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Use of Kullback–Leibler divergence for forgetting
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Adaptive Systems Department, Institute of Information Theory and Automation, Academy of Sciences
of the Czech Republic, P.O. Box 18, 182 08 Prague, Czech Republic

SUMMARY

Non-symmetric Kullback–Leibler divergence (KLD) measures proximity of probability density functions
(pdfs). Bernardo (Ann. Stat. 1979; 7(3):686–690) had shown its unique role in approximation of pdfs. The
order of the KLD arguments is also implied by his methodological result. Functional approximation of
estimation and stabilized forgetting, serving for tracking of slowly varying parameters, use the reversed
order. This choice has the pragmatic motivation: recursive estimator often approximates the parametric
model by a member of exponential family (EF) as it maps prior pdfs from the set of conjugate pdfs (CEF)
back to the CEF. Approximations based on the KLD with the reversed order of arguments preserves this
property. In the paper, the approximation performed within the CEF but with the proper order of arguments
of the KLD is advocated. It is applied to the parameter tracking and performance improvements are
demonstrated. This practical result is of importance for adaptive systems and opens a way for improving
the functional approximation. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recursive estimation of finitely parameterized models of random input–output relationships is
the core of adaptive systems. Bayesian methodology [1, 2] solves it consistently. Essentially, the
exponential family (EF) [3] of parametric models is the only class of dynamic models in which the
exact Bayesian estimation can be used. This stimulates the search for estimators approximating
the recursively infeasible posterior probability density function (pdf).
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Within the Bayesian paradigm, the approximating pdf is to be the minimizer of a suitable
expected loss. Under mild conditions, Bernardo [4] had shown that the expected loss expressing
proximity of a pair of pdfs is to be the Kullback–Leibler divergence (KLD) [5]. He even recom-
mended the order of arguments of the non-symmetric KLD. Mostly, the unrestricted optimization
of the KLD provides the pdf out of the desirable class CEF of the pdfs conjugated to members
of the EF [6]. This property makes developers of approximating algorithms to use the alternative
(‘incorrect’) order of the KLD arguments. Parameter tracking via the stabilized forgetting [7] and
the functional approximation of estimation [8, 9] are prominent examples in this respect. This
stimulates a natural question: can we gain practically by minimizing the proper KLD within the
CEF? The positive answer given in the paper improves parameter tracking and explains observed
improvements of the functional approximation [10, 11].

Section 2 is a preparatory one. Section 3 demonstrates the conceptual preference of the KLD with
the ‘correct’ order of arguments. Section 4 specializes this result to forgetting design elaborated for
normal autoregressive model with exogenous variables (ARX). Section 5 converts this parameter
tracking into a widely applicable algorithm by recommending a meaningful choice of the alternative
pdf determining it. Section 6 illustrates the properties of this tracking. Section 7 provides concluding
remarks.

2. PRELIMINARIES

2.1. Notation

Throughout, ≡ is equality by definition; X∗ denotes a set of X -values; �X means the length of
vector X ; f (·|·) denotes pdf, the pdfs are distinguished by names of their arguments and by Greek
subscripts �,�, �; t labels discrete-time moments, t ∈ t∗≡{1, . . .,T }, T�∞; dt = (yt ,ut ) is the
data record at time t consisting of an observed system output yt and of an optional system input
ut , possibly void; � is the common symbol for unknown parameters; dk:t denotes the sequence
(dk, . . .,dt ); dt ≡d1:t ; Xt;i is i th entry of the array Xt . No formal distinction is made between a
random variable, its realization and the pdf argument. All integrals are multivariate and definite
over the argument domain.

2.2. Bayesian estimation in EF

Generally, the Bayesian paradigm operates on the joint pdf of all considered uncertain variables.
It composes this pdf from its conditional factors and derives its particular marginal or conditional
versions. It inserts any available realization in them.

In parameter estimation, a sequence dT of �d-dimensional data records dt and an unknown,
finite-dimensional parameter � are relevant variables. Their joint pdf is

joint pdf︷ ︸︸ ︷
f (dT ,�)=

prior pdf︷ ︸︸ ︷
f (�) ×

time︷︸︸︷
T∏
t=1

entry︷︸︸︷
�d∏
i=1

i th parametric model︷ ︸︸ ︷
f (dt;i |dt;i+1, . . .,dt;�d ,dt−1,�i ), �≡{�i }�di=1︸ ︷︷ ︸

ati

(1)

The i th parametric model in (1) is the central modelling element. It predicts i th entry dt;i of the
data record dt at time t , using the vector at;i (containing the entries dt;i+1, . . .,dt;�d of dt ), the

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2008)
DOI: 10.1002/acs



USE OF KULLBACK–LEIBLER DIVERGENCE FOR FORGETTING

past data records dt−1= (d1, . . .,dt−1) and a finite-dimensional parameter �i . The factorization
of the joint pdf even over entries of dt shows that parametric models of scalar entries of d can be
considered only. If, moreover, the finite-dimensional parameters �i ,� j are a priori independent
they stay independent even a posteriori. It is obvious from the above product form and from the
Bayes rule [2]. We restrict ourselves to this usual case. Consequently, we can model and estimate
respective entries of dt individually and independently. Taking this into account, we consider a
fixed i and drop this subscript hereafter.

Within the control context, the extent of the observed data records is permanently increasing.
This delimits members of the EF as the predominant models.

Definition 1 (EF and CEF)
The parametric model belongs to the dynamic EF iff

f (dt |at ,dt−1,�)= f (dt |�t ,�)=exp〈B(�t ),C(�)〉 (2)

where�t ≡[dt ,�′
t ]′ is the data vector, given by a finite-dimensional regression vector�t , depending

on at and dt−1; ′ denotes transposition. Data vectors, �t−1, can be recursively updated to �t using
the pair dt ,at only; 〈·, ·〉 is a functional, which is linear in its respective arguments; B(·),C(·) are
the functions of compatible finite dimensions. They are defined on �∗

t and �∗, respectively. The
set CEF contains pdfs on �∗ conjugated to the pdfs in the EF [1], i.e. the pdfs having the form

f (�|V)= exp〈V,C(�)〉��∗(�)∫
exp〈V,C(�)〉��∗(�)d�

≡ G�(V)

I(V)
(3)

For the given 〈·, ·〉 and C(�), a specific member of the CEF is determined by the (value of)
finite-dimensional statistic V and by the indicator ��∗(�) of the set �∗.

Note that the dynamic EF differs from the standard definition EF. It models dependence of the
data record dt on the data compressed in the regression vector �t . Moreover, recursive updating of
the data vector �t is required. The first condition is inevitable in modelling of dynamic controlled
systems and excludes, for instance, data having conditional exponential pdf. The second condition
is needed for permanent online use and excludes, for instance, linear normal models with moving
average noise.

The estimation simplicity determines practical significance of the EF and CEF [2].
Proposition 1 (Estimation in the EF)
Let the parametric model have the form (2). Let the prior pdf from the CEF (3), given by value
of the statistic V0, be used. Then, the posterior pdf f (�|dt ) is in the CEF

f (�|dt ) = f (�|Vt )= exp〈Vt ,C(�)〉��∗(�)

I(Vt )
= G�(Vt )

I(Vt )

I(Vt ) ≡
∫

exp〈Vt ,C(�)〉��∗(�)d�, t ∈ t∗
(4)

The value of the statistic Vt updates recursively, Vt =Vt−1+B(�t ), with V0 a priori chosen.
The predictive pdf is f (dt |at ,dt−1)= I(Vt−1+B(�t ))/I(Vt−1).

In summary, if: (i) each parametric model in (1) belongs to the dynamic EF (2); (ii) unknown
parameters of respective models are a priori mutually independent; (iii) the respective prior pdfs
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are chosen in the CEF (3); then, the estimation and prediction of respective entries of the data
record reduce to algebraic updating of data vectors � and of the finite-dimensional sufficient
statistics V.

2.3. Normal ARX model and its estimation

The normal autoregressive model with exogenous inputs in regression vector� (ARX) f (d|�,�)=
Nd(�

′�,r), modelling scalar data item d, belongs to the EF with

〈B(�),C(�)〉=−1

2
ln(r)+−1

2
tr

[
��′ [−1,�′]′[−1,�′]

r

]

The unknown parameter � consists of the regression coefficients � and variance r . The corre-
spondence with (2) determines the conjugate prior pdf (3) as the Gauss-inverse-Wishart (GiW) pdf
[12, 13], for which the function G�(V) (3) reads

G�(V)=
exp

{
− tr[V [−1,�′]′[−1,�′]]

2r

}
r0.5(�+��+2)

, V≡ (V ,�) (5)

The scalar � has the meaning of the number of degrees of freedom. The (��,��)-dimensional
extended information matrix V must be positive definite. Otherwise, the function G�(V) cannot
be normalized to a pdf.

The matrix V can be expressed in a range of equivalent ways. Further on, it is represented in
terms of the well-known least-squares (LS) quantities: LS estimate �̂ of �, LS estimate � of the
noise precision r−1 and LS covariance factor matrix P . The expectation E[·], variance var[·] and
covariance cov[·] of quantities distributed according to the GiW pdf, needed later on, are related
to the LS representation as follows [12]:

E[�|V]= �̂, E[r |V]= �

�(�−2)
, E

[
1

r

∣∣∣∣V
]
=�

cov(�|V)= �

�(�−2)
P, var(r−1|V)= 2

�
�2, E[ln(r)|V]= ln

( �

2�

)
−�

[ �

2

]
where the used digamma function is defined

�[x]≡ � ln(
∫∞
0 zx−1 exp(−z)dz)

�x
for x>0

Proposition 1 reduces estimation to the updating Vt =Vt−1+B(�t ), i.e. to updating of the
extended information matrix Vt and the number of degrees of freedom �t

Vt =Vt−1+�t�
′
t , �t =�t−1+1 (6)

The prior GiW pdf, determined by V0,�0, initializes (6). The recursion (6) expressed in terms of
the LS representation coincides with the recursive LS [2].
Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2008)
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3. APPROXIMATION OF PDF WITH THE KLD AS A LOSS

We consider that parameters �∈�∗ are described by a ‘true’ pdf T and we search for its approxi-
mation f̂ ∈ f̂ ∗. The choice of f̂ is the decision to be made. Consistent Bayesian formulation spec-
ifies a loss functional Z( f̂ (·),�) and minimizes the expected loss E[Z]≡∫ T(�)Z( f̂ (·),�)d�.
The loss Z serves properly if its unrestricted minimum is finite and it is attained for f̂ =T,
T-almost surely. We require the loss to depend only on the realized value f̂ (�), i.e.

Z( f̂ (·),�)= Z( f̂ (�),�) (7)

This requirement, representing a sort of likelihood principle, was advocated by Bernardo in [4]
where the following proposition is proved. The basic properties of the KLD we need [14] are
attached to it.

Proposition 2 (Recommended loss)
Let the loss Z meet the assumption (7) and have continuous partial derivative with respect to the
first argument. Then, Z( f̂ (�),�)=D ln(1/ f̂ (�))+E(�) with a constant D>0 and an arbitrary
function E(�) for which

∫
T(�)E(�)d� is finite. The specific choice of D and E(�) does not

influence the minimizer found. For D=1 and E(�)= ln(T(�)), the expected loss is the KLD
D(T|| f̂ ) of T on f̂

D(T|| f̂ )≡
∫

T(�) ln

(
T(�)

f̂ (�)

)
d�, D(T|| f̂ )�0 and D(T|| f̂ )=0 iff T= f̂ (8)

The last identity is understood T-almost surely.

The choice D=1 and E(�)=0 makes the loss equal to the Kerridge inaccuracy K(T|| f̂ )≡∫
T )(�) ln(1/ f̂ (�))d� [15] that has the same minimizer f̂ as the KLD.
Further on, the approximated pdf T, defined on �∗, is assumed to be random with a finite

number of variants, labelled by �∈ �∗

T= f� with probability 	� ∈ (0,1),
∑
�∈�∗

	� =1 (9)

We inspect the best unrestricted approximation of the pdfT for both orders of the KLD arguments.

Proposition 3 (Approximation of the random T)
The unrestricted minimizer f̂ of the expected KLD (with expectation taken over the random T)

E[D(T|| f )]≡E[E[D(T|| f )|T= f�]]=E[D( f�|| f )]=∑
�∈�∗

	�E[D( f�|| f )]

over the pdfs f ∈ f ∗ on �∗ is the mixture

f̂ (�)≡∑
�∈�∗

	� f�(�) (10)

The minimizer f̂ of E[D( f ||T)] is the geometric mean

f̂ (�)=
∏

�∈�∗[ f�(�)]	�∫ ∏
�∈�∗[ f�(�)]	� d�

(11)
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If the pdfs, f�(�), belong to the CEF with the common support �∗ and common C(�), i.e.
f�(�)=exp〈V�,C(�)〉��∗(�)/I(V�), then the geometric mean (11) stays within the CEF with
the statistic value V̂≡∑�∈�∗ 	�V�.

Proof
The first statement is implied by the identities

E[D(T|| f )| f ] = ∑
�∈�∗

	�

∫
f�(�) ln

(
f�

f (�)

)
d�=

∫ ∑
�∈�∗

	� f�(�) ln

(∑
�∈�∗ 	� f�(�)

f (�)

)
d�

−
∫ ∑

�̃∈�̃∗
	�̃ f�̃(�) ln

(∑
�∈�∗ 	� f�(�)

f �̃(�)

)
d�

Only the first term depends on the optimized pdf f (�) and reaches the smallest value (8) for the
claimed mixture. The second statement can be demonstrated in the same way and the last claim
of the proposition is obvious. �

Except in the cases with discrete-valued �, the mixture (10) of the pdfs in the CEF is out of the
CEF. Thus, the unrestricted minimizer of the expected KLD with the ‘correct’ order of arguments
lies out of the CEF. The unrestricted minimizer of the expected KLD with the reversed order may
stay within the CEF. Should we use it as the approximation of the posterior pdf within the CEF?
To answer this question, let us inspect the expected KLD with the ‘correct’ order of arguments
as a function of V determining the pdf f (�|V) in the CEF (3). The V-dependent term of the
expected KLD of the pdf T on the pdf f (�|V) is the expected Kerridge inaccuracy, cf. (4)

E[K(T(�)|| f (�|V))]=−∑
�∈�∗

	�

∫
f�(�)〈V,C(�)〉d�+ ln[I(V)] (12)

The first term in (12) is linear and thus convex function of the optional value V. Let us inspect
the second term in (12). For notational simplicity, let V and C be vectors and 〈V,C〉=V′C.
Second derivative of the inspected second term with respect to V gives the Hessian

�2

(�V)2
ln[I(V)] =

∫
C(�)C′(�) f (�|V)d�

−
∫

C(�) f (�|V)d�

[∫
C(�) f (�|V)d�

]′
(13)

Thus, the Hessian (13) is the covariance matrix of the vector C(�) with respect to the pdf f (�|V).
As such, it is positive semidefinite. It is positive definite in generic case. By generic case, we
mean that sets �∗

v ≡{�;v′C(�)=0}, determined by non-zero vectors v, have zero measure with
respect to the inspected pdfs f (�|V).

Proposition 4 (Proper approximation of T)
In the generic case, the geometric mean (11) does not minimize the ‘correct’ expected KLD of
the random pdf T(�) (9) on pdfs from the CEF.

Proof
The KLD is a non-negative and convex function of statistic values V and thus has a unique
minimizer. �
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This simple result complements the paper [6], where the forgetting resulting from alternative
orders of the KLD arguments was studied. We strongly recommend to focus on the version implied
by the ‘correct’ order. More generally, it conceptually ‘undermines’ popular geometric pooling of
pdfs [16] and the whole stream of algorithms based on functional approximation [9, 17].

The remainder of the paper demonstrates tracking of parameters of the normal ARX model
that performance of estimation algorithms can be practically improved by respecting this result.
Performance gains in the approximate mixture estimation are documented in [11].

4. CONSEQUENCES FOR TRACKING VIA FORGETTING

Forgetting is widely used for tracking of slowly varying parameters. We inspect the stabilized
forgetting [6, 7] with the parametric model in the EF and the posterior pdf f�(�|dt )= f�(�|V�t )

in the CEF (3).
For the stabilized forgetting, an alternative pdf f�(�|dt ) = f�(�|V�t ) in the CEF is specified.

It describes uncertainty about parameters caused by their variations within the real-time interval
when no data are processed. The probability that the ‘true’ pdf T is f�, i.e. parameters do not
change, is set to 	t ∈ (0,1). The probability that the unknown parameters � are described by the
alternative pdf f� is 1−	t .

We search for the pdf f̂ (�|dt )= f̂ (�|Vt ) within the CEF minimizing E[D(T|| f̂ )]. Dropping
the subscript t and the condition dt , we search for V minimizing its V-dependent part ln(I(V))−
〈V,

∫
	 f�(�)+(1−	) f�(�)C(�)〉. The corresponding V has to solve the equation, see (3)∫

C(�)
G�(V)

I(V)
d�=	

∫
C(�)

G�(V�)

I(V�)
d�+(1−	)

∫
C(�)

G�(V�)

I(V�)
d� (14)

Usefulness of the constructed f̂ depends strongly on the possibility to evaluate the expectation
of C(�) as a function of the statistic with values V�,V�,V. Properties of the GiW pdf (6),
conjugated to the inspected normal ARX model, provide the needed expectation.

Proposition 5 (Expectation of C(�) for GiW pdf)
Let �≡[�,r ] be described by the pdf GiW�(V)=GiW[�,r](�̂,�, P,�), (5), (6). Then,

E[C(�)|V] =
∫

C(�)
G�(V)

I(V)
d�=−1

2

∫ ⎡⎢⎢⎣
ln(r) 0

0
1

r

[−1

�

][−1

�

]′

⎤
⎥⎥⎦GiW�(V)d�dr

= −1

2

⎡
⎢⎢⎢⎣
ln
( �

2�

)
−�

[ �
2

]
0

0 �

[−1

�̂

][−1

�̂

]′
+
[
0 0

0 P

]
⎤
⎥⎥⎥⎦ (15)

Inserting the formula (15) into (14), we get the algorithm mappingV� andV� on the optimally
approximating V.
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Algorithm 1 (Alternative stabilized forgetting)

Inputs:

• The forgetting factor 	∈ (0,1) coinciding with the probability of the basic no-parameter-
change hypothesis.

• The statistic value V� ≡ (�̂�,��, P�,��) describing the member of the CEF corresponding to
the basic hypothesis that parameters do not change.

• The statistic value V� ≡ (�̂�,��, P�,��) describing the alternative pdf in the CEF.

Outputs:

• The value V≡ (�̂,�, P,�) describing the member of the CEF minimizing the ‘correct’
expected KLD.

Evaluations:

1. �=	��+(1−	)��.

2. �̂= (	��/�)�̂�+(1−	��/�)�̂�.

3. P=	P�+(1−	)P�+(	(1−	)����/�)(�̂�− �̂�)(�̂�− �̂�)
′.

4. �≡	[ln(��/��)−�[��/2]]+(1−	)[ln(��/��)−�[��/2]]+ ln(�/2).
5. Find � solving the equation ln(�/2)−�[�/2]=�.

Step 3 is numerically the most sensitive and demanding. The only nonlinear equation for the
scalar �, Step 5, is efficiently solvable by the standard Newton method with a good initialization
resulting from a simple approximation of the digamma function �[·], see [18].

5. CHOICE OF THE FORGETTING CHARACTERISTICS

Algorithm 1 finds the optimal approximation of the forgetting result in the CEF. Usefulness
and quality of this alternative stabilized forgetting (ASF) strongly depends on the quality of the
approximated pdf, which should be indeed close to the ‘true’ pdf T. This condition has to be
achieved by a good choice of the optional inputs determining the optimal unrestricted forgetting.
The discussed meaningful choice is applicable also to the standard stabilized forgetting (SSF)
resulting as the geometric mean (11) in Proposition 3.

The pdf f� given by V� ≡ (�̂�,��, P�,��) corresponds to the basic hypothesis that parameters
are time invariant. Therefore, it has to coincide with the newest result of the parameter estimation.
Thus, it remains to choose the forgetting factor 	∈ (0,1) and the alternative pdf f� determined by
the value V� ≡ (�̂�,��, P�,��).

5.1. Choice of the forgetting factor

For a chosen alternative pdf f�, the forgetting factor completes the definition of the pdf

f (�t+1=�|dt )=T(�)≡
{
f�(�) with probability 	

f�(�) with probability 1−	
(16)
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We construct the alternative f� expecting that f� will be closer to the ‘true’ pdf T than f�.
According to Proposition 2, it means

E[D(T|| f�)| f�, f�,	]�E[D(T|| f�)| f�, f�,	] (17)

where expectation is taken over random ‘true’ pdfs (16). The left-hand side of (17) equals
	D( f�|| f�) and the right-hand side is (1−	)D( f�|| f�). Consequently, forgetting factors meeting
our expectation on the divergence D(T|| f�) are in the set

0�	�
D( f�|| f�)

D( f�|| f�)+D( f�|| f�) ≡	�1 (18)

At the same time, 	 expresses the expectation that parameters do not change. Tracking by forgetting
can be successful only if this hypothesis is often acceptable, i.e. if 	 is high enough. This leads us
to the choice 	=	.

5.2. Choice of the alternative V�

The prior pdf f0≡ f (�|V0) should quantify all prior knowledge [19]. It delimits primarily the
domain where the estimated � lies with a high probability. The alternative pdf will stabilize
tracking if it respects prior knowledge, i.e. if its tails are less heavy than that of the prior pdf. For
GiW pdfs, this condition can be met by taking V� ≡V0. Experience indicates that this choice
can be over-conservative and that positioning of the alternative pdf on the latest point estimates of
� with properly tuned covariance matrix [20] provides better results. It leads to the conjecture that
exploitation of both prior pdf f0 and the basic pdf f� for constructing the alternative pdf f� can
be universally beneficial. The straightforward algorithm presented below rests on this conjecture.
It takes the approximation of the ‘true’ pdf T, generated by Algorithm 1, as an improved guess
of the alternative pdf generating an improved guess of the ‘true’ pdf. It stops if f� is close to f�
but still differs from it.

Algorithm 2 (ASF with automatic choice of 	, f�)

Inputs:

• The statistic value V0≡ (�̂0,�0, P0,�0) describing a priori the parameters � by the member
of the CEF.

• The statistic value V� ≡ (�̂�,��, P�,��) describing parameters � by the member of the CEF
corresponding to the basic hypothesis that parameters do not change.

• The bound 
>0 determining negligibility of diminishing relative differences of forgetting
factors 	i−1/	i −1.

Outputs:

• The value V≡ (�̂,�, P,�) describing the member of the CEF minimizing the ‘correct’
expected KLD.

Evaluations: Set iteration counter i =1 and initialize the guess of the alternative pdf fi� = f0⇔
Vi� =V0. Set �=1+
,	0=1, do while �>
.
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1. Evaluate i th guess 	i of the forgetting factor

	i = D( fi�|| f�)

D( fi�|| f�)+D( f�|| fi�) (19)

2. Use Algorithm 1 with inputs V�, V� =Vi� and 	=	i for evaluating an improved approx-
imation fi of the ‘true’ pdf T. The approximation fi , found in the CEF, is given by the
statistic value Vi .

3. Take fi as a new guess of the alternative pdf f(i+1)� = fi ⇔V(i+1)� ≡Vi .
4. Set �≡|	i−1/	i −1|. Increment i .

Proposition 6 (Properties of Algorithm 2)
LetD( f�|| f0�)≡D( f�|| f0) be positive and finite. Then,D( f�|| fi�)�D( f�|| f(i+1)�) and fi� → f∞�.

Proof
f(i+1)� minimizes the expected KLD of the previous guess fi of the ‘true’ pdf T on pdfs from
the CEF

0�E[D( fi || f(i+1)�)| fi�, f�,	i ]≡	iD( f�|| f(i+1)�)+(1−	i )D( fi�|| f(i+1)�)

Replacement of f(i+1)� by fi� and non-negativity of the KLD implies that Di+1≡D( f�|| f(i+1)�)�
D( f�|| fi�)≡Di . Due to non-negativity and initial boundedness, it has a finite limit D∞ for i→∞.
The same replacement implies that D( fi�|| f(i+1)�)→0. The properties of the KLD imply the
assertion. �

Additional analysis and experiments indicate that f∞� = f� for f�, f� in the CEF. Irrespective
of this 	i →0.5 (19). This made us to use its changes in the proposed stopping rule. It also hints
that 
≈0.05=10% of the limit as a reasonable option. There are also indications that the found
approximation has lighter tails than the prior pdf. Full proof is missing.

6. EXAMPLES

Theoretical analysis of Algorithm 2 is incomplete. Experimental results indicate its good properties.
The examples presented here illustrate them. Prediction (Q=P) and estimation (Q=E) quality is
quantified by

Qt0:t ≡
SSFMSEt0:t
ASFMSEt0:t −1, MSEt0:t ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
1

(t− t0+1)

t∑
�=t0

(y�− �̂
′
�−1��)

2, Q=P

√
1

(t− t0+1)

t∑
�=t0

(�̂�−��)′(�̂�−��), Q=E

(20)

The optional initial time t0 allows us to judge the influence of transients. The superscripts SSF and
ASF distinguish the forgetting method used. The relative norm Q is positive if the ASF outperforms
the SSF. Whenever possible, also the SSFMSE and ASFMSE will be displayed together with the
quality indicator.
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Figure 1. Estimates of time-varying offset. The sinus curve is its true value. The thin curve is its point
estimate with the SSF, the thick one with the ASF.

6.1. Tracking of varying offset

Third-order, single-output normal ARmodel with varying offset illustrates tracking of slow changes.
The simulated pdf f (yt |yt−1,�)=Nt (�t ,0.001) had mean

�t =[
C�′︷ ︸︸ ︷

−0.5,0.2,0.4,0.2+0.1sin(t/400)]︸ ︷︷ ︸
�′
t

[yt−1, yt−2, yt−3,1]′︸ ︷︷ ︸
�t

7000 data records were generated and Bayesian updating, recursion (6), was applied. It was
combined with the SSF and with the ASF. Both algorithms used the default prior distribution f0
determined by

V0≡ (�̂0=0, P0=106×unit matrix,�0=3×104,�0=3) (21)

The SSF took f0 (21) as an alternative together with the best 	=0.95. Algorithm 2 ran with this
f0 and 
=0.05.
The qualitative behavior is illustrated by Figure 1 where tracking of the time-varying offset by

the compared methods is displayed. Quantitative indicators characterizing improved tracking and
predictive capabilities of the ASF are in harmonywith the qualitative result. The final point estimates
of the time-invariant part of parameters C�=[−0.5,0.2,0.4] are ASF�̂=[−0.485,0.259,0.379] and
SSF�̂=[−0.619,0.184,0.362], respectively. The corresponding relative prediction and estimation
norms and mean square errors (20) are

P1:7000 =0.027 ( SSFMSE1:7000 =2.777, ASFMSE1:7000 =2.703)

E1:7000 =7.512 ( SSFMSE1:7000 =0.00243, ASFMSE1:7000 =0.000571)
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Figure 2. (a) Bounded eigenvalues of Pt demonstrate the stabilizing effect of the ASF for
non-informative data and (b) convergence of the estimation square error demonstrates

estimation quality of the ASF (the thick one).

6.2. Stabilization benchmark

This example comes from [21], where stabilization was addressed: bad behavior of exponential
forgetting caused by non-informative data was counteracted. The simulated pdf f (yt |ut , yt−1,vt−1,

�)=Nyt (�t ,0.01) had mean

�t =�′×�t ≡[0.98,−0.9,0.5,−0.25,0.1,0.8,0.2][yt−1, yt−2,ut ,ut−1,ut−2,vt−1,vt−2]′

It was stimulated by white input ut ∼Nut (0,1) and by the measurable disturbance vt alternating
its values in {1,−1} at time moments t=100,200, . . .,1000. At time t=250, the parameter �1
changed to−0.98. The SSF took f0 (21) as an alternative together with the best 	=0.9. Algorithm 2
ran with this f0 and the recommended 
=0.05.

Figure 2(a) illustrates that the ASF, similarly to the SSF, has stabilizing effect and keeps the
maximal eigenvalue of LS covariance factor matrix Pt well bounded.

The performance indices (20)

P1:1000 =−0.207 ( SSFMSE1:1000 =8.193, ASFMSE1:1000 =10.331)

P501:1000 =0.087 ( SSFMSE501:1000 =2.526, ASFMSE501:1000 =2.325)

E1:1000 =0.673 ( SSFMSE1:1000 =0.185, ASFMSE1:1000 =0.110) and

E501:1000 =3.621 ( SSFMSE501:1000 =0.00666, ASFMSE501:1000 =0.00144)

show that (i) the SSF predicted better in transients but the ASF outperformed it in a longer run;
(ii) the estimation by the ASF was better than by the SSF. See Figure 2(b) for convergence of
square error in the most important part of time sequence.

6.3. Tests on real financial data

This test supports our claim that the use of the ASF with judiciously chosen forgetting factor and
a good alternative pdf is practically beneficial.
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Figure 3. A typical sample of processed time series.
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Figure 4. Relative norm of prediction errors P6:T (20), k∈k∗.

We processed 49 time series describing the daily prices of various commodities. Figure 3 shows a
sample of such time series normalized to zero mean and unit variance. Series contain between 3500
and 5500 records. Estimated normal AR models serve for k-days predictions, k∈k∗≡{1,2, . . .,6}.
Models have the expectations

E[yt |yt−k,�]=�′[yt−k, yt−1−k]′

where the best ‘order’ 2 was chosen by trial-and-error. The SSF used the default f0 (21) as an
alternative together with the best 	=0.96. The ASF ran Algorithm 2 with the same f0 and the
recommended 
=0.05.

For one-step-ahead prediction, k=1, no forgetting was necessary. In this case, both the ASF
and the SSF slightly deteriorated predictions. For k�2, use of forgetting was vital and the ASF
systematically outperformed the SSF. Figure 4 demonstrates it showing the histogram of P1:T , see
(20). The results for all delays are shown.
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Improvement of the predictive performance due to the use of the ASF is practically significant
as just the better processing of data helped in crossing the boundary between financial losses and
gains. Methodologically, it is important that the relative prediction normsP (20) are predominantly
positive for k>1: the ASF outperformed the SSF with a few exceptions.

7. CONCLUDING REMARKS

Introduction of stabilized-type forgetting made in the 80s of the last century, e.g. [22, 23], was
a small but an important step in converting academic adaptive systems into reliable practical
algorithms. Since that time it has seemed that the possibilities for further progress are more
or less exhausted. However, an additional insight into the underlying optimization has led to
a shift in the view on ‘dual’ versions of stabilized forgetting [6]. Unlike there, the stabilized
forgetting, corresponding to the ‘correct’ order of arguments in the KLD, is predicted to provide
better tracking properties. The experimental results confirm it.

Methodologically, the preferred order of arguments in the KLD opens a way for improving
functional approximation of Bayesian estimation. It approximates unfeasible pdfs by pdfs with a
restricted dependence structure. It uses, however, the ‘incorrect’ version of the KLD as the proximity
measure. It is possible to use the ‘correct’ version and optimize it over pdfs of a restricted structure.
The chances for practical gains are high as was demonstrated on the non-trivial projection-based
mixture estimation [10, 11].
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7. Kulhavý R, Zarrop MB. On a general concept of forgetting. International Journal of Control 1993; 58(4):905–924.
8. Tipping ME, Bishop CM. Probabilistic principal component analysis. Journal of the Royal Statistical Society,

Series B—Statistical Methodology 1999; 61:611–622.
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