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Abstract— The assumption of constant parameters
of the autoregression model sometimes fails, as the
parameters may vary in time. If the parameters vary
slowly, the problem is often solved using various
forgetting methods like exponential forgetting, linear
forgetting etc. However, most of them work on the
model parameters probability density function with
one common forgetting rate. In the case of different
variability of individual parameters, these methods
might fail. The developed partial forgetting method
gives a new approach, which solves this problem. It
releases individual parameters and allows them to
change with different rates.

I. INTRODUCTION

If a mathematical system model with fixed struc-
ture has to reflect the modeled reality in time
evolution, it is often necessary to leave the assump-
tion of constant model parameters and let them
vary. The tracking of slowly varying parameters
then employs various techniques of forgetting of
the obsolete information. Apart from windowing
estimation from a batch of recent data [1], the
most popular methods are based on exponential
[2][4] or linear [5] forgetting (e.g. the directional
forgetting [6][7]). Some authors propose using the
forgetting-factor least squares algorithm [8] and
its extension – a finite-data-window least squares
algorithm with a forgetting factor [9]. Another
group of methods is based on the Kalman filter
estimating the parameters of a linear model with
normal noise [10][11] and its modifications like
H∞ filter or extended Kalman filters [12][13].

This paper tries to give a contribution to this
field of interest. It introduces a partial forgetting
method, allowing to estimate slowly varying pa-
rameters when they change each with a different
rate.

II. MATHEMATICAL SYSTEM MODEL

Let us consider a discrete stochastic system ob-
served at time instants t = 1, 2, . . . Let this system
have directly manipulated inputs ut affecting the

system outputs yt and introduce the data vector
dt = (ut, yt). Then the time ordered sequence of
these vectors d(t) = (d1, d2, . . . , dt) describes the
development of the system inputs and outputs in
time, i.e. from the beginning time instant 1 until
time t.

The model output yt dependent on the previous
data d(t− 1) and the current input ut defines the
conditional probability density function (pdf)

f(yt|ut, d(t− 1), θ) (1)

where θ ∈ Θ stands for a model parameter (possi-
bly multivariate); Θ is a vector of all parameters,
in the case of model normality including the noise
variance.

The mathematical system model has often the
form of a regression model

yt =
n∑
i=1

aiyt−i +
m∑
j=0

bjut−j + ct + et (2)

where the regression parameters ai, bj , ct ∈ Θ, i =
1, . . . , n; j = 0, . . . ,m. The term et denotes the
white noise, i.e. normally distributed uncorrelated
random variable with zero mean and constant
variance, et ∼ N(0, r). This variable causes the
non-systematic dispersion of the (measured, pre-
dicted. . . ) system output.

III. PARAMETER ESTIMATION

According to the Bayesian statistics the model
parameter θ is a random variable, hence it is
possible to describe it with a probability density
function, conditioned by the data available at the
current time instant t.

f(θ|ut, d(t− 1)) (3)

Under the natural conditions of control, when
the information about the unknown parameter θ is
derived only from past data and the variable ut



cannot bring any additional information about it,
the following simplification comes true [4]

f(θ|ut, d(t− 1)) = f(θ|d(t− 1)) (4)

Then, using the Bayes rule under natural con-
ditions of control, the parameter is estimated as
follows

f(θ|d(t)) ∝ f(yt|ψt, θ)f(θ|d(t− 1)) (5)

or in the batch form

f(θ|d(t)) ∝ f(θ|d(0))
t∏

τ=1

f(yτ |uτ , d(τ − 1), θ)

(6)
where ψt is the regression vector, f(θ|d(0)) is
the initial knowledge about the parameter pdf,
i.e. the probability distribution modelling the prior
uncertainty about the parameter θ for t = 0
before the observed data d(t) are incorporated. The
product is the likelihood function Lt(θ, d(t)) =∏t
τ=1 f(yτ |uτ , d(τ − 1), θ).
The last formula (6) has an important property –

it is recursive. It means, that the parameter values
can be estimated in a loop and the distribution is
determined just by the history of the data.

A. Estimation of slowly varying parameters

The case of slowly varying parameters supposes,
that the ”new” (in time) parameter value θ lays
close to the previous value. This assumption is
crucial to many forgetting methods, as they cannot
catch the rapid changes of parameter value. The
problematics of fast varying parameters is solved
e.g. in [14][15].

There is a couple of ways how to cope with the
slowly varying parameters. One possible approach
is to alter the recursive parameter estimation rela-
tion (6), so that it admits slow permanent changes
of parameter estimates. Such an approach is called
time weighting, time discounting or simply for-
getting. In this case, the parameter estimation (6)
changes to the parameter tracking, which can be
divided into three basic steps:

1) Collecting the newest data dt.
2) Performing the data update of the parameter

probability density function.
3) Performing the time update in the form of

forgetting.
The data update step is equivalent to the rela-

tion (5). It is sometimes written in the following
indexed form

ft−1|t(θ|d(t)) ∝ f(yt|ut, d(t− 1), θ)×
× ft−1|t−1(θ|d(t− 1)) (7)

where the multiindex ·|· describes in order the
‘time index’ of parameters separated with the | sign
from the ‘time index’ of data.

The time update works on the data-updated
parameter pdf. In the case of constant parameters,
it is only formal addition of 1 to the time index
of appropriate variables, hence (t− 1) + 1. In the
case of forgetting, the time update takes various
forms, e.g. in exponential forgetting it is equivalent
to flattening of the parameter pdf [4]

ft|t(θ|d(t)) = [ft−1|t(θ|d(t))]λ, λ ∈ [0, 1] (8)

where the forgetting factor λ is usually not lower
than 0.95, λ ≥ 0.95.

The main problem of most forgetting methods
consists in the fact, that all parameters are being
forgotten with one common rate. For instance,
the equation (8) applies factor λ on the whole
parameter pdf of any dimension. If this pdf is
two-dimensional (θ = (θ1, θ2)) and one parameter
varies quickly than the other, the choice of λ is
complicated. Faster forgetting helps tracking of the
faster changing parameter, while the information
about the other one is being lost. Slower forgetting
maintains information about the slower parameter,
but the information about the other parameter gets
inaccurate (outdated).

IV. PARTIAL FORGETTING

The basic idea of the partial forgetting, allow-
ing individual parameters tracking, is based on
an unknown and random true (multidimensional)
parameter probability density function fT (θ|d(t))
(T denotes ‘true’), ideally describing the actual
distribution of parameters. However it is unknown
to us, but for our purpose it is sufficient to con-
struct only its point estimates, given by hypotheses
about the individual parameters behaviour. Each of
these hypotheses describes which configuration of
parameters vary and with which probability and
induces one parameter pdf – a point estimate of
the true pdf fT (θ|d(t)). These estimates produce
a mixture of pdfs, describing the random true
parameter pdf, and the goal is to find its best
approximation f̃(θ|d(t)). This approximant should
minimize the expectation of distance between the
mixture and itself E

[
d(fT , f̃)

]
→ min. For this

purpose we use the Kullback-Leibler divergence
in the form

D
(
fT (θ)

∣∣∣∣∣∣f̃(θ)
)

=
∫
fT (θ) ln

fT (θ)
f̃(θ)

dθ (9)



A. AR(1) model

For the sake of simplicity let’s consider just
a first order autoregression model AR(1). The
transition to higher orders is due to computational
efficiency still in development stage.

The first order autoregression model is a derivate
of the regression model (2), formally describing
a system with output influenced by the previous
output, an absolute term and the model noise.

yt = θ1 + θ2yt−1 + et (10)

The AR(1) Gaussian model has three parameters
– the regression model parameters θ1, θ2 and the
noise variance r, forming the model parameter
vector Θ

Θ = (θ, r) = (θ1, θ2, r) (11)

B. Distribution

The subject of partial forgetting method is
based on an unknown true multivariate parameter
probability density function fT (θ1, θ2, r|d(t)). The
assumption of model normality leads to Gauss-
inverse-Wishart distribution of the parameters,
fT ∼ GiWΘ(V, ν) given by the following defi-
nition [16].

Definition 1: The probability density function
of the Gauss-inverse-Wishart (GiW) distribution
has the following form

GiWΘ(V, ν) ≡ r−0.5(ν+n+2)

I(V, ν)
×

× exp

{
−1
2r

[
−1
θ′

]′
V

[
−1
θ

]}
(12)

or

GiWΘ(L,D, ν) ≡ r−0.5(ν+n+2)

I(L,D, ν)
×

× exp
{
−1
2r

[
(θ − θ̂)′C−1(θ − θ̂) +DLSR

]}
(13)

where the individual terms have the following
meaning:
ν – degrees of freedom,
ψ – regression vector
θ – vector of regression parameters
n – length of the regression vector,
r – variance of model noise,
Vt – the extended information matrix, i.e.

symmetric square n×n dimensional non-
zero positive definite matrix, which car-
ries the information about the past data.
By its L′DL factorization the terms L

and D are obtained. The D matrix upper-
corner term is the least square reminder
DLSR.

C – the covariance matrix
I – normalization integral
In our particular case of the AR(1) model the

pdf has the form

f(θ1, θ2, r|d(t)) ∝ r−0.5(ν+n+1)×

× exp

−1
2r

−1
θ1

θ2

′ Vt
−1
θ1

θ2

 , t = 1, 2, . . .

(14)

C. Hypotheses

The true parameter pdf fT (θ1, θ2, r|d(t)) is un-
known and random due to the variability of indi-
vidual model parameters. It is possible to consider
a distribution describing the pdf fT , which is
too complicated. For our purpose, it suffices to
take into account the point estimates according to
the individual hypotheses about the parameters’
behaviour. These estimates are given by the ex-
pectations. In the presented case, we obtain the
following four hypotheses:

H1 : E [fT (θ1, θ2, r|d(t))|θ1, θ2, r, d(t), H1] =
= f(θ1, θ2, r|d(t))

H2 : E [fT (θ1, θ2, r|d(t))|θ1, θ2, r, d(t), H3] =
= f(θ2|θ1, r, d(t))fA(θ1, r)

H3 : E [fT (θ1, θ2, r|d(t))|θ1, θ2, r, d(t), H2] =
= f(θ1|θ2, r, d(t))fA(θ2, r)

H4 : E [fT (θ1, θ2, r|d(t))|θ1, θ2, r, d(t), H4] =
= fA(θ1, θ2, r) (15)

where f comes from the filtration (6), while the
alternative pdf fA is any appropriate alternative,
preferably flat pdf, e.g. the initial (prior) one.
The hypotheses employ the alternative pdf if the
parameter varies, otherwise the pdf for particular
parameter (or parameters) stay unchanged.

All four hypothetic densities have the Gauss-
inverse-Wishart distribution. The first hypothesis
uses the density obtained after the data update as
an expectation of the true pdf, while the last uses
a completely alternative density. The hypotheses
H2 and H3 employ the conditional parts from the
data-updated pdf (7), but their ‘marginal’ parts de-
scribing the individual regression parameters (and
noise variance) are changed with any appropriate
alternative. The method for a joint GiW pdf de-
composition to conditional and marginal pdfs can
be found in [16].



Each of these hypotheses has assigned a weight,
characterized as a probability of becoming true
during the time run. Let these weights be λi ∈
[0, 1], i = 1, . . . , 4 and

∑4
i=1 λi = 1. The

true parameter pdf may be expressed as a convex
combination of the hypothetic densities

fT (θ1, θ2, r|d(t)) =

=
4∑
i=1

λiE [fT (θ1, θ2, r)|θ1, θ2, r, d(t), Hi] (16)

Hence, we obtained a mixture of four GiW
density functions, which describes the reality.

D. Mixture approximation
As written above, the mixture (16) obtained

as a convex combination of GiW pdfs should be
approximated by a single pdf f̃ , coming from the
same distribution. This approximation is done by
minimization of the Kullback-Leibler divergence
between it and f̃ .

The Kullback-Leibler divergence of two GiW
distributions is given by the following lemma [16]:

Lemma 1: Let’s have two distributions with
probability density functions f and f̃ . The
Kullback-Leibler divergence of these two functions
has the following form

D
(
f
∣∣∣∣∣∣f̃) = ln

Γ(0.5ν̃)
Γ(0.5ν)

− 0.5 ln |CC̃−1|+

+ 0.5ν̃ ln
DLSR

D̃LSR

+ 0.5(ν − ν̃)ψ0(0.5ν)− 0.5n−

− 0.5ν + 0.5Tr
(
CC̃−1

)
+ 0.5

ν

DLSR
×

×
[(
θ̂ − ˆ̃

θ
)′
C̃−1

(
θ̂ − ˆ̃

θ
)

+ D̃LSR

]
(17)

where ψ0(·) denotes the digamma function, i.e. the
first logarithmic derivative of the gamma function.
The proof is not trivial and can be found in [16].

This lemma, applied directly on fT and un-
known optimal estimate f̃ , helps us to find the
minimally divergent GiW distribution defined by
parameters θ̃, the least-squares reminder D̃LSR,
the covariance matrix C̃ of the least-square esti-
mate of parameters θ̃ and the counter describing
the degrees of freedom ν̃.

The found parameters of the minimizing Gauss-
inverse-Wishart pdf are:
• θ̃ – the regression parameters

ˆ̃
θ =

(
4∑
i=1

λi
νi

DLSR,i

)−1

×

×

(
4∑
i=1

λi
νi

DLSR,i
θ̂i

)
(18)

• D̃LSR – the least-squares reminder

D̃LSR = ν̃ ·

(
4∑
i=1

λi
νi

DLSR,i

)−1

(19)

• C̃ – the covariance matrix

C̃ =
4∑
i=1

λiCi+

+ 2

(∑4
i=1 λi ·

νi

DLSR,i
θ̂i∑4

i=1 λi ·
νi

DLSR,i

)
×

×

(∑4
i=1 λi ·

νi

DLSR,i
θ̂i∑4

i=1 λi ·
νi

DLSR,i

)′
×

×
4∑
i=1

λi
νi

DLSR,i
+

+
4∑
i=1

θ̂iθ̂
′
i · λi

νi
DLSR,i

(20)

• and the counter (degrees of freedom)

ν̃ =
1 +

√
1 + 4

3 (A− ln 2)

2(A− ln 2)
(21)

where

A = ln

(
4∑
i=1

λi
νi

DLSR,i

)
+

+
4∑
i=1

λi lnDLSR,i −
4∑
i=1

λi ψ0(0.5νi)

(22)

The obtained parameters θ̃, D̃LSR, C̃ and ν̃
might be used to construct the minimally divergent
Gauss-inverse-Wishartian probability density func-
tion f̃ (13), approximating the mixture (16). There
arises only minor need of approximation, related
to the digamma function ψ0 in the expression of
the counter ν̃ (21) or (22) respectively. A couple
of approximation methods and algorithms exists,
see e.g. [18][19][20].

E. Tests

The derived method of partial forgetting was
tested on traffic data representing road intensities
measured in Prague, Czech republic. The sampling
period of the measurement was 5 minutes and the
data window contains 600 samples. The course of
the selected intensities is shown in the figure 1.



The traffic system was modelled with a first
order autoregression model AR(1)

yt = θ1 + θ2yt−1 + et (23)

The hypotheses about the parameter distribu-
tion are equivalent to those given in (15) with
probabilities (weights) λ1, λ2, λ3, λ4. As a source
of alternative pdf(s) the prior pdf obtained from
preceding 10 data samples was used. Using the
relations (18) – (22), the Gauss-inverse-Wishart
distribution parameters were calculated and the
best weights searched. The optimization criterion
was the minimization of the prediction error.

Definition 2 (relative prediction error): Let y
be the true random vector and yp the predicted
random vector, both with length n. Let us denote
s the standard deviation of y. We define the
relative prediction error in the form

RPE =
1
s

√∑
(y − yp)2

n
(24)

The best hypotheses’ weights found with a MAT-
LAB software were
• λ1 = 0.99
• λ2 = 0
• λ3 = 0.01
• λ4 = 0

giving the prediction error RPE = 0.0525.
To have a comparison, the same data were

predicted with a first order autoregression model
AR(1) with the most popular forgetting method
– the exponential forgetting (for the time update
formula see equation (8)). In this case, the best
forgetting rate found was λ = 0.985 (RPE =
0.1576).

Figures 2 and 3 show the course of prediction
residuals y − yp for partial and exponential for-
getting method, respectively. The partial forgetting
leads to smaller and less biased residuals than the
exponential forgetting.

Figure 4 shows the course of both regression
parameters θ1, θ2. The real traffic intensity course
could be best predicted with variable absolute term
– parameter θ1.

V. CONCLUSIONS AND FUTURE WORKS

The partial forgetting method is designed for
tracking of slowly varying parameters of linear
stochastic processes when the individual param-
eters vary with different rates. It is based on
hypotheses about the individual parameters vari-
ability, introducing the point estimates of the true
parameter probability density functions. A convex

Fig. 1. Real data course

Fig. 2. Prediction residuals (partial forgetting)

Fig. 3. Prediction residuals (exponential forgetting)



Fig. 4. Time evolution of parameters (partial forgetting)

combination of these pdfs gives a mixture of den-
sities, which is approximated by the minimally di-
vergent (in the Kullback-Leibler divergence sense)
pdf from the same distribution as the true pa-
rameter pdf. The resulting pdf represents the best
available description of the regression parameters
distribution and is convenient e.g. for prediction
purposes.

As the exponential forgetting method is the most
popular approach to slowly varying parameters
(many other methods are derived from it), the
partial forgetting was tested and compared to it.
The test on real data sample has shown that the
developed method gives better results. However,
it has some drawbacks, consisting in computa-
tionally more demanding optimization (search for
rates) and complications with regression models of
higher order. Both these problems are ‘solving in
progress’.
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Nagy from Institute of Information Theory and
Automation, Academy of Sciences of the Czech
Republic, Prague, Czech republic, for their kind
guidance and supervision during the research.

The research was partly supported by the Czech-
Slovenian project KONTAKT MEB090607.

REFERENCES

[1] Middleton, R.H. et al., Desing issues in adaptive control,
IEEE Trans. Automatic Control, vol. 33, pp. 50-58, 1988

[2] Jazwinski, A.H., Stochastic Processes and Filtering The-
ory. Academic Press, New York, 1970.

[3] Guo, L., Ljung, L., Performance Analysis of General
Tracking Algorithms, in Proceedings of the 33rd Confer-
ence on Decision and Control, pp.2851-2855. 1994

[4] Peterka, V., Bayesian Approach to System Identification,
in Trends and Progress in System Identification, P. Ekhoff,
Ed., pp. 239-304. Pergamon Press, Oxford, 1981
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