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Abstract. The paper presents a scheme for estimation of spatio–temporal evolution of a
quantity with unknown model error. Model error is estimated on basis of measured–minus–
observed residuals evaluated upon measured and modeled values. Methods of Bayesian filtering
are applied to the problem. The main contribution of this paper is application of general
marginalized particle filter algorithm to the linear–Gaussian problem with unknown model
error covariance structure. Methodology is demonstrated on the problem of modeling of spatio–
temporal evolution of groundshine–dose from radionuclides deposited on terrain in long–time
horizon.

1 Introduction

The task of estimation of time evolution of a spatially distributed quantity is widely
applied in different branches of “Earth sciences” such as meteorology and oceanography
[12]. During the last years, there have arisen tendencies for application of an advanced
data assimilation algorithms also in the field of radiation protection [16], [19], [20]. It is
related to the renaissance of nuclear energy which can be observed. The application of
advanced statistical methods can increase reliability of consequence predictions of possible
releases from nuclear power–plants. Their reliability is in the field of radiation protection
mission–critical as the problem deals with the population health.

There were developeded several models for modeling of evolution of living environment
contamination for different release scenarios. The only connection with physical reality
are measurements with errors (sparse both in time and in space). In our work, we attempt
to make groundshine–dose model predictions more reliable in a way of adjusting them
towards measurements incoming from terrain. This process is called data assimilation
[12]. Its principle consists in combining of the information provided by the model with the
measured data. Exploiting information on sources of uncertainty, we are able to produce
improved estimate of the true situation on terrain.

If the problem is treated as linear–Gaussian, it can be successfully solved via Kalman
filter (KF) [11]. The unavoidable condition for utilization of Kalman filter is knowledge
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of model error covariance structure but in many cases it is unknown due to the problem
background. In this paper is presented methodology for application of the Kalman filter
to the problems where the model error covariance structure is unknown and has to be
estimated upon actual data before application of the filter. This results in marginalized
particle filter described in [22].

Model error covariance is represented by a covariance matrix. As the total number
of its elements is much higher the number of measurements, we can’t estimate all of
them. Simplified model error covariance structure parametrization based on idealized
assumptions is introduced. For finding the most plausible values of these parameters, the
similar approach as proposed in [3] or [15] based on modeled–minus–observed residuals
is used. Instead of maximum likelihood estimates, we use marginalized particle filter for
estimation of both the model error covariance parameters and groundshine–dose distri-
bution. The marginalized particle filter is a powerful combination of the particle filter
and the Kalman filter, which can be used when the underlying model contains a linear
substructure which is being subject to Gaussian noise.

The performance of this methodology is demonstrated on modeling of groundshine–
dose evolution in long–time horizon of several months [6]. As the problem is complex,
the groudshine–dose evolution model is an idealized approximation of the true physical
process. Calculations are performed on a subset of polar network around the source of
pollution. The model error covariance parametrization proposed here follows the physical
background of the problem.

The outline of this paper is as follows. Section 2 briefly discusses Bayesian filtering.
Kalman filter, particle filter and marginalized particle filter are successively presented
there. In Section 3, the assimilation algorithm is proposed and the problem of model error
covariance estimation is described. Application of the algorithm on modeling of long–
term evolution of groundshine–dose from radionuclide deposition on terrain is presented
in Section 4. Specific model error covariance parametrization suitable for the problem
is developed there. In Section 5, experimental results with simulated measurements are
demonstrated and the conclusion is given.

2 Bayesian filtering

Bayesian approach to filtering is applicable to all linear or nonlinear stochastic systems
[7], [13]. Let the stochastic system be defined by discrete–time state–space transition
equation (1) and observation equation (2)

xt = f(xt−1) + bt (1)

yt = h(xt) + εt (2)

Here, t is time index, xt is unobservable system state vector, bt is the additive dynamic
noise vector. Vector yt is the measurement vector which provides us indirect information
about the system state and εt its noise. Both the densities of noise terms are assumed
to be independent and known. Functions f(·) and h(·) are generally non–linear. State
transition function f(·) propagates the prior state to the current one. Forward observa-
tion operator h(·) transforms vectors from state–space to the measurement space, thus
constitutes relation of the actual measurements to the current state.



The goal is to acquire posterior density p(xt|Y t) where Y t = {y1, . . . ,yt} are available
measurements. In the following text, the state process {xt} is assumed to be Markovian
of the first order. It means that given the present state, future states are independent of
the past states:

p(xt|xt−1,xt−2, . . . ,x0) = p(xt|xt−1) (3)

Realization of the process at time t contains all information about the past, which is
necessary in order to calculate the future behavior of the process.

Bayesian estimation procedure consists of two recursively repeated step. The first
step transits the state estimate to the next time step according to the probability density
function (PDF) p(xt|xt−1). This step is called time update (4). In the second step called
data update (5), the information provided by actual measurements yt is included into
the current estimate given by the PDF p(xt|Y t−1).

p(xt|Y t−1) =

∫
p(xt|xt−1)p(xt−1|Y t−1)dxt−1 (4)

p(xt|Y t) =
p(yt|xt)p(xt|Y t−1)∫

p(yt−1|xt−1)p(xt|Y t−1)dxt
(5)

The state evolution is initialized by a probability density function p(x0|Y −1) = p(x0)
which represents all the prior information on the problem and also our subjective judg-
ments. This density is often called background–field or just the prior.

If both the measurement density p(yt|xt) and the state transition density p(xt|xt−1)
are parametric, the problem can be solved analytically. Provided that the system is
linear–Gaussian, the integrals (4, 5) lead to KF recursion.

2.1 Kalman filter

In the following text N(µ,Q) is assumed to be a Gaussian PDF with mean value µ and a
covariance matrix Q. KF is simple implementation of the Bayesian filter and it provides
the optimal Bayesian solution. Its usage is limited to the case of linear estimation with
the Gaussian noise where

p(xt|xt−1) = N(Mxt−1,Qt) (6)

p(yt|xt) = N(Hxt,Rt) (7)

MatricesM andH are matrices of linear (linearized) operators f(·) and h(·), respectively.
Matrices Q and R are known error covariance matrices of model error and measurement
error, respectively. Under these assumptions (4, 5) lead to KF equations for time update
and data update steps [11]. The equations perform recursive update of the first two
moments of estimated Gaussian distribution p(x|Y ) = N(x̂,P ) – the mean value x̂ and
its covariance matrix P .

2.2 Particle filter

In more general cases where analytical solution of integrals (4, 5) is not known, there are
their numerical approximations based on sequential Monte Carlo methods also known as
particle filters.



Particle filter (PF) is more general implementation of Bayesian filter which can be
used to approximate the posterior density function for the state in non–linear and non–
Gaussian filtering problems [7]. It is based on recursive estimation of the PDF p(xt|Y t)

which is represented as a set of M so called particles x
(i)
t and its associated normalized

weights q̃
(i)
t as {q̃(i)

t ,x
(i)
t }|i=1...M . The posterior PDF p(xt|Y t) can be approximated with

their help as p̂(xt|Y t).

p(xt|Y t) ≈ p̂(xt|Y t) =
M∑
i=1

1

M
δ(xt − x(i)

t ), (8)

where δ(·) is the Dirac δ-function and x
(i)
t are samples from approximated PDF. In (8),

all the weights q̃
(i)
t are equal to 1

M
. Our goal is usually to estimate the mean value of a

function defined on our approximated distribution Ep̂(xt|Y t)[g(xt)]. The approximation
p̂(xt|Y t) satisfies condition

lim
M→+∞

Ep̂(xt|Y t)[g(xt)]
a.s.→ Ep(xt|Y t)[g(xt)], (9)

where
a.s.→ means almost sure convergence and g(xt) is arbitrary function bounded for

support Ω = {xt|p(xt|Y t) > 0}.
In real cases we are not able to sample directly from p(xt|Y t) but we are able to

evaluate it in discrete points (at least up to proportionality). We can draw independent

samples x
(i)
t from a chosen known proposal distribution (importance function) q(xt|Y t)

and use them for approximating of p(xt|Y t). The estimated density p(xt|Y t), its ap-
proximation p̂(xt|Y t) and importance function q(xt|Y t) are related as follows

p(xt|Y t) =
p(xt|Y t)

q(xt|Y t)
q(xt|Y t) ≈

≈ p̂(xt|Y t) =
M∑
i=1

p(x
(i)
t |Y t)

q(x
(i)
t |Y t)

1

M
δ(xt − x(i)

t ), (10)

where 1
M

∑M
i=1 δ(xt − x

(i)
t ) is an approximation of q(xt|Y t) since x

(i)
t are sampled from

this PDF. If we denote q
(i)
t =

p(x
(i)
t |Y t)

q(x
(i)
t |Y t)

1
M

, the estimated PDF can be approximated as

p̂(xt|Y t) =
M∑
i=1

q̃
(i)
t δ(xt − x

(i)
t ), (11)

where q̃
(i)
t = q

(i)
t /
∑M

j=1 q
(j)
t ,

∑M
i q̃

(i)
t = 1, q̃

(i)
t ≥ 0 are normalized weights. This nor-

malization will for finite M introduce a bias in the estimate. However, from the strong
law of large numbers the estimate is asymptotically unbiased. This algorithm is called
sampling–importance–sampling (SIS).

If we choose the posterior PDF from the previous step as proposal distribution in the
current, we can via recursive evaluation of normalized weights perform Bayesian filtering.
In this case will weight update result in

q
(i)
t ∝ q̃

(i)
t−1p(yt|x

(i)
t ) (12)



This algorithm also suffers from degeneracy problem, so we have to implement a resam-
pling algorithm, more in [4]. Resampling should eliminate particles with small weights and
multiply particles with large weights. After resampling all the weights are set to 1

M
. If we

perform resampling in each step, the weights can be computed as q
(i)
t = p(yt|x

(i)
t ). This

modification of SIS algorithm with resampling in each step is also known as sampling–
importance–resampling (SIR).

Disadvantage of this method is that we have to be able to generate random samples
from complicated distributions and this is for high dimensional problems computationally
prohibitive. The computational complexity rapidly increases along with the state–space
dimension.

2.3 Marginalized particle filter

When structure of the model (1, 2) allows analytical marginalization over a subset of
states, we can reduce the computational burden. Let’s consider factorization of the state

vector xt =
[
xlt xnt

]T
where xlt is a subset of analytically tractable states and xnt is

the rest. Provided that the xlt and xnt are conditionally independent, substitution of the
factorization into (8) and application of the chain rule gives

p(xlt,x
n
t |Y t) = p(xlt|xnt ,Y t)p(x

n
t |Y t), (13)

where p(xlt|xnt ,Y t) is analytically tractable and xnt is given by the particle filter. Assum-
ing that xl0 ∼ N(x̂0,P 0) and to be governed by a linear model implies that p(xlt|xnt , Yt) is
conditionally linear–Gaussian and can be computed via Kalman filter [23]. Substitution
of (8) into (13) for xnt leads to

p(xt|Y t) ≈
M∑
i=1

q̃
(i)
t δ(x

n
t − x

n,(i)
t )N(x̂

l,(i)
t ,P

(i)
t ) (14)

The joint PDF is estimated as a mixture of a parametric distribution of Gaussian type
and of a nonparametric one. The estimated PDF is represented by a weighted sum of
Gaussians, where each particle has a Gaussian distribution attached to it. This modifica-
tion of PF is called marginalized particle filter (MPF) and details on its implementation
can be found in [22], [23].

3 Assimilation procedure based on MPF

The unavoidable condition for application of Kalman filter is knowledge of model error
represented in (1) by the noise vetor bt. We assume {bt} to be the white noise process
where bt ∼ N(0,Qt). Matrix Qt is corresponding covariance matrix. The value of Q
should reflect total (unknown) model error, which is in each step contribution to the
forecast error due to differences between the model and the true process. In KF [11],
forecast error covariance matrix P evolves as

P t|t−1 = M t|t−1P t−1|t−1M
T
t|t−1 +Qt, (15)



whereM is matrix of linear (linearized) operator for the state transition from time t−1 to
t. It is obvious that if Q is neglected, the predicted forecast error will be underestimated.
This could cause divergence from the true state (its good estimate) because smaller model
error will handicap the information provided by measurements.

We assume that the Q is unknown and attempt to estimate it in each assimilation
step. As the total number of elements of Q to be estimated is much higher than the
number of measurements, we can’t estimate all of them. Simplified covariance model
based on idealized assumptions has to be introduced.

Schematically, let the model error covariance matrix be approximated as a function
Q(θ) : <dim(θ) → <[dim(x),dim(x)] of a parameter vector θ, where <[m,n] is a space of real
matrices of dimension m× n.

Qt = Qt(θt) (16)

FunctionQ has to be chosen properly in order to produce positive semi–definite symmetric
matrices which can be covariance matrices.

For finding the most plausible values of θ a similar approach as proposed in [3],
[15] based on modeled–minus–observed residuals is used. Instead of maximum likelihood
estimates proposed there we use MPF introduced in Section 2. When the measurements
are available, we can evaluate residual vector vt = yt −Hx̂t having the same dimension
as the measurement vector. Covariance of v derived in [3] has the form

E[vtv
T
t ] = H tP t|t−1H

T
t +Rt = St (17)

We assume vt ∼ N(0,St). If we substitute (15) into (17) for P t|t−1 and use covariance
parametrization (16) of Qt we obtain

St(θ) = H t[M tP t−1|t−1M
T
t +Qt(θ)]H t +Rt (18)

From (15) can be seen that the parametrization of model error covariance leads to
parametrization of forecast error covariance P . The most plausible value of parame-
ters are found in each time step via PF from likelihood p(v

(i)
t |θ

(i)
t ) = N(0,S(θ

(i)
t )) for

random parameter vectors θ
(1)
t , . . . ,θ

(M)
t and corresponding residual vectors v

(i)
t . The

likelihood is the higher, the higher is the probability that difference between modeled
and measured values is zero given covariance (18). These parameters are then used in
(15, 16) for forecast error propagation. Incorporation of this algorithm into KF assimila-
tion scheme results in MPF for estimation of joint PDF p(xt,θt|Y t) which is the mixture
of Gaussian and nonparametric distributions

p(xt,θt|Y t)︸ ︷︷ ︸
MPF

= p(xt|θt,Y t)︸ ︷︷ ︸
KF

p(θt|Y t)︸ ︷︷ ︸
PF

, (19)

where xt is the state vector and θt is the vector of parameters used for estimation of
current model error covariance structure.

4 Assimilation scenario

The algorithm described in Section 3 is demonstrated on assimilation scenario introduced
in this section.



In case of an accidental aerial release of radioactive pollutants into the living environ-
ment, the radioactive plume is depleted during passing over the terrain. This phase is
called the plume phase. Due to the deposition processes the plume leaves a radioactive
trace on the ground.

After the plume phase (when the radioactive cloud exits the area of interest) post–
emergency phase follows. It covers latter stages of accident consequence evolution. Post–
emergency phase may extend over a prolonged period of several weeks or many years
depending on the source of radiation and local conditions. It ends when environmen-
tal radiation levels resume to normal. The main exposure pathways in this phase are
groundshine and ingestion. The deposited material cause irradiation and through the
root system migrates to the edible parts of crops consumed by people and livestock.
Among many radionuclides released during emergency situations we focus only on 137Cs
since it is one of the most important nuclides in long–time perspective. Its half–time of
decay is long (30 years) and also analysis after the Chernobyl accident had shown that
it is one of the most significant nuclides in these types of accidents having detrimental
long–term effect on population health.

Our assimilation scenario covers the post–emergency phase. The source of pollution
is placed into the centre of polar network. We perform our calculations on subset of
this network in successive time steps t ∈ {0, 1, . . . , tMAX}. Groundshine–dose in ordered
set of analyzed spatial points forms our state vector x. We assume x ∼ N(x̂,P ). Let
x̂0 be an initial estimate of groundshine–dose and P 0 its corresponding error covariance
matrix. This background–field is given by probabilistic version of Atmospheric Dispersion
Model (ADM) and constitutes the prior characterization of the problem. It is based on
segmented Gaussian plume model and it is part of the HARP system, more in [16]. We
assume sparse measurements yt of actual gamma dose–rate to be available in each time
step. These measurements are assumed to be conditionally independent with known
error. Assimilation procedure consists of two iteratively repeated steps: In time update
step (4) current state estimate together with its error covariance matrix are propagated
forward in time. The model error is estimated and accounted for. Following data update
step (5) produces so called analysis – adjusts the model prediction to be in accordance
with actual measurements. Along with this two Kalman filter steps is in each time step
estimated model error covariance structure.

4.1 Model error covariance parametrization

The idealized model ofQ chosen for this example has three parameters θ = (α, β, L)| α,β,L≥0

Qt = αt

[
Q

(1)
t + βtQ

(2)
t (Lt)

]
(20)

The model error is formally partitioned into two components representing different sources
of uncertainty. The partitioning has physical background. Matrix Q(1) concerns the
uncertainty of forecast model parameters introduced in [10]. This component is found as
a covariance of sample obtained via Monte–Carlo simulation with many different settings
of model parameters. Component Q(2), scaled with β, is structured, homogeneous and
isotropic error. All other sources of uncertainty are accommodated by introduction of
Q(2). This component is generated by means of second order autoregressive function



ρL(r) of length–scale parameter L and Euclidean distance between two spatial locations
r [5].

ρL(r) =
(

1 +
r

L

)
exp

(
− r
L

)
(21)

The value of length–scale parameter L controls how fast the correlation between two
points decreases with their growing distance. The overall covariance is scaled with α.
This parametrization allows for mutual scaling of unstructured noise component Q(1)

given upon numerical simulation and “additional” structured noise given by Q(2). MPF
algorithm according to [21] modified for this case is listed in the box ALGORITHM.

In Step 1), the particles are initialized with a prior distribution. In Step 2) are
evaluated residuals upon measured and modeled values for purpose of normalized weights
evaluation for different covariance parameter vectors θ

(i)
t . For each particle, the overall

covariance given by (20) has to be evaluated. During Step 3) are particles resampled
– those with small weights are replaced with particles “better” in terms of likelihood.
Sometimes is also in this step introduced an artificial noise to prevent particle degeneracy
problem – to maintain high diversity of particles. In Step 4) is performed data and time
update of KF and time update of PF. If we omit Steps 4a) and 4c) we get the standard
PF. In Step 4b) is set new importance function for the next time step.

5 Experimental Results and Conclusion

For experimental demonstration of the algorithm, an artificial scenario with local rain
during the fifth hour of the plume phase was chosen. The rain increases depletion of the
plume due the wet deposition. The area of interest is subset of polar network comprising
of N = 91 analyzed points.

The measurements were simulated from the measurement equation (2) via linear for-
ward observation operator H where the true initial deposition x0 was assumed to be
two times higher than the prior estimate x̂0 obtained from ADM. The background–field
(initial distribution in time t = 0) was N(x̂0,P 0) where forecast error covariance P 0 was
calculated according to

P 0 = 2P̄ 0 ◦Ω, (22)

where Ω is covariance matrix generated from (21) and the ◦ stands for element–wise
matrix product (Schur product) [15]. This was done because the background–field error
covariance matrix P̄ 0 was modeled as sample covariance from multiple calls of ADM
where the rain intensity was treated as a random variable. This accommodated the
uncertainty in rain intensity into P̄ 0 and provided us a valuable physical knowledge but
this process also introduced strong covariances between states. In (22), these covariances
were reduced, so the background–field became more conservative.

Initialization of particles in the very first step was following: α1 ∼ Gamma(1, 1),
α2 ∼ N(102, 104) and L ∼ N(103, 106). The prediction was evaluated for the first eighth
months of the post–emergency phase. Measurements were assumed to be available each
month. At each time step were simulated 10 irregularly spaced measurements. For
clarity, all the measurements in this example are during computation located in the same
positions, so the observation operator H t = H is constant.



ALGORITHM

1. Initialization:

(a) For i = 1, . . . ,M initialize θ
(i)
0 ∼ p(θ0)

(b) Set {x(i)
0|−1,P

(i)
0|−1} = {x̂0,P 0}

2. Normalized weights evaluation:
For i = 1, . . . ,M evaluate:

(a) Residuals v
(i)
t = yt −H tx̂

(i)
t

(b) Model error covariance matrix parametrization:

Q
(i)
t = Q

(
θ

(i)
t = {α(i)

t , β
(i)
t , L

(i)
t }
)

i. Evaluation ofQ
(i),(1)
t via M-C simulation with multiple groudnshine model

parameters setting

ii. Evaluation of Q
(i),(2)
t (L

(i)
t ) via (21)

iii. Evaluation of overall covariance via (20)

Q
(i)
t = α

(i)
t

[
Q

(i),(1)
t + β

(i)
t Q

(i),(2)
t (L

(i)
t )
]

(c) Residual covariance matrix S(θ
(i)
t ) via (18)

(d) Importance weights q
(i)
t = N(0,S(θ

(i)
t ))

(e) Normalize weights q̃
(i)
t =

q
(i)
t∑M

j=1 q
(j)
t

3. PF measurement update – resampling:
Resample M particles with replacement

Pr(θ
(i)
t|t = θ

(j)
t|t−1) = q̃

(j)
t

4. KF data/time update and PF time update

(a) KF data update:

x̂
(i)
t|t = x̂

(i)
t|t−1 +K

(i)
t [yt −H tx̂

(i)
t|t−1]

K
(i)
t = P

(i)
t|t−1H

T (H tP
(i)
t|t−1H

T
t +Rt)

−1

P
(i)
t|t = (I −K(i)

t H t)P
(i)
t|t−1

(b) PF time update – prediction of new particles:

θ
(i)
t+1 ∼ p(θ

(i)
t+1|θ

(i)
t )

(c) KF time update:

x̂
(i)
t+1|t = Mx̂

(i)
t|t

P
(i)
t+1|t = MP

(i)
t|tM

T +Qt+1(θ
(i)
t+1)

5. Iterate from step 2) with t := t+ 1

Multinomial resampling described in [4] was used as a resampling algorithm in MPF.
Measurement error was set according to expert judgment based on the fact that the
small measured values have higher relative error than high values due to the measure-



ment methodology. In each step, first two moments of groundshine–dose distribution
approximating the truth were predicted and updated.

The results are in compliance with our expectations for this special scenario. Model
predictions were successfully adjusted in accordance with the measurements correcting
the speed of dose mitigation. Even thought it seems that the methodology has a potential
for improving of reliability of predictions in the late phase, the algorithm still has to be
improved in terms of robustness and carefully tested.
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