at (u, v) provided there exist neighborhoods ¢/ of u, V
of v, and a modulus L > 0 such that

dWwHYNYV C @)+ L|ju —u||B forallu' eld. (6)

If Eq. 6 holds true with V = RY, & is said to be locally upper Lipschitz continuous at
u, cf. [20].
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Note that calmness is sometimes also referred to as pseudo upper Lipschitz
continuity (see, e.g., [30]) and that in [21] both calmness and local upper Lipschitz
continuity are referred to as calmness.

To obtain a constraint qualification for the program (4), we define a multifunction
M: R™ = R" associated with the constraint system of Eq. 4 in the following fashion:

M(p) :=={zeR"|F(z) + p € A}. (7)

We can now use this multifunction to define a constraint qualification under which M-
stationarity is a first order optimality condition. This is made precise in the following
theorem, a proof of which may be found, e.g., in [17, Theorem 2.4].

Theorem 3 Let Z be a local minimizer of the program (4). If the multifunction M (see
Eq.7) is calm at (0, 2), Z is M-stationary.

Note that if we drop the continuous differentiability of f and F in favor of
Lipschitz continuity near Z of these functions, the result of Theorem 3 remains true
if we state M-stationarity (5) in terms of the subgradient of f and the coderivative of
an appropriate function, see [30] for details.

A constraint qualification better known in nonlinear programming is the
Mangasarian—Fromovitz constraint qualification (MFCQ). We define a generaliza-
tion of this CQ.

Definition 4 Let z be feasible for the program (4). We say that the general-
ized Mangasarian—Fromovitz constraint qualification (GMFCQ) holds at Z if the
implication

VFZ)Th=0

=0 )
)€ Nu (F(2))

holds.

If A =R™, the condition (8) reduces to the classical Mangasarian—Fromovitz
constraint qualification, justifying the name GMFCQ.
We now show that M-stationarity is a first order condition under GMFCQ.

Corollary 5 Let z be a local minimizer of the program (4) at which GMFCQ holds.
Then Z is M-stationary.

Proof Due to Theorem 3, it suffices to show that GMFCQ implies the calmness of M
at (0, z). From [15, Corollary 4.4], we readily infer that GMFCQ implies the so-called
Aubin property of M around (0, ). Since this property is stronger than the required
calmness (see, e.g., [21, Definition 9.36]), the result follows. ]

For more information on the Aubin property, we refer the reader to the book by
Rockafellar and Wets [21].

Having discussed both calmness and GMFCQ as constraint qualifications, we
now introduce generalizations of the Abadie and Guignard constraint qualifications
known from standard nonlinear programming.

@ Springer



144 Set-Valued Anal (2007) 15:139-162

Definition 6 Let Z be feasible for the program (4).

(a) We say that the generalized Abadie constraint qualification (GACQ) holds at Z
if

Tr-10)(2) = L(2), )
where
LZ):={heR"|VF@) heTy(FQZ)} (10)

is called the linearized cone at Z.
(b) We say that the generalized (or dual) Guignard constraint qualification
(GGCQ) holds at z if

N () = (L(2)°. (11)

To justify the names of the above constraint qualifications, we apply them to a
standard nonlinear program that takes the form

minimize f(z)
subjectto g(z) <0, h(z) =0, (12)

with continuously differentiable f: R” — R, g: R" — R™ and h: R” — R”. To for-
mulate this program in the fashion of the program (4), we set

F(2) := (g(2), h(2)) and A =R" x 0.
It is then easily verified that
LZ)={deR"| Vgi(2)'d <0, Viel,
Vhi2)Td=0, Vi=1,...,p}

where Z, := {i | g;(2) = 0} is the set of active inequality constraints.

Clearly, in this case GACQ and GGCQ reduce to the standard definitions of
Abadie and Guignard CQ, respectively, as they are most commonly stated, see,
e.g., [1]. However, Guignard [8] originally stated her CQ in the primal form. Her
definition is equivalent to the above dual characterization of Guignard CQ if A
is convex. In the nonconvex case the relationship is not as straightforward. Since
Guignard CQ is commonly defined using the dual formulation (see, e.g., [1, 7, 19, 25]),
however, we feel justified in calling Eq. 11 the generalized Guignard CQ.

Note that since Np-i4)(2) = Tr1(4)(2)° by definition (see Eq. 2), GACQ at 2
obviously implies GGCQ at Z. Furthermore, as proved in [10, Proposition 1],
calmness of M at (0, 2) implies GACQ at 2. This yields the following chain of
implications:

calmness of M at (0, 2) = GACQ at z = GGCQ at 2, (13)

where calmness of M at (0, z) is implied either by GMFCQ at z or by the upper
Lipschitz continuity of M at z. Therefore, due to [20, Proposition 1], M is calm at
(0, 2), whenever F is affine and A is polyhedral.

In general, none of the above implications can be reversed.
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An important question surrounding GACQ and GGCQ is their connection with
optimality conditions. It is known that if A is convex, strong stationarity is a first order
optimality condition under GGCQ and hence under GACQ (see the arguments
following Definition 6). In the following sections we will investigate how this can
be extended to nonconvex A.

Another question is when we might expect strong stationarity to be a first order
optimality condition. Since f is continuously differentiable, we have the well-known
optimality condition

0€ Vf(Z)+ Np-1a(2), (14)

cf., e.g., [21, Theorem 6.12]. Unfortunately, we only have the inclusion
N @) 2 (VEG) Ny (F2) (15)

which turns out to be an equality provided GMFCQ is satisfied at z and A is
(normally) regular at F(Z) (see [21, Theorem 6.14]). However, this condition never
holds for equilibrium constraints. This question is important, because we need
to have equality in the inclusion (15) in order to explicitly determine the cone
N F-1(a)(2), and with it to be able to verify whether strong stationarity holds.

3 The Disjunctive Program

In this section we will investigate GACQ and GGCQ in context with M- and strong
stationarity under the structural assumption that

A=]Jn: (16)

where all A;,i=1,...,k, are convex polyhedra. This assumption is satisfied by a
large class of equilibrium constraints, see Section 4 for an example of this.

The sets A; are called components and with each z € A we associate the index set
I(z) of active components defined by

I(z):={ie{l,...,k} | F(z) € A;}.
For the remainder of this section, we will confine ourselves to the program

minimize f(z) x
subject toF(z) € A = LJ,f1 A, (17)

For such a program, we are indeed able to show that M-stationarity is a necessary
first order condition under GGCQ and hence GACQ.

Theorem 7 Let Z be a local minimizer of the program (17). Then, if GGCQ is satisfied
at zZ, 7 is M-stationary.

Proof As mentioned in the previous section, relation (14) holds true. Thus, due to
GGCAQ at z, one has

0e ViR +(L®) . (18)
@ Springer
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By definition of the polar cone, this means that 2 = 0 is the (unique) solution of the
program

minimize Vie)Th
subjectto VF(2)h € Ta (F(2)). (19)
By virtue of Eq. 1,

Ts(F2) = | T (F2).

icl(z)
Consider now the multifunction M: R” = R”, defined by
M(p):={heR" | VF@) h+peTa(FQ?)}.

Clearly, the constraint in the program (19) can equivalently be written as & € M(0).
Moreover, since the contingent cones Ty, (F (2)), i € [(2), are convex polyhedra,

gph M = { (p.h) e R" xR"|VF() h+pe | ] Ta, (F2))
iel(2)

= U {.m eR"xR"|VF@) h+p e T, (F(2)}
iel(2)

is a union of finitely many convex polyhedra (the second equality is trivially verified).
From [20, Proposition 1] it follows that M is locally upper Lipschitz at 0 and, a
fortiori, calm at (0, Z). Thus, by [9, Theorem 4.1] we have

N0 < (VFZ)" N T (F)) (0). (20)

It remains to invoke [21, Example 6.47] according to which, due to Eq. 1, there exists
a neighborhood O of F(Z) in R™ such that

ANO=[F@Z)+ Ty (F(Z)]NnO.
Consequently, by the definition of the limiting normal cone,

N7, (r1)©) = Npcy i1, () (F(2)) = Na (F(2).- 1)

Finally, remembering that h =0 is a minimizer of the program (19), applying the
optimality condition (14) to the program (19) yields (note that 4 is the variable)
(14) R .
0°€ VI + Ny ©

(20) R AT
C V@ +(VFQ@) Nr,(pe)0)

DV re +(VFE) Na (FG).

This is the condition for M-stationarity (5), completing the proof. O
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Note that the continuous differentiability of f enters crucially in constructing
the program (19). The statement of Theorem 7 cannot be proved using the above
technique if we replace continuously differentiable data with locally Lipschitz data.

We now turn our attention to strong stationarity of Z if it is a minimizer of a
program (17). Let us consider the following academic example, taken from [27].

Example 8 Consider the program

minimize —2z»
21

subject to | z» € A UA,,
71— 22

with A1 = R, x {0} x {0} and A, = {0} x R, x {0}. It is easy to verify that Z =0 is
the unique minimizer of this program and that GMFCQ is satisfied at the origin.
Hence, Z is M-stationary and the vector
0
A= 1| € Ny (22)
0
belongs to the set of KKT vectors. On the other hand,
Na(0) = Ny, (0) N Na,(0) = {r € R? |2 <0, 22 <0}
(see Eq. 3) and we easily verify that there exists no & = (&, A2, x3) € N4 (0) such that

0 10 1 !
e[

3

(IS

This example shows (by virtue of Eq. 13) that none of the CQs mentioned in
Section 2 can ensure strong stationarity of local minima in the considered program.
We therefore need an additional condition which we introduce in the following
definition.

Definition 9 Let Z be feasible for the program (17). We say that the intersection
property holds at Z if

) (VF@)" N, (F&) = (VF@)" () Na (F2)). )
i€l(2) i€l(z)
In order to use the intersection property to acquire a stronger optimality condi-
tion, we first need the following result, concerning the polar of a polyhedral cone, the
proof of which may be found in [1, Theorem 3.2.2].

Lemma 10 Let the cones

Ky:={deR"|ald >0, Vi=1,... k,

bld=0, Vj=1...]) (23)
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and
k !
G = {U eR"|v= Zaiui+2@bj,
i—1 =1

a; <0, Vi=1,...,k} (24)
be given. Then K = K3 and K = KC,.
We are now able to state a stronger optimality condition than in Theorem 7.

Theorem 11 Let Z be a local minimizer of the program (17). If GGCQ and the
intersection property (1) are satisfied at z, then Z is strongly stationary.

Proof As in the proof of Theorem 7 we start with the relation
0e V&) + (L&) (25)

which holds by virtue of the local optimality of Z (see the condition (14)) and GGCQ.
From Eq. 1 we infer that

i€l(2)

(L) = ( U (reR"|VF@) he Ty, (F(%))})

() ((heR"|VFG@) he T (F2))". (26)
i€l(z)

Due to the polyhedrality of T, (F(2)), there exist ¢; € R™, i=1,...,q, for an
appropriate g, such that

T, (F(®)={deR"|a/d>0, Vi=1,...,q}
Hence we can write
{heR" | VF() he T, (F(2)}

={heR"|a] (VF(2)h) >0, Vi=1,....q}

={heR"|(VF® a)"h >0, Vi=1,....q}.
We now apply Lemma 10 to obtain the polar of this set:

(lheR"|VFG) he Ty, (F(2)})

= {v eR"|v= Xq:a,-VF(ﬁ)Ta,-, a < o]

i=1
q
= {v eR"|v= VF(%)TZa,-a,-, o < 0}
i=1
= VF&) Ty, (F2)° = VF&) TNy, (F2),
@ Springer
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where the penultimate equality is verified again by applying Lemma 10. Substituting
this into Eq. 26, we get

(L@) = () (VF®) Na, (F@) = (VF®) () N (F@). (@7

i€l(2) iel(2)
where the last equality is exactly condition (I). Since

Na (F(2) = () Na (F(3))
iel(2)
(see Eq. 3), we obtain the statement of the theorem by substituting Eq. 27 in the
condition (25). ]

We easily observe that it is just condition (I) which is missing in Example 8.
Indeed,

(VEE)" Na, (F) N (VFR) Ny, (FG) =R?,
whereas

A ~ 1 3
(7F@)" (8, (F@) 0 B, (F0) ={ [ 2T 5 || e <o) 22 )

i.e., the KKT vector  from Eq. 22 violates the constraints in Eq. 28.

One readily infers that the surjectivity of V F(Z) insures (I). This is, however, a
substantial strengthening even of GMFCQ. In the following section we will discuss
two conditions that imply the intersection property (I) in the context of MPECs.

4 Application to MPECs

In this section we consider a special case of the program (17), mathematical programs
with equilibrium or complementarity constraints (MPECs for short). They take the
form

minimize f(z)
subject to g(z) <0, A(z) =0,
G(z) 20,H(z) 20,G(2)"H(z) =0, (29)

where f:R" > R, g:R" - R” h:R" - R?, G:R" - R/, and H: R" — R! are
continuously differentiable.

It is possible to write the program (29) in the form of program (17) in several
ways. One way we already discussed in the context of program (12). We will go
into this, more obvious, choice later. First, however, we will introduce a particular
reformulation which will render useful statements when we apply the results from
Section 3.
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Let us therefore consider a local minimizer Z of the program (29). From the
complementarity term in this program it is clear that either G;(Z), or H;(Z), or both
must be zero. To distinguish among these cases, we divide the indices of G and H
into three sets:

a:=a):={i| Gi(2) =0, Hi) > 0}, (30a)
B =B =il Gi(2) =0, Hi(2) =0}, (30b)
y =y@ :={i| Gi(2) > 0, Hi(2) =0}. (30c)

The set B is called the degenerate or, a term which has come into use more recently,
the biactive set. Note that the sets (30) may also be defined for arbitrary feasible
points of the MPEC (29).

Next we define the function F in the program (17) utilizing these sets:

F(2) == (8(2), h(2), G4(2), Ho(2), Gp(2), Hp(2), G, (2), H,(2)). (31)

Finally, we take a pair (8, B2) from P(8), the set of all partitions of beta (P(8) :=
{(B1, B2) | B1 U B2 =B, B1 N B, = @}). We then proceed to define the sets

App =R x 0, x O x R 5 Mg g, x Ag, g x R 50 (32)
with
0 tjep
Ayy). = 33
() R, :jev. (33)

Obviously, the sets Ag, g, are convex polyhedra.
It is now easy to see that the program (29) is locally equivalent to

min f(2)
st. F(z) € A (34)
with
A= U Aﬁlqﬂz' (35)
(B1.B)EP(B)

Note that the definition of this program depends on the solution Z of the program
(29). Therefore, local equivalence refers to the fact that the feasible regions of the
programs (29) and (34) are equal for a whole neighborhood of the local minimizer 2
that was used to define the program (34). Further note that every component Ag, g, is
active at Z. Central to the definition of both GACQ and GGCQ is the linearized cone
L(2) (see Eq. 10). To transfer the conditions for GACQ and GGCQ to the MPEC
setting, we investigate this linearized tangent cone L(Z) in the following lemma.
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Lemma 12 Let Z be a local minimizer of the MPEC (29) and consider the locally
equivalent program (34). Then the linearized cone may be expressed as follows:

L) ={deR"|Vg2)'d<0 Viel,
Vhi$)Td=0 Vi=1,...,p,

VGi()'d=0 Viea,

VHi(3)Td=0 Viey,

VGi(2)Td>0 Viep,

VHi(2)'d>0  Vie§p,
(VGi(»)"d) - (VHi(®)"d) =0, Viep}. (36)
Proof In order to prove this result, we need to determine the contingent cones of the
components Ag, g, at the point F(Z) (it is important to note here that the index sets

a, B, and y depend on the point Z at which we evaluate F, and that some components
of F(Z) are in the interior of Ag, g, ):

Ty (F(D) = (Afg.zg) X 0p X O X R 5 A, g, x Ag, g x R 0y, (37)

where Zg :={i | gi(2) =0} is the set of active inequality constraints and T,:=
{1, ..., m}\Z, is its complement. Note that

OO I P

Since each Ag, g, is the Cartesian product of (normally) regular sets, we can apply [21,
Proposition 6.41] in addition to the relation (1) to obtain an explicit representation
of T (F(2)) and with it the representation (36) of the linearized cone L(Z). O

In the MPEC literature, the linearized cone L(Z) is commonly called the MPEC-
linearized tangent cone and is denoted by Tl\%EC(é) (see, e.g., [3, 4, 6, 29]). In the
following, we will use this terminology to avoid confusion with the linearized tangent
cone 7"" (%), which we acquire if the reformulate the program (29) in the fashion to
be described in the following.

By setting

F(2) == (8(2). h(z), G(z). H(z), G(z)" H(2))
and

AZ:RTXOI,XRQ_XRQ_XOI,
@Springer



152 Set-Valued Anal (2007) 15:139-162

we obviously obtain a trivial equivalent formulation of the MPEC (29) in the form
of program (17). It is then easily verified that the corresponding linearized cone L(Z)
can be expressed as

T"z) ={deR" | Vgi(®)'d<0  Viel,
Vhi(2)'d =0 Vi=1,...,p,
VGi(2)Td=0 Viea,
VHi(2)'d=0 Viey,
VGi(2)Td>0 Vi € B,
VH:(3)Td>0 vie B}. (38)

See [6] for more discussion on the linearized tangent cone 7% (%).

We can now use the different formulations of the MPEC (29) with their different
linearized cones to define variants of the GACQ and GGCQ constraint qualifica-
tions. We call the condition

Tra) @) = Typec(2) (39)
MPEC-ACQ, as has been adapted by the MPEC community, while we call
T (@) =T"(Q2) (40)

simply Abadie CQ (or ACQ), because it is obviously the classical definition of
Abadie CQ.
Similarly, we call the condition

Tp-1a)(2)° = Ty (2)° (41)
MPEC-GCQ, and call
Tra(2)° =T"(2)° (42)

Guignard CQ, it also being the classical definition of Guignard CQ.

We will now proceed to apply Theorem 7 to an MPEC of the form (29). In order
to do this, we exploit the following proposition which we will use to reformulate the
complementarity constraints in the program (29).

Proposition 13 Let the set

C:={(ab)eR|a>0b>0a"b=0] (43)

be given. Then the Fréchet and limiting normal cones at the origin are given by
Ne(©) =R, (44)
Ne(0) =R uc, (45)

respectively.

Proof We can map C isomorphically to the Cartesian product

é::Cl X ... XC|/3‘
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with
Ci:={(ai.b) e R* | a; > 0,b; >0, a;b; = 0}

by simply rearranging the components of C in an appropriate fashion.
It follows directly from Eq. 2 that

N, (0) =R2. (46)
Since the sets C; are obviously closed, we can apply [21, Proposition 6.41] to obtain
N5(0) = Ne, (0) x ... x Ne,, (0).
Together with Eq. 46, this yields that
N5 0) = RZP!

Applying the appropriate inverse mapping to acquire N¢(0) from Né (0), we obtain
Eq. 44.

The proof for the limiting normal cone N¢(0) is identical to the method used
above, except that

Ne,(0) =R* UG,

as can be gleaned from the proof of [16, Lemma 2.2]. Using this, we immediately
acquire Eq. 45 employing the same arguments as above. O

We are now able to state the conditions for M-stationarity for MPECs in a much
more tangible fashion than in the general case (see Eq. 5).

Theorem 14 Let z be a local minimizer of the MPEC (29) at which MPEC-GCQ
holds. Then there exist KKT vectors 28, A", A9, and M such that

m V4 1
0=V @)+ MVa@) + Y MVh(z) =) [AFVGi(3) + 2/ VH,(2)],

i=1 i=1 i=1

kg free, Af =0,

(A >0Ar>0) v afrl=0 viep

13

H H
A, free, Ay =0,

g <0, =0,  g@®NE =0 (47)
In this case we call Z M-stationary.
Proof We apply Theorem 7 to an MPEC using the formulations (34) and (35).
All that remains is to show that M-stationarity takes on the form (47). To this end,

we need to determine N, (F(2)), see Eq. 5. Referring to Egs. 32 and 35, it is easy to
see that A can be written as

A =R"x0, x 0 xR‘f‘ x C XR'I‘ x Oy (48)

where C is defined in Eq. 43.
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Observing that A is the Cartesian product of closed sets (see Eq. 48), we can apply
[21, Proposition 6.41] to obtain

Na (F(%)) :NRZ‘XO,,XOMXRL‘:‘XCXR‘I‘XOM (F(é)) =
=Ngr (§(2) x No, (h(2)) x No,, (Ga(2)) x N (Ha(2)) x
x Ne ((Gp(2), Hp(2))) x Ngin(Gy(2) x Ny, (H,(2)).  (49)

Note that the limiting normal cones to orthants and isolated points are equal to the
standard convex normal cone since these sets are convex (see [21, Theorem 6.9]).
Additionally, we apply Proposition 13 to get Ne((Gg(2), Hg(2))) = Nc((0,0)) =
R yc. Substituting the resulting limiting normal cone N, (F(%Z)) into Eq. S,
we obtain the conditions (47) for M-stationarity. Observe the signs used in the
Lagrangian in the conditions (47). |

Note that even though results similar to Theorem 14 have appeared before (cf. [5,
29]), these results assume that the stronger MPEC-ACQ holds at the local minimizer
z.In fact, it is an easy exercise to find examples where MPEC-GCQ holds but MPEC-
ACAQ is violated.

We now turn our focus to strong stationarity. In the previous section, the intersec-
tion property (I) was needed in addition to GGCQ in order for strong stationarity
to be a necessary first order condition. We now state which form (I) assumes in an
MPEC setting.

To this end, we first introduce an auxiliary program associated with the
MPEC (29) at an arbitrary feasible point z: Given a partition (8;, ;) € P(B), let
NLP., (B, B,) denote the following nonlinear program:

minimize f(z)
subject to g(z) < 0, h(z) =0,
Goup, (2) =0, Hyup, (2) 2 0,
G,us(2) 20, H,up(z) =0. (50)

Note that the program NLP,(8;, 8,) depends on the vector Z.
Furthermore, the linearized tangent cone of the NLP, (81, 8,) (50) is given by

T, 5.5y = {d e R" | Vgi(3)Td <0, Vi € T,
Vhi(2)'d =0, Vi=1,...,p,
VGi(2)Td=0, VieaUB,
VH;(3)"d =0, VieyUB,,
VGi(z)Td >0, Vi € fa,
VH;%)"d >0, Viep ). (51)
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It is easily verified that

li 2 li 2
Titec@® = | Tib.m® (52)
(B1,B2)EP(B)

(compare Eq. 36 with Eq. 51).
We are now able to characterize the intersection property (I) for MPECs.

Lemma 15 The intersection property (I) amounts to
TI\Z;EC(é)O — T[in(2)° (IMPEC)

for programs of type (29).

Proof First, let us consider the Fréchet normal cone to the set Ag, g, at the point
F(Z). This is simply the polar of T, , (F(2)) (see Eq. 37):

Nay s (F2) = Az 7 x R? x R 5 0 x (Ap,.,)° % (Apy,)° x Oy x RV (53)

We now insert this expression on the left hand side of (I) (note that all (8, 8,) € P(B)
are active):

([ (VFGE) ' Na, , (F2)
(B1,2)EP(B)

P
= [ X HVa@+ Y wVh@ + Y wfVGi@)+
1

(B1.B)eP(B) | ieZg i= icaUB

+ ) wIVH@) | pf > 0.uf <O, pf <O
ieyUpB

i ANO 1i ANO
= [ T @° =Tiec?)". (54)
(B1.B2)EP(B)

where the penultimate equality is acquired by applying Lemma 10 to Eq. 51, and the
final equality is verified by taking the polar of Eq. 52 and applying [1, Theorem 3.1.9].
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We now turn our attention to the right hand side of (I), again inserting Eq. 53:

VFEN" () Na,,, (FG2)
(Bi,B2)EP(B)

(VF(2))T{MIM€ N (Afg,IgXRpXRMXO\Q\XA;I,ﬁzX
(B1.B2)EP(B)

X A;z,ﬂl x Opy| xR‘”)}

(VF)HT {,u | n e Afg,Ig x R? x Rl x Oje) X R x R x 0 % R‘V‘}

p
= 1Y Ve + Y WV + Y pfVGE) +

ieTy i=1 icaUp

+ D0 w{IVH@) |, > 0.0 <0 <O
ieyUp

= T (55)
Again, the last equality is verified by applying Lemma 10 to Eq. 38.

Finally, Egs. 54 and 55 represent the left and right hand sides of (I), respectively,
showing that (I) does indeed reduce to (IMPEC) in an MPEC setting. m

We now use this result to apply Theorem 11 to an MPEC.

Theorem 16 Let 7 be a local minimizer of the MPEC (29) at which MPEC-GCQ as
well as (IMPEC) holds. Then there exist KKT vectors A8, A, @, and A such that

m V4 1
0=VfE) + ) MVg@) + > MVhiz) =Y [AEVGi(E) + 1V Hi(2)],

i=1 i=1 i=1

kg free, Ag =0, )»5 =0,
Af free, Af;’ 20, A =o,
g(2) <0, 28>0, gTis =o. (56)

In this case we call Z strongly stationary.

Proof We apply Theorem 11 using the formulation (IMPEC) of the intersection prop-
erty (I). We then proceed identical to the proof of Theorem 14, substituting the
Fréchet normal cone N for the limiting normal cone N where approprlate

The only difference is that we obtain NC((Glg (2), Hg(2))) = Nc 0,0) = R*”! when
we apply Proposition 13.

Substituting the resulting Fréchet normal NA(F(2)) into Eq. 5 yields the condi-
tions (56) for strong stationarity, completing the proof. O
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The result of Theorem 16 may be acquired using a different approach, which
we will investigate with the aid of the following lemma, the proof of which follows
immediately from the definition of Guignard CQ, MPEC-GCQ and the intersection
property (IMPEC),

Lemma 17 Let z be a feasible point of the MPEC (29). Then standard Guignard CQ
holds in Z if and only if MPEC-GCQ and (IMPEC) hold in 2.

Consider the program (12) and the corresponding set A. Clearly, N (1) = Nau)
for any u, and so the two cases from Definition 1 coincide. We then speak only about
the existence of a KKT vector. It is well-known that in such a case the existence of a
KKT vector is a necessary first order optimality condition under standard Guignard
CQ (see, e.g., [1]). Furthermore, it can be easily shown that strong stationarity is
equivalent to the existence of a KKT vector for an MPEC if we consider it as a
nonlinear program of the form (12). A complete proof of this statement may be found
in [3] (one direction was shown earlier in [12]).

Taking into account this result, the statement of Theorem 16 follows immediately
from Lemma 17.

Conversely, consider the following theorem, originally due to [7].

Theorem 18 Let a feasible point Z of the MPEC (29) be given. Further suppose
that for every continuously differentiable objective function f which assumes a local
minimizer at Z under the constraints of the MPEC (29), there exists a KKT vector A
such that the conditions (56) for strong stationarity hold. Then Guignard CQ holds
at z.

Proof Recalling that the classical KKT conditions at z of the MPEC (29) are
equivalent to Z being strongly stationary (see, e.g., [3]), this result immediately
follows from [1, Theorem 6.3.2]. |

Together with the preceeding discussion, it follows that Theorem 18 and Lemma
17 together yield that strong stationarity is, in a sense, equivalent to the assumption
pair MPEC-GCQ and (IMPEC).

This shows (IMPEC) to be the minimum we need to assume in addition to MPEC-
GCQ in order to have strong stationarity be a necessary first order condition.
Unfortunately, (IMPEC) is not easy to verify. We therefore dedicate the remainder
of this section to finding sufficient conditions for (IMPEC),

The spadework for this has been done by Pang and Fukushima [18], albeit with
a slightly different purpose in mind. We will therefore extensively fall back on their
results in the following discussion.

To this end, we must first introduce the concept of nonsingularity, as used in
[18,26].

Definition 19 Given the linear system

Ax < b, Cx =d, (57)
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an inequality a;x < b; is said to be nonsingular if there exists a feasible solution of
the system (57) which satisfies this inequality strictly. Here a; denotes the i-th row of
the matrix A.

We will now apply nonsingularity to the linearized tangent cone 7/ (%) (see
Eq. 38). To this end we introduce two new sets: Let 8¢ denote the subset of
consisting of all indices i € 8 such that the inequality VG;(Z)"d > 0is nonsingular in
the system defining 77" (2). Similarly, we denote by g the nonsingular set pertaining
to the inequalities V H;(2)"d > 0. Note that 8¢ and g depend on Z.

Using the sets ¢ and Y renders the following representation of 7%"(2) (cf.
Eq. 38):

T"(2) ={deR"|Vg(®)'d<0  Viel,
Vhi(3)Td=0 Vi=1,...,p,
VGi(2)Td=0 VieaUp\BY,
VH(2)'d=0 VieyUp\pY,
VGi(2)'d >0 Vi e B,
VH(2)"d >0 vie . (58)

We will now also use the sets 8¢ and ¥ to define the following assumption (A).
Note that (A) is equivalent to [18, (A2)] by Lemma 1 of the same reference.

(A) Given the feasible point 2, there exists a partition (87, gF1) € P(BY n p)
such that

P
DMV + Y MV = Y AFVG2) — Y A'VH(2) =0

i€l i=1 iceaUp ieyUp

AZ =0, ViepfH
= \,H _ vi ¢ BOH
AT =0, Viegy".
We are now able to prove that assumption (A) implies the intersection property

(IMPEC)'

Lemma 20 If a feasible point Z of the MPEC (29) satisfies assumption (A), it also
satisfies the intersection property (IMPEC),

Proof By looking at the representation (38) and (36) of 7%"(2) and T#..(2),
respectively, it follows immediately that

Tl c(2) C T(3),
and hence
Tlin(z)o C TI\%%EC(E)O
Therefore, all that remains to be shown is that

Tipec(2)° € T™(2)°. (59)
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Also recall that
Tipec@* = () Tfp.pm@° (60)
(B1.B)EP(B)

(see Eq. 52). Now to prove the inclusion (59), we take an arbitrary v € 7,/ .(2)°. B
virtue of Eq. 60, we have

v e ,TI\IJifP*(ﬁl,ﬂz)(ﬁ)o V(ﬂ], /32) € P(lg) (61)
Consider the specific partition of 8 given by
pr=p"\BI. Bri=B\AL. (62)

Here (871, BEH) e P(BY N pM) is a partition of B N Y that satisfies assumption
(A). Note that B9\BCH C B,.

lin o lin
Since v € ’];ILP G )(z) aswell asv € %LP Gobd

both of these cones, yielding the existence of vectors u = (u8, ', uC, uty and w =
(w8, w", w, w) with

(2)°, we can apply Lemma 10 to

ui =20 Vi € I, wf >0  Viel,,
u >0  Viep, wl >0 Viep,
ull >0 viep, wh>0 vVviep
such that
p
v=—Y V() = > UV + Y ulVGi(E) + Y ul'VH(2)
ieZ, i=1 icaUp ieyUpB

p
==Y wiVgid) — Y w!Vh(E) + Y wiVGi(2) + Y w/'VH(2). (63)

ieT, i=1 icaUB ieyUp
The choice of the sets 31 and Bz guarantee, in particular, that

u >0 Vie pO\pLHY, w >0 VieplH,

ul >0 viep™\pst, wi >0 Vviepsh. (64)

Taking the difference of the two representations of v in Eq. 63 and applying
assumption (A) yields that

ul —wf =0 vie " and
ul —wfl =0 VviepiH.
Together with the conditions (64), this yields that
>0 VieB® and ul’ >0 Viep'.
Finally, applying Lemma 10 to the representation (58) of 7% (%) yields that v €
T'n(z)°. This concludes the proof. O

The purpose of introducing assumption (A) was to offer a more tangible and more
easily verifiable property than the intersection property (IMPEC). Determining the
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sets B¢ and B!’ requires checking whether an inequality is nonsingular in the sense
of Definition 19. To avoid having to do this, we introduce the following concept,
stronger than assumption (A). This concept was first used in [27, Theorem 3.2], and
got its current name in [29, Definition 2.9].

Definition 21 Let a feasible point Z of the MPEC (29) be given. The partial MPEC-
LICQ is said to hold at 7 if the implication

p
D OMVGE) + Y MV — > AFVGi(E) — Y A'VH(2) =0
1

ieZ, i= icaUp ieyUB

G _
AZ_O
Ay =0

holds.

Note that partial MPEC-LICQ obviously implies assumption (A) since B C 8
and Y C B. This, together with Lemmas 17 and 20, and the discussion following
Lemma 17 gives the following corollary.

Corollary 22 Let Z be a local minimizer of the MPEC (29) satisfying MPEC-GCQ.
Furthermore, let Z satisfy any one of the following conditions

(a) Intersection property (IMPEC);
(b) Assumption (A);
(c) Partial MPEC-LICQ.

Then there exist a KKT vector » = (A%, A", 1C, A7) satisfying the relations (56), i.e.,
Z is strongly stationary.

A few notes on Corollary 22 are in order. If we replace MPEC-GCQ with the
stronger MPEC-ACQ, statements (b) and (c) have already been shown in [3]. If
MPEC-GCQ is replaced by the still stronger assumption that all the associated
nonlinear programs NLP, (8, ;) satisfy the standard Abadie CQ, statement (b) has
been shown in [18]. If MPEC-GCQ is replaced by a piecewise calmness condition,
statement (c) has been shown in [27].

5 Final Remarks

In this paper, we have introduced new constraint qualifications and new stationarity
concepts for a class of difficult optimization problems with disjunctive constraints.
In particular, we have shown that specializations of these concepts result in new
conditions for a local minimizer of an MPEC to be an M-stationary point and, under
additional conditions, to be a strongly stationary point. We believe, however, that
our general results can also be specialized to other optimization problems, and that
they would give new insights into these problems as well. We leave this as a future
research topic.
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