
Akademie věd České republiky
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Symbols and Notation

The following symbols and notation are generally used throughout the thesis. The notation used for
particular quantities, sets, constants, etc., is introduced in the text. In the list the symbol x stands for
an arbitrary random or nonrandom quantity.

∝ proportionality sign
≡ equality by definition
x′ denotes the transposition of vector (matrix) x
x∗ range of x
x̊ cardinality of the set x∗

xi, xj i-th and j-th entry of the vector x respectively
xt, xτ x in time t and τ respectively; time indices are exclusively denoted by t and

τ (with additional indices eventually), which makes them distinguishable from
vector entries

xt1:t2 data records from time t1 till time t2, i.e., xt1:t2 = (xt1 , xt1+1, . . . , xt2)
′

f (·) , g(·), h(·) probability density functions (pdfs) of the random quantity specified by the
argument

f (·| ·) , g(·|·), h(·|·) conditional pdfs
F(x) set of all pdfs of a random quantity x
px random quantity related to the p-th participant
pf (·) , pf (·| ·) pdfs related to the p-th participant
D (f(x)||g(x)) Kullback-Leibler (KL) divergence of pdf f(x) from pdf g(x)
K (f(x), g(x)) Kerridge inaccuracy of pdfs f(x) and g(x)
F << G a probability distribution F is absolutely continuous with respect to a proba-

bility distribution G
E [x] ,E [x|y] expectation of x and conditional expectation of x given y; the corresponding

probability distribution always follows from the context
R set of all real numbers
Rn set of all real vectors of dimension n
Rm,n set of all real matrices of dimension m,n
N set of all natural numbers
M c complement of a set M
|M | cardinality of a set M
IM (x) characteristic function of a set M
det A determinant of a square matrix A
vec (A) vector consisting of columns of a matrix A
A⊗B Kronecker product of matrices A and B
k := l set value l to a variable k – used in descriptions of algorithms
δ(·) Dirac delta function
Diα(x) Dirichlet pdf of a random quantity x with a parameter α
Nx(µ,Σ) Gaussian pdf of a random quantity x with mean µ and covariance matrix Σ
Γ(x) gamma function
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General Conventions

• Random quantities and their realizations are not distinguished by the notation.

• Probability density functions are distinguished by their parameters, i.e., f (x) , f (y) are different
pdfs of different random quantities.

• Random quantities are supposed to be vector ones, if not stated otherwise.

• Probability distributions of continuous random quantities are supposed to be absolutely continuous
and have pdfs, if not stated otherwise.

• For simplicity, the term pdf is used also for discrete quantities. In such cases it should be automat-
ically understood as a probability mass function.

• Integral
∫
· dx is automatically understood as a definite one over the set x∗.

• Vectors are supposed to be column ones, if not stated otherwise.

• Whenever vector entries are distinguished by numerical indices, they are supposed to be ordered so
that their indices form an increasing sequence. This agreement enables unambiguous splitting and
merging of (sub)vectors in algorithms. An analogical agreement holds for matrices as well.

• The notation
(x.y)z}|{
= ,

(x.y)z}|{
≥ , etc., means that the relation under the curly bracket follows from relation

(x.y).

Abbreviations

pdf probability density function
FPD fully probabilistic design
ML maximum likelihood
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Chapter 1

Introduction

This work has its origin in the GAAV project 1ET100750401 BADDYR – Bayesian Adaptive Distributed
Decision Making – solved in the Department of Adaptive Systems in the Institute of Information Theory
and Automation in years 2004-2007. The objective of the BADDYR project was to develop a theoretical
and algorithmic background for a distributed decision making with multiple Bayesian decision makers.
The results of the BADDYR project are further developed in the GAČR project 102/08/0567 – Fully
probabilistic design of dynamic decision strategies. This work contributes to these projects by a design
of methods for communication of the decision makers.

1.1 Motivation

Decision making is a process in which an entity, called here a decision maker, selects one from at least
two actions. In order to make such process rational in a common sense, it is necessary to select the action
with respect to its possible consequences. Whenever these consequences are supposed to be affected
by phenomenons that are unknown to the decision maker at a time of making the decision, we are
talking about a decision making under uncertainty. The fact that in the real world almost any decision
is accompanied by certain amount of uncertainty makes this area extremely important for practical
applications.

The Department of Adaptive Systems belongs to the research groups that are focused on the decision
making under uncertainty. The widely used Bayesian theory serves here as a main framework for treating
the uncertainty [26], together with a specific method for a design of decision strategies, called the fully
probabilistic design [24].

The Bayesian theory offers a normative approach to the decision making under uncertainty, which
guarantees a well specified kind of rationality of the decision procedure [9], [23]. The characteristic features
of the Bayesian theory are that the uncertainty is reflected by probabilistic modeling of a system, and
that the objectives of the decision making are expressed in terms of a utility of the consequences. The
optimal decision is then selected as the one which maximizes the expected utility. The use of probabilistic
models is also important from a pragmatic point of view as it allows to employ a large scale of theoretical
results and algorithmic solutions from the probability theory. The fully probabilistic design represents an
alternative approach to the design of decision strategies based on maximization of the expected utility.
Its main asset is that it has an explicit solution [27], [49].

The Bayesian theory and fully probabilistic design have been successfully applied in various fields,
including industrial applications [17], traffic control [39], nuclear medicine [21], e-democracy [28], and
financial markets [48]. A universal applicability of the adopted framework has been verified, e.g., in
the EU project IST-1999-12058 ProDaCTool, the aim of which was to develop a domain independent
decision-support system for complex industrial processes [26].

However, in practice the applicability of the Bayesian decision making is restricted by an extent of
the given task. It is partially caused by the computational complexity, that grows quickly with increasing
dimension of the task and can easily exceed limited computational resources of a decision maker. There
is also another, rather conceptual, reason: in large tasks it is often difficult to express a prior information
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and objectives in a proper form. Prior information and objective specification are frequently available
piecewise, i.e., separately for different parts of the system. Moreover, these parts can arbitrarily overlap.
Then, it can easily happen that for some part of the system there are several inconsistent prior information
pieces available. Such a situation can arise naturally, e.g., as a consequence of the fact that the prior
information represents a partial, and thus imprecise, knowledge. The objectives can naturally differ
whenever there are several parties interested in the decision making.

1.2 Problem Formulation

The need for a feasible solution of large tasks led to the idea of a distributed decision making with multiple
Bayesian decision makers. The staring point of the approach followed in the project BADDYR is that a
group of Bayesian decision makers, here called participants, acts in a given system whereas

• each participant deals with only a part of the system;

• the parts treated by individual participants may arbitrarily overlap;

• prior knowledge as well as objectives of individual participants need not be consistent in any way;

• the decision strategies of individual participants are then required to be designed by the participants
themselves, i.e., no common mediator is considered.

The main assets of this concept, in comparison with the decision making based on a single decision
maker, are: i) the overall computational complexity can be much lower as it depends approximately
linearly on a number of participants; ii) the freedom in the prior knowledge and objective setting allows
to specify them piecewise, i.e., individually for each participant without a necessity to state them for
the complete system. Moreover, the individual participants can employ much of the solutions previously
developed for a single decision maker. A downside of the adopted approach is that local models used by
individual participants cannot reflect all the complex relations that could be modelled by a single decision
maker dealing with the complete system. On that account, any distributed solution is necessarily just an
approximation of a centralized decision making. However, a rigorous treatment of the addressed problem
is an extremely hard task as it requires a solution of problems related to multiplicity of objectives and prior
knowledge and inference of distributed procedures. Furthermore, it inherits all technical difficulties arising
in Bayesian decision making with a single participant such as intractability of the treated probability
distributions. This tends us towards a more pragmatic approach based on the following idea.

A distributed solution is trivially reached if the participants act independently as if they were the
only decision makers in their parts of the system. Nevertheless, in such case the group decision making
can easily become noneffective due to differences in objectives and prior knowledge. It is caused by
the fact that the participants acquire information about objectives, knowledge, and decision strategies
of the other participants only indirectly through their actions and their consequences. Apparently, this
process is slow and thus inefficient. It is expected that the group decision making becomes more efficient
if the participants are provided with cooperation means, which allow them to communicate directly
and to exploit the information acquired in this way. As we are aiming at a distributed solution, the
communication cannot be realized centrally via a common facilitator, but must be performed directly
between the participants. Moreover, the participants are not supposed to deal with the complete system,
thus the communication is meaningful only between participants which deal with, at least partially,
overlapping parts of the system. A pair of such participants is called neighbours. A design of suitable
cooperation methods was considered as an important part of the BADDYR project, and forms the primary
aim of this thesis. However, during the work it came out that the proposed “soft” formulation of the
multiple participant decision making is not sufficient for the addressed task and that a deeper insight
into the problem must be acquired. On that account, a secondary aim of the work is to provide more
detailed analysis of the multiple participant decision making itself.

It should be stressed that our approach is to be taken rather as a survey of possible extensions of a
single participant towards the multiple participant decision making. Although we care abut a normative
nature of our results, we do not intend to build a theory of multiple participant decision making from
the start.
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1.3 State of the Art

There is a rich bibliography related to various aspects of the Bayesian decision making. The theoretical
background can be found, e.g., in [14], [9], [7], or [23]. Somewhat more application-oriented publication
is, e.g., [26]. This book also stands as a basis of our treatment of the dynamic Bayesian decision making.
A universally accepted theory of the Bayesian decision making with multiple participants is, however,
missing. On the other hand, particular problems encountered in this area are widely addressed.

The most significant class of such problems arise in connection with combining multiple, potentially
contradicting, uncertainty assessments expressed in a form of probability distributions. In the literature
it is often referred to as an aggregation of expert opinions, opinion pooling, or consensus emergence.
An extensive annotated bibliography on this topic can be found, e.g., in [11]. Mostly, the result of the
pooling process is to be expressed in a form of a single probability distribution. This is also our primary
preference.

A significant part of works in this field leans on the Bayesian theory. Many of them, e.g., [45], [36],
[43], [13], [12], follow the approach introduced in [38]. The core idea here is that the experts’ probability
distributions are to be taken as data and processed by a decision maker in a standard Bayesian way.
The aggregated opinion is represented by a posterior probability distribution. Note, that it is commonly
assumed that all experts’ distributions are processed by a central decision maker. Although we have
claimed that any centralized decision making is undesirable in our approach, it turns out that such a
decision maker must be considered as a halfway house towards the distributed solution. This makes the
works assuming a central decision maker relevant also for our approach.

A key element of all Bayesian methods is the decision maker’s likelihood function for experts’ opinions.
In spite of its significance, a choice of a suitable likelihood is addressed very shallowly in general. It is
typically simply assumed that the decision maker has a proper knowledge on the credibility of individual
information sources, see, e.g., [38], [45], [37].

On the other hand, a frequently discussed issue is an impact of dependencies among experts’ opinions
on the resulting distribution [10], [13], [12]. Normal probability distributions are often employed for
modeling the dependencies [44], [51]. Other possible approaches are based on models using t-distributions
[36] or copulas [37]. However, most of these models are rather ad-hoc and their suitability can be verified
only empirically in particular applications. Moreover, parameters of these dependency models are again
generally supposed to be assigned by the decision maker according to its knowledge on information
sources.

Our approach to combining of participants’ uncertainty assessments does not directly follow any of
the above mentioned works. It is partially due to the discussed weak points and partially due to the
rather specific conditions: The participants can possibly employ different parametric models and thus
their knowledge is expressed by probability distributions of different random quantities. Moreover, the
central decision maker is just ancillary. On that account, a prior knowledge employed on its level should
be minimal, or ideally (but unrealistically) empty. To our knowledge, these issues are not satisfactorily
treated by the existing solutions.

Another problem related to the multiple participant decision making arises from the multiplicity of
objectives. However, contrary to the participants’ knowledge, the objectives of individual decision makers
can differ naturally due to their different priorities. Thus, no other possible sources of inconsistency need
to be necessarily considered in this case and the common objectives can be created as some kind of
compromise among the participants’ ones. For combining of participants’ objectives the results presented
in [29] are partially employed.

1.4 Aim of the Work

As stated above, in this work we consider a group of Bayesian decision makers (participants) acting in
some system. Each participant is supposed to deal with a part of the system, whereas these parts may
arbitrarily overlap. Prior knowledge as well as the objectives of the participants need not to be a priori
consistent in any way.

The aim of this work is:
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• to provide a survey of a possible extension of a single participant towards the multiple participant
decision making;

• to design practically feasible procedures that allows the neighbours to communicate information
pieces on their objectives and knowledge about the system, and to exploit them to enhance a
quality of the decision making.

1.5 Structure of the Work

Chapter 2 summarizes the theoretical background used in this work. The attention is payed especially
to the dynamic Bayesian decision making and the fully probabilistic design, including commonly used
approximate methods.

Chapter 3 provides an introduction to multiple participant decision making. Due to the complexity
of the addressed problem, it is not aspired to give its rigorous analysis. Instead, several issues concerning
this area are discussed and illustrated by a case study. The results acquired in this chapter motivate the
design of cooperation methods in Chapters 4 and 5.

In Chapter 4, a method which allows a group of participants to find common objectives is presented.
This method is specially designed for participants employing the fully probabilistic design.

Chapter 5 describes a method for knowledge sharing between neighbours employing different proba-
bilistic models of their parts of the system.

In the appendix, differentiation rules from matrix calculus, which are used in Chapter 4, are summa-
rized. Furthermore, it includes a short discussion on the fully probabilistic design, which is referred in
Chapter 3.
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Chapter 2

Theoretical Background

This chapter contains a brief overview of the most important theoretical means used in the thesis. Section
2.1 recalls elementary operations with pdfs. In Section 2.2, properties of the Kullback-Leibler divergence
and the Kerridge inaccuracy, which are used for quantification of discrepancy of pdfs, are mentioned.
In Section 2.3, basic elements of the Bayesian decision making are summarized. Finally, Section 2.4 is
focused on a special method for the design of decision strategies called fully probabilistic design.

2.1 Basic Calculus with Pdfs

Consider a joint pdf f(x1, x2, x3) of (possibly multivariate) random quantities x1, x2, x3. The following
manipulations with pdfs are frequently used in Bayesian analysis. For simplicity, we assume here that
the right-hand sides of the relations below are well defined.

Conditioning f(x1|x2, x3) = f(x1,x2|x3)
f(x2|x3)

Chain rule f(x1, x2|x3) = f(x1|x2, x3)f(x2|x3)

Marginalization f(x2|x3) =
∫

f(x1, x2|x3) dx1

Bayes rule f(x1|x2, x3) = f(x2|x1,x3)f(x1|x3)
f(x2|x3)

= f(x2|x1,x3)f(x1|x3)R
f(x2|x1,x3)f(x1|x3)dx1

2.2 Discrepancy of Pdfs

For quantification of a discrepancy of a pair of pdfs the Kullback-Leibler divergence and the Kerridge
inaccuracy are widely used in this work.

2.2.1 Kullback-Leibler Divergence

The Kullback-Leibler divergence [35] is a member of a class of so called f-divergences [18] known from
the information theory. For a pair of pdfs f(x), g(x) corresponding to distributions F and G respectively,
the Kullback-Leibler divergence is defined by

D (f(x)||g(x)) =


∫

f(x) ln f(x)
g(x)dx for F << G

+∞ otherwise,
(2.1)

where F << G denotes absolute continuity of F with respect to G, and the integrand is defined using the
convention 0 ln 0 = 0. Basic properties of the Kullback Leibler divergence are as follows (F(x) denotes a
set of all pdfs of x).
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• nonnegativity: ∀f(x), g(x) ∈ F(x), D (f(x)||g(x)) ≥ 0 (2.2)
• asymetry: ∃f(x), g(x) ∈ F(x), D (f(x)||g(x)) 6= D (g(x)||f(x))
• ∀f(x), g(x) ∈ F(x), D (f(x)||g(x)) = 0 iff f = g (2.3)
• convexity in both arguments: ∀f(x), g(x), h(x) ∈ F(x),∀α ∈ [0, 1],

D (αf(x) + (1− α)h(x)||g(x)) ≤ αD (f(x)||g(x)) + (1− α)D (h(x)||g(x))
D (f(x)||αg(x) + (1− α)h(x)) ≤ αD (f(x)||g(x)) + (1− α)D (f(x)||h(x)) (2.4)

For a joint pdf f(x, y) and a conditional pdf g(y|x), a conditional version of the Kullback-Leibler
divergence D (f(x, y)||g(y|x)) is defined by

D (f(x, y)||g(y|x)) =
∫

f(x)D (f(y|x)||g(y|x)) dx, (2.5)

where, for a fixed x, D (f(y|x)||g(y|x)) is understood as a Kullback-Leibler divergence of a pair of pdfs
from F(y).

Using (2.5) we get for a pair of joint pdfs f(x, y), g(x, y)

D (f(x, y)||g(x, y)) =
∫

f(x)f(y|x)
(

ln
f(x)
g(x)

+ ln
f(y|x)
g(y|x)

)
dxdy = D (f(x)||g(x)) + D (f(x, y)||g(y|x)) .

(2.6)
From (2.6) we get immediately these properties of the Kullback-Leibler divergence:

D (f(x)||g(x)) = D (f(x, y)||g(x)f(y|x)) , (2.7)
D (f(x)||g(x)) ≤ D (f(x, y)||g(x, y)) . (2.8)

Proposition 2.2.1 For arbitrary pdfs f(x), g(x) ∈ F(x) and a measurable set M ⊂ x∗, let a =
∫

M
f(x)dx,

b =
∫

M
g(x)dx. Then

D (f(x)||g(x)) ≥ a ln
a

b
+ (1− a) ln

1− a

1− b
, (2.9)

using the conventions 0 ln 0 = 0, 0 ln 0
0 = 0, ln c

0 = +∞ for c > 0.

Proof: Suppose that a, b ∈ (0, 1). Then

D (f(x)||g(x)) =
∫

M

f(x) ln
f(x)
g(x)

dx +
∫

MC

f(x) ln
f(x)
g(x)

dx

= a

∫
M

f(x)
a

(
ln

f(x)
a

g(x)
b

+ ln
a

b

)
dx + (1− a)

∫
MC

f(x)
1− a

(
ln

f(x)
1−a

g(x)
1−b

+ ln
1− a

1− b

)
dx

= a ln
a

b
+ (1− a) ln

1− a

1− b
+ D

(
1
a
f(x)IM (x)

∣∣∣∣∣∣∣∣1b g(x)IM (x)
)

+D

(
1

1− a
f(x)IMC (x)

∣∣∣∣∣∣∣∣ 1
1− b

g(x)IMC (x)
)

≥ a ln
a

b
+ (1− a) ln

1− a

1− b
.

Verification of (2.9) for a ∈ {0, 1} or b ∈ {0, 1} is trivial.

Note, that a proposition analogous to (2.2.1) can be stated for any finite partition of x∗; for more
details see [18].
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2.2.2 Kerridge Inaccuracy

The Kerridge inaccuracy [31] does not belong among f-divergences; nevertheless, for its tight relation to
the Kullback-Leibler divergence it is often employed in this work. We use the following definition of the
Kerridge inaccuracy.

For a pair of absolutely continuous distributions F and G having pdfs f(x) and g(x) respectively, the
Kerridge inaccuracy is defined by

K (f(x), g(x)) =


∫

f(x) ln 1
g(x)dx for F << G

+∞ otherwise
, (2.10)

where the integral is defined using the convention 0 ln 0 = 0. For pdfs f(x), g(x) of a discrete quantity
x (i.e., probability mass functions) the Kerridge inaccuracy is defined analogously with sum instead of
integral. In this text, the Kerridge inaccuracy is used also in a more general sense: let rx1,...,xn(x) be an
empirical pdf, i.e., rx1,...,xn(x) = 1

n

∑n
i=1 δ(x−xi) for some n ∈ N and x1, . . . , xn ∈ x∗, where δ(x) denotes

the Dirac delta function. The Kerridge inaccuracy of rx1,...,xn(x) and an arbitrary pdf g(x) corresponding
to an absolutely continuous distribution is to be understood as

K (rx1,...,xn(x), g(x)) ≡
∫ (

1
n

n∑
i=1

δ(x− xi)

)
ln

1
g(x)

dx = − 1
n

ln

(
n∏

i=1

g(xi)

)
. (2.11)

Notice, that for a parameterized pdf, say g(x|Θ), K (rx1,...,xn(x), g(x|Θ)) is, up to a constant factor − 1
n ,

a log-likelihood of the parameter Θ.
Basic properties of the Kerridge inaccuracy are:

• asymmetry: ∃f(x), g(x) ∈ F(x), K (f(x), g(x)) 6= K (g(x), f(x)),

• linearity in the first argument: ∀f(x), g(x), h(x) ∈ F(x),∀α ∈ [0, 1],

K (αf(x) + (1− α)h(x), g(x)) = αK (f(x), g(x)) + (1− α)K (h(x), g(x)) , (2.12)

• convexity in the second argument: ∀f(x), g(x), h(x) ∈ F(x),∀α ∈ [0, 1],
K (f(x), αg(x) + (1− α)h(x)) ≤ αK (f(x), g(x)) + (1− α)K (f(x), h(x)),

• ∀f(x), g(x) ∈ F(x),

K (f(x), f(x)) ≤ K (f(x), g(x))with equality iff f = g. (2.13)

For a joint pdf f(x, y) and a conditional pdf g(y|x), we define a conditional Kerridge inaccuracy

K (f(x, y), g(y|x)) =
∫

f(x)K (f(y|x), g(y|x)) dx, (2.14)

where K (f(y|x), g(y|x)) is taken as the Kerridge inaccuracy of pdfs from F(y) for fixed x. Using (2.14),
we get for a pair of joint pdf f(x, y), g(x, y),

K (f(x, y), g(x, y)) =
∫

f(x)f(y|x)
(

ln
1

g(x)
+ ln

1
g(y|x)

)
= K (f(x), g(x)) + K (f(x, y), g(y|x)) . (2.15)

Note, that the Kerridge inaccuracy and the Kullback-Leibler divergence are related through the
differential entropy (or entropy in case of discrete random quantities)

H(f(x)) ≡ K (f(x), f(x)) = −
∫

f(x) ln f(x)dx (2.16)

by the equality
K (f(x), g(x)) = D (f(x)||g(x)) + H(f(x)), (2.17)

if both sides of (2.17) exist.
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2.3 Bayesian Decision Making

Decision making task arises whenever an individual, referred to as a decision maker, dealing with some
part of the world, denoted as a system, has to choose among at least two different actions. A criterion
according to which the decision maker decides which action to choose is typically based on some assessing
of consequences of the considered actions. The decision making then reduces to some kind of optimization.
Selection of the best action becomes far more complicated whenever the individual is not able to determine
exactly the consequences of the considered actions. In this case we talk about a decision making under
uncertainty. Such uncertainty can be caused by decision maker’s incomplete knowledge about the system
or by a random behaviour of the system itself. In fact, what is commonly taken as a random behaviour
is typically just a consequence of a lack of knowledge.

Considering uncertainty the decision maker faces a much wider problem than a pure optimization.
Mainly, it is necessary to utilize some framework for treating the uncertainty. In the project, to which
this thesis partially contributes, the Bayesian theory is employed for this purpose.

2.3.1 Introduction

Bayesian theory represents a normative approach to the decision making under uncertainty in the sense
that the aim of Bayesian theory is to provide a guideline for the decision making so that certain kind of
undesirable behaviour of a closed loop formed by a system and a decision maker is avoided. On the very
fundamental level the Bayesian theory can be build on a formal structure representing basic elements
of decision making – uncertain events, potential actions of a decision maker, their consequences, and
preference ordering of actions. These elements are then required to satisfy a set of conditions, in the
literature, somewhat inappropriately, referred to as axioms. There is a number of such axiomatic systems
varying in details, see, e.g., [9]. However, all of them require the preference ordering on actions to be “rich
enough” and consistent in some sense. Their common implication is that the decision making task can be
equivalently formulated in terms of belief about uncertain events and preference on consequences. It also
follows from the axioms that the belief about the uncertain events has a structure of a probability measure
depending on the selected action, and that the preferences can be expressed in terms of utility assigned
by a utility function to the consequences. The preferences on actions then correspond to preferences
induced by the expected utility. The optimal actions are the ones which maximize the expected utility.
The notion of a utility is often substituted by a loss. The utility function is then substituted by a loss
function and maximization of the expected utility is replaced by minimization of the expected loss.

2.3.2 Dynamic Bayesian Decision Making

Application of the Bayesian theory to dynamic decision tasks results in a probabilistic framework, a
particular case of which is described in this paragraph.

Let the system be described by a sequence of random quantities (at,Θt,∆t)t∈t∗ , where t is a dis-
crete quantity interpreted as time; typically t∗ ≡ {1, 2, . . . , t̊}. t̊ ∈ N is called a decision horizon and
represents the time to which the decision making is performed. For a sequence of random quantities
(xt1 , xt1+1, . . . , xt2), where t1, t2 ∈ t∗, we use a short notation xt1:t2 .

Actions at are quantities values of which are selected by the decision maker.

Observations ∆t represent quantities realizations of which are observed on the system immediately after
action at is applied.

Internals Θt are unobservable quantities influencing the system behaviour. Internals can be hidden
quantities with physical meaning as well as completely abstract quantities, e.g., unknown parameters
of otherwise known probability distributions.

It is supposed that at each time t action at is performed at first, then new internal Θt is generated, and
finally observation ∆t occurs.

The following terminology is related to these quantities:
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Data dt ≡ (at,∆t) represent random vectors consisting of actions at and observations ∆t in time t.

Trajectory of the system is a sequence of realizations of all involved quantities to the decision hori-
zon, i.e., (a1:̊t,Θ1:̊t,∆1:̊t). The notation used is to be understood so that (a1:̊t,Θ1:̊t,∆1:̊t) ≡
(a1,Θ1,∆1, . . . , åt,Θt̊,∆t̊).

Behavior of the system is taken, more or less, in its intuitive meaning. Formally it could be characterized,
e.g., as a probability distribution (not necessarily corresponding to the adopted models (2.18),
(2.19)) over all possible trajectories; however, a precise definition is not required in the text.

In order to establish a probabilistic description of the system, the decision maker specifies the following
pdfs:

Observation model is a collection of conditional pdfs(
f(∆t|at, d

1:t−1,Θ1:t)
)
t∈t∗

,

modelling dependence of observations on all preceding quantities. The observation model is sup-
posed to be selected so that given the present action at and past data d1:t−1 observation ∆t depends
only on the present internal Θt. Thus, its form reduces to(

f(∆t|at, d
1:t−1,Θt)

)
t∈t∗

. (2.18)

Time-evolution model (
f(Θt|at, d

1:t−1,Θ1:t−1)
)
t∈t∗

models an evolution of the unknown internals. Similarly as in the case of the observation model,
given the present action at and the preceding data d1:t−1, the internal Θt is supposed to depend
only on the directly preceding internal Θt−1. The time-evolution model then reduces to(

f(Θt|at, d
1:t−1,Θt−1)

)
t∈t∗

(2.19)

Prior pdf
f (Θ0) (2.20)

describes initial knowledge about the unknown internal Θ0.

Objectives of the decision making are expressed in terms of preferences on a set of all trajectories.
Namely, the decision maker has to select a loss function

L : (a1:̊t)∗ × (∆1:̊t)∗ × (Θ1:̊t)∗ → [C,+∞], (2.21)

for some C ∈ R, assigning to any system trajectory a value in a sense of a negative profit, i.e., the smaller
value of the loss function, the more preferred trajectory.

A decision strategy, the design of which is a primary aim of the decision maker, is a sequence of
mappings, indexed by time t, assigning a particular value of at or a pdf of at to the past data d1:t−1.
In the former case, the decision strategy is called deterministic, while in the later case it is randomized.
In this text we deal mainly with randomized decision strategies, so the label “randomized” is mostly
omitted. A decision strategy is represented by a collection of conditional pdfs(

f(at|d1:t−1)
)
t∈t∗

. (2.22)

The individual conditional pdfs f
(
at

∣∣d1:t−1
)

are called decision rules.
We assume that decision strategies generate actions in dependence on past data d1:t−1. More precisely,

it is assumed that actions at and internal quantities Θ1:t−1 are conditionally independent given the
observed data d1:t−1, i.e.,

f(at|d1:t−1,Θ1:t−1) = f(at|d1:t−1). (2.23)
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This assumption is referred to as natural conditions of control [26]. A direct consequence of (2.23) is a
conditional independence of Θt−1 and at given data d1:t−1

f(Θt−1|at, d
1:t−1) = f(Θt−1|d1:t−1). (2.24)

Bayesian theory establishes [26] that the optimal decision strategy OR ≡
(

Of(at|d1:t−1)
)
t∈t∗

is a
decision strategy minimizing the expected loss

E
[
L(a1:̊t,∆1:̊t,Θ1:̊t)

]
, (2.25)

where the expectation is taken with respect to the joint pdf on a set of all trajectories

f(a1:̊t,∆1:̊t,Θ1:̊t) =
∫ t̊∏

t=1

f(∆t|at, d
1:t−1,Θt)f(Θt|at, d

1:t−1,Θt−1)f(at|d1:t−1)f(Θ0)dΘ0. (2.26)

f(a1:̊t,∆1:̊t,Θ1:̊t) in (2.26) is defined by the observation model (2.18), the time-evolution model (2.19),
the searched decision strategy (2.22), and the prior pdf (2.20). The optimal strategy OR is typically
constructed using a stochastic version of dynamic programming [6].

The optimization procedure can be taken as consisting of two interconnected parts, shortly labeled as
learning and design. A goal of learning is to extract information about the unobserved internals Θt from
past data. In the design phase an optimal decision strategy is constructed using the results provided by
learning. In case of a sub-optimal design employing various approximate techniques, which is common
in applications, learning and design of the (sub-)optimal strategy are typically performed separately. On
that account, we describe the two phases successively.

Learning

At any time t, all the available knowledge about the unknown internals, combining the initial knowl-
edge and the knowledge acquired from data d1:t, is represented by a conditional pdf

f(Θt|d1:t) (2.27)

called Bayesian filtration [26]. Its evaluation is the objective of learning.
Using observation model (2.18), time evolution model (2.19), prior pdf (2.20), and the conditional

independence (2.24), the filtration (2.27) is evaluated in a recursive way consisting of the following steps.
The recursion starts for t = 0 with the prior pdf f(Θ0).

1. Time updating

f(Θt|at, d
1:t−1) =

∫
f(Θt|at, d

1:t−1,Θt−1)f(Θt−1|at, d
1:t−1)dΘt−1 =

=
∫

f(Θt|at, d
1:t−1,Θt−1)f(Θt−1|d1:t−1)dΘt−1 (2.28)

2. Data updating

f(Θt|d1:t) =
f(∆t|at, d

1:t−1,Θt)f(Θt|at, d
1:t−1)

f(∆t|at, d1:t−1)
, where (2.29)

f(∆t|at, d
1:t−1) =

∫
f(∆t|at, d

1:t−1,Θt)f(Θt|at, d
1:t−1)dΘt (2.30)

The conditional pdf f(∆t|at, d
1:t−1) in general, i.e., not necessarily resulting from (2.30), is called an

outer model of the system. The outer model of the system (2.30) acquired in learning, is referred to as a
predictive pdf.

Design
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The optimal decision strategy is constructed by a recursive procedure consisting in an evaluation of
functions Vt : (d1:t−1)∗ → R,

Vt(d1:t−1) = min
f(at|d1:t−1)

E
[
Vt+1

(
d1:t
) ∣∣d1:t−1

]
. (2.31)

The recursion is performed in a backward manner. It starts at t = t̊ and the initial function Vt̊+1(d
1:̊t) is

defined by
Vt̊+1(d

1:̊t) = E
[
L(a1:̊t,∆1:̊t,Θ1:̊t)

∣∣∣d1:̊t
]
. (2.32)

For evaluation of (2.32) a conditional pdf f(Θ1:̊t|d1:̊t) is needed. For the observation model (2.18), time
evolution model (2.19), and under natural conditions of control (2.23) it can be constructed using a
recursive relation

f(Θ1:t|d1:t) =
f(∆t|at,Θt, d

1:t−1)f(Θt|at, d
1:t−1,Θt−1)

f(∆t|at, d1:t−1)
f(Θ1:t−1|d1:t−1),

where f(∆t|at, d
1:t−1) is given by (2.30). The recursion starts with the prior pdf f(Θ0).

The expectation in (2.31) is taken with respect to

f
(
dt

∣∣d1:t−1
)

= f
(
∆t

∣∣at, d
1:t−1

)
f
(
at

∣∣d1:t−1
)
,

determined by the predictive pdf (2.30) and the particular decision rule f
(
at

∣∣d1:t−1
)
. The optimal

strategy OR then consists of minimizing arguments in (2.31), i.e.,

Of(at|d1:t−1) ∈ argmin
f(at|d1:t−1)

E
[
Vt+1(d1:t)

∣∣d1:t−1
]
. (2.33)

Of(at|d1:t−1) in (2.33) are not determined uniquely. Nevertheless, as all minimizers in (2.33) lead to
the same expected loss, the optimal decision rules Of(at|d1:t−1) can be selected arbitrarily. Because
E
[
Vt+1(d1:t)

∣∣d1:t−1
]

in (2.31) is a linear functional of f(at|d1:t−1), it is clear that Of(at|d1:t−1) is any
pdf, which gives probability 1 to the set

arg min
at∈a∗

E
[
Vt+1(d1:t)

∣∣at, d
1:t−1

]
,

and the optimal strategy can be always selected as a non-randomized one.

2.3.3 Practical Aspects

Decision strategies designed according to (2.33) are optimal ones within the Bayesian framework. How-
ever, the price paid for the optimality is often too high. Evaluation of functions Vt(d1:t−1), filtrations
f(Θt|d1:t), decision strategies f(at|d1:t−1), and others is computationally too expensive. Furthermore,
these functions are typically too complex to be represented in a computer. In practice, it is necessary to
adopt additional simplifying assumptions and employ some approximate techniques [26]. In what follows,
the most common assumptions and techniques simplifying learning and design are shortly mentioned.

Reduced time-evolution model

Internals Θt frequently represent unknown parameters (in a common sense) of the observation model
(2.18) and are supposed to be time invariant. In this case the time evolution model (2.19) reduces to

f(Θt|at, d
1:t−1,Θt−1) = δ(Θt −Θt−1), (2.34)

time updating step (2.28) in Bayesian filtering vanishes, and the evaluation of the conditional pdf
f
(
Θt

∣∣d1:t
)

gets a simple form

f(Θ|d1:t) ∝ f(∆t|at, d
1:t−1,Θ)f(Θ|d1:t−1), (2.35)

13



where Θ ≡ Θt, ∀t ∈ t∗. f
(
Θ
∣∣d1:t

)
in (2.35) is called a posterior pdf. If not said otherwise, it is assumed

in the following text that the internals Θt are time invariant. The subscript t of the internals is then
omitted.

Models with finite memory

In practical applications, it is usually reasonable to suppose that observations ∆t do not depend on a
complete history of observations but only on a few last data records. In other words, it is supposed that
the observation model (2.18) has a form

f(∆t|at, d
1:t−1,Θ) = f(∆t|at, d

t−T :t−1,Θ), (2.36)

for some T ≥ 1. Furthermore, observations ∆t often do not depend on all entries of vector dt−T :t−1.
Then, the observation model can be written in a form

f(∆t|at, d
1:t−1,Θ) = f(∆t|at, φt−1,Θ), (2.37)

where φt−1, referred to as a state vector, is a subvector of dt−T :t−1, typically with a fixed structure; see
Section 3.1. Note, that if an observation model with finite memory is employed, it is necessary to specify
starting data d1−T :0 needed for construction of initial state vectors φ0 . . . , φT−1.

Conjugate prior

A typical problem of Bayesian learning is a form of a posterior pdf, which is often too complex to be
treated in a computer. Under assumptions (2.34) and (2.36), this difficulty vanishes if the observation
model is from the exponential family, i.e., the model can be expressed as

f(∆t|at, φt−1,Θ) = A(Θ) exp(〈B(Ψt), C(Θ)〉), (2.38)

where Ψ′
t ≡ (∆′

t, a
′
t, φ

′
t−1), A(·) is a nonnegative scalar function defined on Θ∗, B(·), and C(·) are

vector functions of the same dimension defined on Ψ∗
t and Θ∗, and 〈·, ·〉 is a standard scalar product.

For models from an exponential family the prior pdfs can be selected in a conjugate form [7], which is
preserved during estimation. Considering such an observation model and a conjugate prior pdf in a form

f(Θ) ∝ A(Θ)ν0 exp(〈V0, C(Θ)〉)

for some ν0 and a vector V0, such that
∫

A(Θ)ν0 exp(〈V0, C(Θ)〉)dΘ < +∞. The corresponding posterior
pdf has a form

f(Θ|d1:t) ∝ A(Θ)νt exp(〈Vt, C(Θ)〉), (2.39)

where

νt = ν0 + t,

Vt = V0 +
t∑

τ=1

B(Ψτ ). (2.40)

It is seen that for given functions A(·) and C(·) the posterior pdf is entirely represented by the parameters
νt and Vt.

Approximate learning

Observation models with conjugate prior pdfs are often too simple for practical applications. On
that account, more complex models must be employed, which makes the learning technically difficult.
A compromise between complexity of models and feasibility of learning can be achieved by approximate
learning. We briefly mention two algorithms designed for Bayesian estimation of dynamic models – the
quasi-Bayes algorithm [26] and the projection-based algorithm [2].
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The quasi-Bayes algorithm is designed for estimation of finite probabilistic mixtures, i.e., observation
models which can be expressed in a form

f(∆t|at, φt−1,Θ) =
c̊∑

c=1

αcm(∆t|at, φt−1,Θc), (2.41)

where c̊ ∈ N, Θ ≡ (α1, . . . , αc̊,Θ1, . . . ,Θc̊), αc are non-negative weights such that
∑c̊

c=1 αc = 1, and pdfs
m (∆t |at, φt−1,Θc ), referred to as components of the mixture, are supposed to be from the exponential
family. The components are supposed to be of the same type, typically Gaussian pdfs, and differ only in
values of their parameters Θc.

The quasi-Bayes algorithm [26] constructs an approximate posterior pdf in a product form

f(Θ|d1:t) = Diα(κt)
c̊∏

c=1

f(Θc|d1:t), (2.42)

where κt ≡ (κ1;t, . . . , κc̊;t) is a vector with positive entries, Diα(κ) is a Dirichlet pdf of α ≡ (α1, . . . , αc̊),
i.e.,

Diα(κt) =
∏c̊

c=1 α
κc;t−1
c

B(κt)
, B(κt) =

∏c̊
c=1 Γ(κc;t)

Γ(
∑c̊

c=1 κc;t)
,

and Γ(·) is the Gamma function [1]. Approximate posterior pdfs of component parameters f(Θc|d1:t) in
(2.42) are supposed to be in a conjugate form to the observation models of corresponding components
m(∆t|at, φt−1,Θc). Data updating of the approximate posterior pdf (2.42) is then provided in the
following way. For all c ∈ c∗,

κc;t+1 = κc;t + wc;t+1

f(Θc|d1:t+1) ∝
(
m
(
∆t+1

∣∣at+1, d
1:t,Θc

))wc;t+1
f(Θc|d1:t), (2.43)

where

wc;t+1 =
κc;t

∫
m (∆t+1 |at+1, φt,Θc ) f(Θc|d1:t)dΘc∑c̊

c̃=1 κc̃;t

∫
m (∆t+1 |at+1, φt,Θc̃ ) f (Θc̃ |d1:t ) dΘc̃

.

From (2.43) it is clear that the approximate posterior pdfs f(Θc|d1:t+1) remain in the conjugate form
and their evaluation reduces to updating of finite dimensional statistics analogous to that in (2.39).

Projection-based algorithm [2] can be seen as a generalization of the quasi-Bayes algorithm. Approxi-
mate posterior pdfs are searched within a pre-specified class of pdfs in the following way: the approximate
posterior pdf in time t + 1 is a pdf, which minimizes the Kullback-Leibler divergence from the correctly
updated approximate pdf in time t. Experimental results indicate that the projection-based algorithm
provides better results then the well established quasi-Bayes algorithm [4]. It is also worth to be mentioned
that the projection-based algorithm can be successfully used for estimation of more complex models then
the finite mixtures (2.41); see [3].

Data-driven design

In general, the loss function (2.21) may depend on actions at, observations ∆t, and unobservable
internals Θt. However, often the objectives of the decision making do not involve internals Θt, typically if
they represent unknown parameters of the observation model. The design with a loss function independent
of the unobservable internals is called data-driven. The merit of the data-driven design is that the
otherwise technically difficult evaluation of Vt̊+1(d

1:̊t), see (2.32), becomes trivial as Vt̊+1(d
1:̊t) = L(d1:̊t).

Additive loss function

A loss function L(d1:̊t,Θ1:̊t) is called additive if it can be expressed in a form

L
(
d1:̊t,Θ1:̊t

)
=

t̊∑
t=1

lt (dt,Θt) , (2.44)
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where lt : d∗t ×Θ∗
t → [C,+∞] and C ∈ R. Compared to the general case employing (2.31) and (2.32), the

design with an additive loss function can be performed in an easier way. For functions Vt(d1:t−1) defined
so that

Vt

(
d1:t−1

)
= min
{f(at̃|d1:t̃−1)}t̊

t̃=t

E

 t̊∑
τ=t

lt (dτ ,Θτ )

∣∣∣∣∣∣d1:t−1


we obtain a recursive relation

Vt

(
d1:t−1

)
= min

f(at|d1:t−1)
E
[
lt (dt,Θt) + Vt+1

(
d1:t
) ∣∣d1:t−1

]
(2.45)

starting with
Vt̊+1

(
d1:̊t
)

= 0.

Receding horizon

In general, the computational complexity related to evaluation of functions Vt̊+1(d
1:̊t) grows expo-

nentially with the length of the decision horizon t̊, which makes the computations practically infeasible
even for moderate t̊. Receding horizon represents a widely used approximation method, which over-
comes this difficulty. It is based on the following idea. In each time t, the approximate decision strategy
Rt ≡ {f(aτ |d1:τ−1)}t+T −1

τ=t , where T ∈ N, is designed so that it minimizes the conditional expected loss

E
[
Lt

(
dt:t+T −1,Θt:t+T −1

) ∣∣d1:t−1
]
. (2.46)

In (2.46), Lt

(
dt:t+T −1,Θt:t+T −1

)
is a loss function to the receding horizon (time t − 1 + T ), which is

selected by the decision maker. From the decision strategy Rt only the initial decision rule f(at|d1:t−1) is
used. In the next time t+1, an approximate decision strategy Rt+1 is newly designed. For a given length
of the receding horizon T the complexity of the design grows only linearly with the decision horizon t̊.

For a successful application of the receding horizon it is essential that suitable loss functions Lt

(
dt:t+T −1,Θt:t+T −1

)
can be easily found. For example, in case of an additive loss function (2.44) the loss functions Lt

(
dt:t+T −1,Θt:t+T −1

)
,

are typically selected in a form

Lt

(
dt:t+T −1,Θt:t+T −1

)
=

t+T −1∑
τ=t

lt(dτ ,Θτ ). (2.47)

Simplified outer model of the system

In case of the receding horizon strategy applied to models with time-invariant internals Θ, see (2.34),
the computational complexity can be further reduced if the posterior pdf is “learned enough”, i.e., it
is based on a large set of data records or on a strong prior information. In this case, it can be sup-
posed that the posterior pdfs would not change much to the receding horizon and the posterior pdfs
f(Θ|d1:t), . . . , f(Θ|d1:t+T−1), can be approximated by the actual posterior pdf f(Θ|d1:t−1).

It is often technically easier to work with observation model f(∆t|at, φt−1,Θ) for some fixed Θ instead
of the predictive pdf f

(
∆t

∣∣at, d
1:t−1

)
=
∫

f(∆t|at, φt−1,Θ)f(Θ|d1:t−1)dΘ. On that account, further
simplification can be achieved by substituting a point estimate of the parameter to the observation
model. In this case, at time t a point estimation Θ̂ is established from the posterior pdf f(Θ|d1:t−1)
using a suitable loss function. The outer models f

(
∆τ

∣∣aτ , d1:τ−1
)
, for τ ∈ {t, . . . , t + T − 1}, are then

approximated by f (∆τ |aτ , φτ−1,Θ) |Θ=Θ̂. This method is referred to as a certainty-equivalence strategy.

2.4 FPD

This paragraph is focused on a special design method called fully probabilistic design (FPD) [24], [26],
which can be taken as an alternative to the decision making based on the minimization of the expected
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loss (2.33). Although the FPD can be performed with both data and internals [27], we confine to the
data-driven design in tis work.

Within the FPD, the objectives of the decision making are described by a so-called ideal pdf

If(d1:̊t) =
t̊∏

t=1

If(∆t|at, d
1:t−1) If(at|d1:t−1),

which is simply interpreted as a desired distribution on the set of all trajectories. The FPD defines the
optimal decision strategy OR as a randomized decision strategy which minimizes the Kullback-Leibler
divergence from the ideal pdf, i.e.,

OR ∈ argmin
(f(at|d1:t−1))t̊

t=1

D
(
f
(
d1:̊t
) ∣∣∣∣∣∣ If

(
d1:̊t
))

, (2.48)

where the joint pdf f(d1:̊t) =
∏t̊

t=1 f(∆t|at, d
1:t−1)f(at|d1:t−1) is determined by the outer model of the

system (2.30), or its approximation (typically using the certainty-equivalence approach, see Section 2.3.3),
and the searched randomized decision strategy.

The main asset of the FPD is that it has an explicit solution [26]. It can be found recursively using
the dynamic programing. The optimal solution of (2.48) is given by the following formulas:

Of(at|d1:t−1) =
If(at|d1:t−1) exp(−ωt(at, d

1:t−1))
γt−1(d1:t−1)

(2.49)

ωt(at, d
1:t−1) =

∫
f(∆t|at, d

1:t−1) ln
f(∆t|at, d

1:t−1)
If(∆t|at, d1:t−1)γt(d1:t)

d∆t

γt−1(d1:t−1) =
∫

If(at|d1:t−1) exp(−ωt(at, d
1:t−1))dat

The recursion is performed backwards and starts in t̊ with γ̊t(d
1:̊t) = 1.

In connection with the multiple participant decision making, an advantage of the fully probabilistic
design is that it allows to create common objectives in an easy way, see Section 4. However, it should be
mentioned that the FPD suffers also from some conceptual shortcomings. They are briefly discussed in
Appendix B.
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Chapter 3

Towards Multiple-Participant
Decision Making

In multiple-participant decision making several decision makers, shortly referred to as participants, deal
with, at least partially, overlapping parts of a system. Our approach to the decision making with multiple
participants is determined by two basic assumptions:

• Neither participants’ states of knowledge about the system nor their objectives are required to be
a priori consistent in any way.

• Computational resources of individual participants are limited.

The assumption on limited computational resources forces us to search for a decision making procedure
in a distributed form, i.e., all computations are to be performed by individual participants and should
involve only quantities related to the parts of the system treated by particular participants.

The inconsistency of objectives and states of knowledge of individual participants causes that if the
participants act independently, as if they were the only decision makers in their parts of the system, then
the decision making can easily became inefficient. Typical features of such inefficiency are:

• The participants compete in the sense that each participant makes effort to draw the trajectory of
the system closer to its objectives. It can cause a temporal shift to more expensive actions which,
due to difference of the objectives, do not have the desired effect. As a result, the competition can
lead to simultaneous increasing of losses of individual participants.

• Each participant designs its strategy using only its own incomplete knowledge about the part of the
system it deals with. This knowledge could be possibly strengthen using the information provided
by the participants which deal with the same part of the system. In case of individually acting
participants, such information is completely ignored.

A common reason of the discussed inefficiency is that the participants reach information about objectives
and knowledge of other participants only indirectly through observed data. Such an information exchange
is slow and thus ineffective. It is expected that decision making procedures which take the diversity of
objectives into account and are able to exploit the knowledge provided by other participants have a
potential to perform better than individually acting participants. Our goal is to design methods which
allow the participants to share the information on their objectives and knowledge about the system
with other participants dealing with the same part of the system and use them to enhance the designed
strategies. As we are aiming at a distributed solution, these methods are to be applied by individual
participants. However, a design of the cooperation methods is a matter of a future development. At this
stage we focus rather on a formulation of the multiple participant decision making.

It turns out that the formulation of the problem itself, especially specification of a criterion according
to which the quality of sets of participants’ decision strategies could be compared, is a hard task. Although
a wide class of such criterions can be considered, none of them follows directly from the original decision
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tasks of the individual participants. In order to set down a unique criterion, it is necessary to state
additional conditions, which are, however, inevitably tightly related to a concrete application. For a
further discussion a particular set of such conditions is proposed thereinafter. It allows to illustrate
possible ways of solution of some partial problems related to multiple participant decision making, as
well as point out the bottlenecks faced.

This chapter starts with a formal description of a single participant, Section 3.1. The formalism is
extended to the multiple participants in Section 3.2. In Section 3.3, we formulate basic assumptions on
which our approach to multiple participant decision making is based. Its general aspects are shortly
discussed in Section 3.4 and in Section 3.5 they are further inspected for a particular form of the multiple
participant decision making, namely, for fully cooperating participants. The chapter is closed with a
short summary, Section 3.6.

3.1 Single Participant

In this work the term participant means a particular implementation of a Bayesian decision maker per-
forming a regular Bayesian decision making, generally described in Section 2.3, or a decision maker
performing fully probabilistic design; see Section 2.4. As the participant represents a basic element of the
multiple participant decision making, we summarize its main features here. We start with the participant
performing a regular Bayesian decision making.

1. The participant deals with a sequence of random quantities (data) d1:̊t ≡ (d1, . . . , d̊t), where dt ≡
(at,∆t) consist of actions at generated by the participant according to a randomized decision

strategy
(
f(at|d1:t−1)

)̊t
t=1

, and observations ∆t. Unobservable quantities are not considered except
an unknown constant parameter Θ.

2. The participant models the system by a parametric, finite-memory observation model

f(∆t|at, d
1:t−1,Θ) = f(∆t|at, d

t−T :t−1,Θ) = f(∆t|at, φt−1,Θ),

where T ∈ N, and φt−1 is a subvector of dt−T :t−1 with a given fixed structure, e.g., φt−1 ≡
(∆t−1, at−1,∆t−2,∆t−3), for all t ∈ t∗. The observation model is considered to be time-invariant,
i.e.,

∀t ∈ {2, . . . , t̊}, f(∆t|at, φt−1,Θ) = f(∆t−1|at−1, φt−2,Θ)|∆t−1=∆t,at−1=at,φt−2=φt−1 .

3. Initial knowledge about the unknown parameter Θ is described by a prior pdf f(Θ) ≡ f(Θ|d1−T :0).
Initial data d1−T :0 needed for a construction of vectors φ0, . . . φT−1 are supposed to be given. For
simplicity, d1−T :0 are typically omitted in conditional pdfs.

4. Participant’s objectives are described by a loss function

L :
(
d1:̊t
)∗
→ [C,+∞],

for some C ∈ R.

5. Learning is performed by sequential evaluation of the posterior pdf f(Θ|d1:t) according to (2.35) or,
more often, using an approximate technique like the quasi-Bayes algorithm (2.43) or a projection-
based algorithm.

6. An optimal decision strategy
R ≡

(
f
(
at

∣∣d1:t−1
))

t∈t∗

is designed according to (2.33) so that it minimizes expected loss (2.25). At this point, some
approximation techniques, e.g., a receding horizon, or a certainty-equivalence strategy, see Section
2.3.3, are frequently involved.

A participant performing the FPD differs from the regular Bayesian one in points (4) and (6). Namely:

• Participant’s objectives are expressed by a joint ideal pdf If(d1:̊t).

• An optimal decision strategy is designed by the FPD; see Section 2.4.
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3.2 Multiple Participants

Multiple-participant decision making arises whenever some part of the world is supposed to be influenced
by more than one decision maker (participant). In other words, in multiple participant decision making
we assume a group of participants such that the sets of random quantities modelled or generated by
individual participants, at least partially, overlap.

In the case of multiple participants, a part of the world which is of an interest of at least one participant
is referred to as a system. A part of the world which is of an interest of the participant p is labeled as an
environment of the participant p.

Before we approach to the description of the participants themselves, we introduce a notation regarding
the system.

• The system is described by a sequence of random quantities d1:̊t ≡ (d1, . . . d̊t), referred to as data.

• Quantities dt are n-dimensional random vectors, for n ∈ N, with entries dt;i, i ∈ {1, 2, . . . , n}, i.e.,
dt ≡ (dt;1, dt;2, . . . , dt;n).

In the rest of this section, notation related to the multiple-participant decision making is introduced.
Remind, that it is focused merely on a formal description. The ideas behind the multiple-participant
decision making are discussed thereinafter.

For p̊ ∈ N, let us consider p̊ participants, each of which is an instance of a participant generally
described in Section 3.1, except that the participants need not necessarily treat the complete system. For
all p ∈ p∗ ≡ {1, . . . , p̊}, let pi∗ ⊂ {1, 2, . . . , n}, pi∗ 6= ∅.

Each participant p

• deals with a sequence of data pd1:̊t ≡ ( pd1, . . . ,
pd̊t) describing its environment, where for all t ∈

t∗, pdt ≡ (dt;i)i∈ pi∗ ,

• splits data pdt into its actions pat and observations p∆t in time t, i.e., pdt ≡ ( pat,
p∆t),

• models its observations by a parametric model

pf( p∆t| pat,
pφt−1,

pΘ),

where pφt−1 is, for some pT ∈ N, a subvector of pdt− pT :t−1 with a fixed structure,

• has a prior pdf pf( pΘ) of the unknown parameter pΘ,

• describes its objectives by a loss function pL : ( pd1:̊t)∗ → [ pC,+∞], pC ∈ R, or by an ideal pdf
pIf( pd1:̊t) defined on its data pd1:̊t, depending on which approach to the design of a decision strategy
it employs, see Section 3.1,

• evaluates (approximately) its posterior pdf pf( pΘ| pd1:t),

• applies its decision strategy
pR ≡

(
pf( pat| pd1:t−1)

)
t∈t∗

designed by the regular Bayesian decision making or FPD using its loss function pL
(

pd1:̊t
)

or its

ideal pdf pIf
(

pd1:̊t
)
, respectively.

According to the relation between the environments of individual participants and the system, it holds
that

⋃
p∈p∗

pi∗ = {1, 2, . . . , n}. For p1, p2 ∈ p∗, such that p1 6= p2 and p1i∗ ∩ p2i∗ 6= ∅, a participant p2 is
called a neighbour of the participant p1. The participants p1 and p2 are shortly referred to as neighbours.
Data, in time t, in common of the neighbours p1, p2 are denoted p1,p2dt, i.e.,

p1,p2dt ≡ (dt;i)i∈ p1i∗∩ p2i∗ . (3.1)
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In what follows, we utilize a distinction of decision making tasks according to their domain: decision
making tasks solved by individual participants, i.e., those defined by models pf( p∆t| pat,

pφt−1,
pΘ),

priors pf( pΘ), and loss functions pL
(

pd1:̊t
)

or ideal pdfs pIf
(

pd1:̊t
)

on data pd1:̊t, are referred to as
local (decision making) tasks. Analogously, a decision making task defined on the system is referred to
as global (decision making) task. For convenience, the terms local and global task could be used also in
a more general sense, i.e., not only for Bayesian or FPD decision tasks.

3.3 Basic Assumptions

In this section, elementary assumptions on which our approach to multiple-participant decision making
is based are formulated. The assumptions are stated in a rather vague form as their purpose is just to
outline what kind of decision making problems we are aiming at.

1. First of all, we suppose that there is at least one pair of neighbours, i.e., there exist distinct
p1, p2 ∈ p∗, such that p1i∗ ∩ p2i∗ 6= ∅. This assumption can be replaced by a more strict one, which
ensures that the multiple-participant decision task cannot be trivially split into two independent
multiple-participant decision tasks: for all i∗1, i

∗
2 ⊂ {1, . . . , n}, such that i∗1 6= ∅, i∗2 6= ∅, and i∗1 ∪ i∗2 =

{1, . . . , n}, there exists p ∈ p∗ so that pi∗ ∩ i∗1 6= ∅ and pi∗ ∩ i∗2 6= ∅.
Both the above stated assumptions are reasonable for practical applications, nevertheless, for the
problem formulation they are not necessary. Thus, regarding sets pi∗, it is sufficient to suppose only
that ∀p ∈ p∗, pi∗ 6= ∅. Note, that it is impossible for any two participants to have in their common
a random quantity which represents actions of both of them. However, an action of a participant
may stand as an observation of another participant.

2. No restrictions are put on the parametric models of individual participants as well as on their prior
pdfs. It means that different participants may model a part of the system in their common by dif-
ferent models, parameterized by different parameters, and with different structures of state vectors.
Predictive pdfs

∫
pf( p∆t| pat,

pφt−1,
pΘ) pf

(
pΘ
∣∣ pd1:t−1

)
d pΘ may also differ in their marginal pdfs

on a common part of the system.

3. No consistency of objectives (loss functions or ideal pdfs) of individual participants is required:
objectives of different participants regarding a part of the system in their common may arbitrarily
differ.

4. Computational resources of the participants are limited. This crucial assumption, fully respecting
reality, leads to the same practically significant constraints as in case of a single participant – para-
metric models, decision strategies prior/posterior pdfs, loss functions, and ideal pdfs must be from
given fixed classes and parameterized by finite-dimensional parameters. Furthermore, the computa-
tional resources restrict a extent of a decision making tasks solved by individual participants. This
tends us to a formulation of multiple-participant decision making in a distributed form.

Namely, we assume that each participant p deals only with its environment, i.e., with data pd1:̊t. All
decision strategies are solely designed by the participants themselves. Nevertheless, for a formulation
of the distributed multiple-participant decision making, as well as for its testing, it turns out to be
convenient to assume a virtual global decision maker dealing with data d1:̊t.

Note, that this assumption is not to be taken definitively. If it turns out to be convenient and
computationally acceptable, it may be somewhat relaxed. For example, participant p could handle
data (dt;i)i∈ pi∗∪ p̃i∗ , where p̃ is a neighbour of participant p.

5. To reach a desired effect of the multiple-participant decision making, the participants are to be
endowed with mechanisms for cooperation with their neighbours.

6. A normative theory of the multiple-participant decision making is aimed at. In other words, we
want to avoid a descriptive approach modelling decision making within a group of real beings. Of
course, there is no clear line between normative and descriptive approach, see [46], however, we want
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at least to attempt to formulate some kind of rational basis for the multiple-participant decision
making.

7. For simplicity, it is assumed that

• all participants observe the system and apply their actions simultaneously,

• all participants have the same decision horizon t̊,

• data structures of individual participants, i.e., sets pi∗, are fixed,

• all participants perform regular Bayesian decision making or all participants perform FPD.

Although these assumptions may be restrictive in practical applications, they are not related to the
essence of the multiple participant decision making.

3.4 Problem Statement

As stated in the introduction of this chapter, the goal of our approach to the multiple-participant decision
making is to provide methods for cooperation of the participants which enable then to design decision
strategies that are “better” than strategies designed by individually acting participants. The enhanced
strategies are to be designed on assumptions and conditions stated in Section 3.3, especially respecting
limited computational abilities of the participants, i.e., the desired methods are to be applied by the
participants within their environments only. To complete a rough formulation of the problem it is
necessary to specify what is meant by “better” decision strategies. In other words, we need to establish
a partial order on p̊-tuples of decision strategies designed by individual participants. The desired partial
order represents some kind of a global task. It should be stressed that if we are going to enhance the
overall behaviour of the system in any sense, such a global task must always exist.

In case of a single participant, a unique preference order on data and a unique quantification of
uncertainty are considered. To extend the preference order to all decision strategies it remains just select
a suitable method for treating the uncertainty. In case of multiple participants we are facing a more
complex problem - we have p̊ preference orders on data and p̊ descriptions of uncertainty. Both of them
are specified only partially, i.e., on the environments of individual participants, and they need not to be
consistent in any way. Moreover, although the individual participants are Bayesian decision makers, it
does not automatically imply that the global task must be based on the same principles as the local ones.

Obviously, there is a wide range of possible formulations of the multiple-participant decision making
depending especially on

• the approach to multiple objectives,

• treating the uncertainty (in general),

• the interpretation of ambiguity in quantifications of uncertainty.

Any specific formulation cannot be derived solely from the attributes of individual participants – their
loss functions, parametric models, and prior pdfs. In any case the formulation depends on a particular
application, i.e., on desired properties of the solution and additional assumptions, which can be stated
under given conditions.

A systematic classification of possible formulations of multiple participant decision making is out
of the scope of this work. Instead of it, we attempt to outline a formulation of a specific case – fully
cooperating participants with independent sources of prior information. This particular case serves as a
basis for a further discussion on methods for cooperation of participants.

Notes:

• It may be tempting to have a completely “facilitator free” formulation of the multiple participant
decision making, i.e., a formulation based solely on loss functions, parametric models and prior
pdfs of individual participants. However, any particular formulation necessarily depends on some
optional parameters in a general sense, like, e.g., the above mentioned approach to the multiplicity
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of objectives. These parameters cannot be acquired from the participants and must be supplied
externally. Thus, some kind of facilitator must be inevitably employed to provide the parameters.

• The multiplicity of objectives makes the formulation of the multiple-participant decision making
close to fields dealing with multi-objective optimization. However, known results, e.g., [30] cannot
be used directly as the discussed problem is somewhat more complex due to multiple, mutually
inconsistent, descriptions of uncertainty.

• Remind, that at this stage we are dealing only with a formulation of the problem and not with
its solution. To design a distributed solution, or at least its approximation, directly by some
segmentation of the global task is a hard problem indeed. However, the global task represents a
unique criterion by which p̊-tuples of decision strategies can be compared. Having such a criterion,
we may design various ad-hoc distributed “solutions” directly and evaluate their performance ex-
post, at least in an experimental way.

• Due to the insufficiencies of the FPD discussed in Section B, we focus in the rest of this chapter on
participants performing regular Bayesian decision making.

3.5 Fully Cooperating Participants

In this section we attempt to outline a way in which a global task for fully cooperating participants with
independent sources of prior information could be formulated. As it is seen below, even in this relatively
simple case, the formulation is a hard task. In many places there arise problems which either require
further inspection or must be eliminated by additional assumptions at the cost of restrictions of the class
of possible applications.

At this point, it is convenient to make in advance an assumption on the general form of the global task:
The global task is formulated as a Bayesian one in the sense of Section 2.3. It should be stressed, that
this is a technical assumption only and as a necessity it does not follow from anything stated up to know.
However, the assumption can be, at least partially, justified in the following way: All the participants are
Bayesian decision makers. It means, that their decision strategies are designed according to principles
which ensure certain kind of rationality of the decision making [23], [9]. It seems to be natural to require
these principles to be satisfied also in the global task.

The Bayesian nature of the global task implies that the global objectives and global uncertainty can
be treated separately. This fact significantly simplifies the formulation.

The desired features of fully cooperating participants are:

• The global objective is in some sense a compromise among objectives of individual participants.
Objectives of any participant are not to be preferred to objectives of other participants.

• For a global quantification of uncertainty all prior knowledge provided by individual participants
is exploited. At the same time, the added parasitic prior information should be minimal. By the
parasitic information we mean a prior information for which there is no evidence.

• Participants are supposed to act in a fair way – they are willing to provide all their knowledge and
information on their objectives.

3.5.1 Form of the Global Task

The goal of the global task is to provide a partial order on p̊-tuples of decision strategies pf
(

pat

∣∣ pd1:t−1
)

of individual participants. Assuming a fixed vector of past data d1:t−1, each participant p generates its
action pat according to its decision strategy independently of actions generated by other participants.
Furthermore, action pat is generated irrespectively of data p̃d1:t−1 unknown to the participant p. As
a result, global decision strategies

(
f
(
at

∣∣d1:t−1
))

t∈t∗
which can be represented by p̊-tuples of decision

strategies of the individual participants
(

pf
(

pat

∣∣ pd1:t−1
))

t∈t∗
restrict to those which exhibit the above
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indicated conditional independences, i.e., to those with decision rules in a form

f
(
at

∣∣d1:t−1
)

=
p̊∏

p=1

pf
(

pat

∣∣ pd1:t−1
)
. (3.2)

at ≡
(

1at, . . . ,
p̊at

)
in (3.2) denote global actions, i.e., random vectors which consist of actions of individual

participants.
Let us denote the set of all global decision strategies which can be represented by p̊-tuples of local

decision strategies R̄∗. To acquire an order on p̊-tuples of decision strategies of individual participants it
is then sufficient to establish an order on the set R̄∗. However, it turns out to be convenient to formulate
the global task as a more general one – without the restriction of decision strategies to the set R̄∗.
Then, the formulation of the global task consists in construction of a suitable global loss function L(d1:̊t)
characterizing the global preference order on data and probabilities on the system expressing uncertainty
quantification in dependence on the global decision strategy. The probabilities are represented by a
system of pdfs

(
fR(d1:̊t)

)
R∈R∗

, where R∗ is a set of all global decision strategies. This approach not

only makes the formulation easier, but, among others, it allows to evaluate limitations of the distributed
solution. For example, the difference

min
R̄∈R̄∗

ER̄

[
L(d1:̊t)

]
− min

R∈R∗
ER

[
L(d1:̊t)

]
,

where ER̄ [·] and ER [·] denote expectations with respect to fR̄(d1:t) and fR(d1:t) respectively, expresses an
unavoidable drop of quality of the decision making caused by employing local decision strategies instead
of the global one.

3.5.2 Uncertainty Description

Since the global task is assumed to be a Bayesian one, the uncertainty is to be quantified by a joint pdf
on the system fR

(
d1:̊t
)

depending on a randomized strategy

R ≡
(
f
(
at

∣∣d1:t−1
))̊t

t=1
.

We assume that fR

(
d1:̊t
)

can be expressed similarly as in case of individual participants. Namely,

fR

(
d1:̊t
)

=
∫ t̊∏

t=1

f
(
∆t

∣∣at, d
1:t−1,Θ

)
f
(
at

∣∣d1:t−1,Θ
)
f (Θ) dΘ =

=
∫ t̊∏

t=1

f (∆t|at, φt−1,Θ) f
(
at

∣∣d1:t−1
)
f (Θ) dΘ. (3.3)

In (3.3):

• ∆t denotes global observations, i.e., random vectors consisting of all entries of dt, which are not
actions of any participant. Remind, that the global observations ∆t need not consist of all entries
of all observations p∆t of individual participants, because observations of a participant may contain
actions of another one,

• f (∆t|at, φt−1,Θ) is a time-invariant parametric model with a state vector φt−1 of a fixed structure,

• pdfs f
(
at

∣∣d1:t−1
)

represent a global decision strategy,

• pdf f (Θ) is a global prior pdf.
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Again, the existence of a suitable time-invariant parametric model f (∆t|at, φt−1,Θ) and a prior pdf
f (Θ) is rather a technical assumption at this stage. Conditional independence of at and Θ given d1:t−1

is implied by the natural conditions of decision making (2.23), which are assumed to be valid for all
participants.

In what follows we focus on constructing of a suitable global parametric model and a global prior
pdf from local parametric models and local prior pdfs, so that they reflect general requirements for
the fully cooperating participants stated in Section 3.5. Namely, all available prior knowledge provided
by individual participants is to be exploited, while supposing that these pieces of information are not
intentionally modified. Note, that the following parts represent just a sketch of possible a approach. On
that account it is formulated in a rather vague way and the technical details are not to be taken too
exactly. For convenience, we also assume that the parameters Θ and pΘ are individual pdfs themselves.
The parametric models are then represented directly by the sets Θ∗ and pΘ∗.

Global Parametric Model

According to the general assumptions stated in Section 3.3, the parametric models of individual
participants need not to be consistent in the sense that any two neighbours may model a part of the
system in their common by arbitrarily different parametric models. For further progression, it is worth
to emphasize the following, often contradicting, aspects of a choice of a parametric model.

• Parametric model pΘ∗ represents a strong prior information assigning zero probability to models
out of pΘ∗.

• Parametric model must respect limited computational abilities of a participant.

Ideally, the choice of a parametric model should be supported by a prior knowledge based, e.g., on
a theoretical analysis of a particular system, or eventually should reflect a lack of a prior knowledge.
However, it is often practically impossible because of the related computational complexity. Then, the
parametric model must be selected from a class of parametric models for which feasible algorithms are
available. As a result, the choice of a parametric model introduces into the decision making task a
prior information for which there is no evidence. Such a prior information, especially in connection with
parametric models, we shortly refer to as a parasitic prior information.

The below proposed approach to the construction of a global parametric model comes out of dis-
tinction of the sources of inconsistency of local parametric models. The basic idea is as follows: if the
inconsistency of the local parametric models is completely caused by computational restrictions of indi-
vidual participants, i.e., not by a prior knowledge, there is no any real contradiction among them. The
global parametric model is then to be selected so that it, in some sense, contains all local parametric
models. In other words, the global parametric model should be able to model relations among quantities
which could be modelled by any one of the local parametric models. The amount of parasitic prior
information added in this stage should be as small as possible.

The construction of a global parametric model becomes more complex if the inconsistency is caused
by different prior information. The reason is that, in dependence on a particular parametric model, such
information can be stronger than any evidence represented by an arbitrarily large, but finite, number of
observations. If there appears this kind of inconsistency in prior information pieces, the above outlined
approach can not be applied. Instead of it, more detailed models of the inconsistency must be employed.

In what follows we assume that the inconsistency is solely caused by the technical limitations and
thus we are able, at least theoretically, to select a suitable global parametric model.

Notes:

• For a particular participant p, let us split global observations, actions, and state vectors to quantities
considered by p-th participant and the remaining ones: ∆ ≡ ( p∆, p̄∆), a ≡ ( pa, p̄a), and φ ≡
( pφ, p̄φ). Time indices are omitted for simplicity. Then, the global parametric model induces a
parametric model of observations of p-th participant given the global actions a and state vector φ
as a set of marginal pdfs

f ( p∆|a, φ,Θ) ,Θ ∈ Θ∗. (3.4)
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At the same time, because participant p do not care about quantities p̄a and p̄φ, its observations p∆
can be considered to be conditionally independent of ( p̄a, p̄φ) given ( pa, pφ), for all pΘ ∈ pΘ∗, within
the model used by this participant. Thus, its parametric model pf ( p∆| pa, pφ, pΘ) , pΘ ∈ pΘ∗ can
be equivalently substituted by a parametric model

pf ( p∆|a, φ, pΘ) , pΘ ∈ pΘ∗, (3.5)

where
pf ( p∆|a, φ, pΘ) = pf

(
p∆
∣∣ pa, p̄a, pφ, p̄φ, pΘ

)
≡ pf ( p∆| pa, pφ, pΘ)

for all p∆ ∈ p∆∗, pa ∈ pa∗, p̄a ∈ p̄a∗, pφ ∈ pφ∗ and p̄φ ∈ p̄φ∗. This direction seems to a be suitable
way to define what it means that a global parametric model includes a local one. Namely, the
global parametric model Θ∗ can be considered to include local one pΘ∗ if for any pΘ ∈ pΘ∗ there
is some Θ ∈ Θ∗ such that

pf ( p∆|a, φ, pΘ) = f ( p∆|a, φ,Θ)

for all p∆ ∈ p∆∗, a ∈ pa∗, and φ ∈ φ∗, where pf ( p∆|a, φ, pΘ) and f ( p∆|a, φ,Θ) are “extended”
local model (3.5) and “restricted” global model (3.4) respectively.

• The amount of a parasitic prior information introduced to the decision making should be as small
as possible. In case of a parametric model, such information is represented especially by causeless
exclusion of some Θ from Θ∗. To illustrate it, consider a parametric model Θ∗ of two random
quantities ∆1,∆2. Assume, that there is an evidence which indicates that pdfs f (∆1|Θ1) for
Θ1 ∈ Θ∗

1 and f
(
∆2

∣∣∆1,Θ2|1
)

for Θ2|1 ∈ Θ∗
2|1 are to be considered for modelling of ∆1 and the

dependence of ∆2 on ∆1 respectively. Then the parametric model f (∆1,∆2|Θ) ,Θ ∈ Θ∗, should
contain all marginal pdfs in Θ∗

1 and all conditional pdfs in Θ∗
2|1, in the sense that Θ∗ must satisfy

∀Θ1 ∈ Θ∗
1,∃Θ ∈ Θ∗, f (∆1|Θ1) = f (∆1|Θ) (3.6)

and
∀Θ2|1 ∈ Θ∗

2|1,∃Θ ∈ Θ∗, f
(
∆2

∣∣∆1,Θ2|1
)

= f (∆2|∆1,Θ) . (3.7)

Moreover, if no other evidence is available, then the parametric model f (∆1,∆2|Θ) ,Θ ∈ Θ∗, should
contain all combinations of marginal pdfs f (∆1|Θ1) and conditional pdfs f

(
∆2

∣∣∆1,Θ2|1
)
, i.e., it

should hold

∀Θ1 ∈ Θ∗
1,∀Θ2|1 ∈ Θ∗

2|1,∃Θ ∈ Θ∗, f (∆1,∆2|Θ) = f (∆1|Θ1) f
(
∆2

∣∣∆1,Θ2|1
)
. (3.8)

If Θ∗ satisfy (3.6) and (3.7) but does not satisfy (3.8) then it is impossible to define prior pdf
f (Θ) so that marginal pdf of ∆1 and conditional pdf of ∆2 given ∆1 are independent. Recall,
that pdfs are supposed to coincide with the parameters. In this case it may easily happen that,
e.g., an observation of ∆1 has an impact on the posterior pdf of conditional pdf of ∆2 given ∆1.
Such a property is undesirable if there is no prior evidence on relation of marginal pdfs of ∆1 and
conditional pdfs of ∆2 given ∆1

In case of the multiple participant decision making, the local parametric models provide information
on marginal and conditional pdfs which are to be included in the global parametric model. The
above discussion indicates that in order to minimize an impact of a parasitic information, the global
parametric model should be required to include not only the local parametric models but also some
kind of their combinations. Nevertheless, it is out of the scope of this work to bring any particular
procedure for constructing the global parametric model, or, at least, well formulated conditions
which are to be satisfied by the global model.

Global Prior Pdf

In the introduction of Section 3.5 we have made an assumption that the prior information of individual
participants come from independent sources. Then, the pieces of prior information can be taken as com-
plementing ones. This leads to the idea of construction of the global prior pdf: the pieces of participants’
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prior information expressed in a common suitable form are to be taken similarly as different blocks of
observations and used for evaluation of the global prior pdf via procedure analogous to evaluation of a
posterior pdf. Of course, this is a hard task in general. However, in a special, yet practically important
case, in which the individual prior pdfs correspond to some posterior ones a further progression is some-
what easier. Nevertheless, as it seen below, even in this relatively simple case a general solution is not
straightforward at all. In order to avoid technical difficulties, which are not substantial for the problem
addressed, we assume that all data quantities are discrete. Pdfs of data quantities are then to be taken
with respect to an underlying counting measure.

We discuss the addressed problem in two steps. In both of them the prior pdfs pf ( pΘ) of individual
participants are supposed to correspond to posterior ones for some sequences of, possibly virtual, observa-
tions with respect to some prior pdfs pf0 ( pΘ), which are agreed to represent complete lack of knowledge.
These ancillary prior pdfs we refer to as pre-prior pdfs in order to distinguish them from common prior
pdfs.

At first, we assume that the parametric models of individual participants are static ones, i.e., they do
not depend on participants’ actions and the state vectors are empty. Then, the local prior pdfs can be
expressed in a form

pf ( pΘ) ∝ pf0 ( pΘ)
∏

τ∈ pτ∗

pf ( p∆τ | pΘ) (3.9)

for some sequences of observations ( p∆τ )τ∈ pτ∗ , where the sets pτ∗ are supposed to be pairwise disjoint.
For fixed pre-prior pdfs pf0( pΘ), the prior pdfs pf ( pΘ), taken as functions of ( p∆τ )τ∈ pτ∗ , can be

seen as statistics in a Bahadur sense, i.e., mappings to arbitrary target spaces, see [42]. It is obvious
that, except for very special cases, the sequences ( p∆τ )τ∈ pτ∗ for which (3.9) holds are not determined
uniquely. Instead, pf ( pΘ) determine sets pA ⊂ ( p∆∗)|

pτ∗|, where | · | denotes cardinality of a set, of all
data sequences ( p∆τ )τ∈ pτ∗ for which (3.9) is satisfied

pA ≡

{
( p∆τ )τ∈ pτ∗ ∈ ( p∆∗)|

pτ∗|
∣∣∣ pf ( pΘ) ∝ pf0 ( pΘ)

∏
τ∈ pτ∗

pf ( p∆τ | pΘ)

}
.

For the sets pA, it holds

pf ( pΘ) ∝ pf0 ( pΘ) pP
(
( p∆τ )τ∈ pτ∗ ∈

pA| pΘ
)
, (3.10)

where pP (·| pΘ) denotes the probability induced by pdf pf (·| pΘ), i.e.,

pP
(
( p∆τ )τ∈ pτ∗ ∈

pA| pΘ
)

=
∑

( p∆τ )τ∈ pτ∗∈ pA

pf
(
( p∆τ )τ∈ pτ∗

∣∣ pΘ
)
.

In order to express the knowledge represented by the sets pA in a unified way, we establish sets
pB ⊂ (∆∗)|

pτ∗| carrying the same information. For that purpose, we utilize projections pS : d∗ → pd∗.
Using the notation introduced in Section 3.2, the projection pS is defined for all dt = (dt;i)

n
i=1 ∈ d∗ by

pS(dt) = (dt;i)i∈ pi∗ . (3.11)

Roughly speaking, the sets pB consist of all data sequences (∆τ )τ∈ pτ∗ ∈ (∆∗)|
pτ∗| such that subvectors

of their elements corresponding to data pdτ fulfill (3.9). More precisely,

pB ≡
{

(∆τ )τ∈ pτ∗ ∈ (∆∗)|
pτ∗|
∣∣∣ ( pS (∆τ ))τ∈ pτ∗ ∈

pA
}

.

It is easy to verify that for any global parametric model it holds

P
(
(∆τ )τ∈ pτ∗ ∈

pB
∣∣Θ) = P

(
( pS (∆τ ))τ∈ pτ∗ ∈

pA
∣∣Θ) ,

for all Θ ∈ Θ∗. These sets pB represent the pieces of prior knowledge corresponding to prior pdfs pf ( pΘ).
For a suitable global pre-prior pdf f0(Θ), the global prior pdf based on the prior information provided
by all participants can be then expressed as

f (Θ) ∝ f0(Θ)P
(
(∆τ )τ∈ 1τ∗ ∈

1B, . . . , (∆τ )τ∈ p̊τ∗ ∈
p̊B|Θ

)
. (3.12)
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In case that all participants deal with the complete system and all local parametric models as well as the
global one have the same sufficient statistics, the evaluation of the global prior pdf (3.12) reduces to a
simple application of the Bayes rule

f (Θ) ∝ f0(Θ)f
(
(∆τ )τ∈∪p∈p∗ pτ∗

∣∣∣Θ) ,

where (∆τ )τ∈ p̊τ∗ are arbitrary sequences of observations such that (3.9) holds. In a general case, the
evaluation of (3.12) is a hard task due to the involved “set observations” pB. Its practical applicability
is thus conditioned by availability of suitable procedures for approximation of the resulting pdfs.

Now assume that the local parametric models are not static. Particularly, we consider parametric
models pf ( p∆t| pat,

pΘ). Similarly as in the preceding case we assume that the local prior pdfs can be
expressed as posterior ones with suitable pre-prior pdfs

pf ( pΘ) ∝ f0( pΘ)
∏

τ∈ pτ∗

pf ( p∆τ | paτ , pΘ) (3.13)

for some data sequences ( pdτ )τ∈ pτ∗ ≡ ( p∆τ , paτ )τ∈ pτ∗ and pairwise disjoint sets pτ∗. Again, we can
construct sets

pA ≡

{
( pdτ )τ∈ pτ∗ ∈ ( pd∗)|

pτ∗|
∣∣∣ pf ( pΘ) ∝ pf0 ( pΘ)

∏
τ∈ pτ∗

pf ( p∆τ | paτ , pΘ)

}

of all data sequences from ( pd∗)|
pτ∗| for which (3.13) holds and corresponding sets

pB ≡
{

(dτ )τ∈ pτ∗ ∈ (d∗)|
pτ∗|
∣∣∣ ( pS (dτ ))τ∈ pτ∗ ∈

pA
}

of data sequences from (d∗)|
pτ∗|. However, in this case the information (dτ )τ∈ pτ∗ ∈ pB cannot be used

for evaluation of the global prior pdf analogous to (3.12), except for a very special case in which for all
sequences (∆τ , aτ )τ∈ pτ∗ , (∆̃τ , ãτ )τ∈ pτ∗ ∈ pB it holds aτ = ãτ for all τ ∈ pτ∗.

The information (dτ )τ∈ pτ∗ ∈ pB could be exploited for construction of the global prior pdf in case
that the global parametric model f (∆t|at,Θ) can be suitably extended to a joint pdf f (∆t, at|Θ), i.e., if
an appropriate pdf f (at|Θ) is available. It is, e.g., if the participants are known to generate their actions
pat according to time-invariant strategies pf ( pat) independently of past data. In such case the suitable
f (at|Θ) corresponds to f (at|Θ) =

∏
p∈p∗

pf ( pat). The extended global parametric model is then

f (∆t, at|Θ) = f (∆t|at,Θ)
∏

p∈p∗

pf ( pat)

and the global prior pdf has a form analogous to (3.12)

f (Θ) ∝ f0(Θ)P
(
(dτ )τ∈ 1τ∗ ∈

1B, . . . , (dτ )τ∈ p̊τ∗ ∈
p̊B|Θ

)
.

In practice the participants apply strategies varying in time and depending on all past data in general.
Knowing these local decision strategies pf

(
pat

∣∣ pd1:t−1
)

we can extend the global parametric model
f (∆t|at,Θ) = f

(
∆t

∣∣at, d
1:t−1,Θ

)
by

f
(
at

∣∣d1:t−1,Θ
)

=
∏

p∈p∗

pf
(

pat

∣∣ pd1:t−1
)
.

However, due to the dependence of the resulting extended global parametric model

f
(
∆t, at

∣∣d1:t−1,Θ
)

= f (∆t|at,Θ)
∏

p∈p∗

pf
(

pat

∣∣ pd1:t−1
)

on past data d1:t−1 it cannot be used for evaluation of the global prior pdf analogously to (3.12). Another
difficulty is that the local decision strategies pf

(
pat

∣∣ pd1:t−1
)

vary in time whereas the virtual data
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( pdτ )τ∈ pτ∗ are not related to any particular time moments. ( pdτ )τ∈ pτ∗ are rather sequences of action-
observation pairs. For this reason it is generally impossible for the participants to provide strategies
pf
(
aτ

∣∣d1:τ−1
)

corresponding to data (dτ )τ∈∪p∈p∗ pτ∗ in terms of time.
More rigorous approach to the construction of the global prior pdf using the information

(dτ )τ∈ pτ∗ ∈ pB is to create a set of prior pdfs

F ≡

{
f (Θ) ∈ F(Θ)

∣∣∣∣∣f (Θ) ∝ f0(Θ)
∏

p∈p∗

∏
τ∈ pτ∗

f (∆τ |aτ ,Θ) , (dτ )τ∈ 1τ∗ ∈
1B, . . . , (dτ )τ∈ p̊τ∗ ∈

p̊B

}
.

(3.14)
The pdfs in F represent possible global prior pdfs whereas there is not any order in a sense “more likely
then” given on them. Apart from technical difficulties related to treating a set of prior pdfs, this approach
has also a more fundamental drawback: it leads to a loss of a weak order, see Appendix A, on a set of
decision strategies, which means, in fact, a deflection from the Bayesian framework. To illustrate it,
recall a basic property of Bayesian decision making: for a single prior pdf, preference order ≺ on a set of
decision strategies R∗ induced by the expected loss, i.e., for R1, R2 ∈ R∗, R1 ≺ R2 iff∫

L(d)fR1(d|Θ)f(Θ)dddΘ >

∫
L(d)fR2(d|Θ)f(Θ)dddΘ, (3.15)

is a weak order. This property implies, that a mutual incomparability of the decision strategies is an
equivalence relation, and the equivalence classes form a strictly ordered set. It ensures that the optimal
decision strategies, being maximal elements of the ordered set (R∗,≺), possess appealing properties, e.g.,
for an optimal strategy R and an arbitrary strategy R̃ it holds

R̃ ≺ R or R̃ is optimal. (3.16)

However, if there is a set F of possible prior pdfs, it is generally impossible to define a preference order
on R∗ via (3.15) due to the ambiguity of a prior pdf. Instead, we can define a relation ≺′ on R∗ so that
R1 ≺′ R2 iff ∫

L(d)fR1(d|Θ)f(Θ)dddΘ ≥
∫

L(d)fR2(d|Θ)f(Θ)dddΘ, (3.17)

for all f (Θ) ∈ F and the inequality in (3.17) is strict for some f (Θ) ∈ F . The relation ≺′ is an analogy of
the relation induced by dominance of decision strategies [7], in which case the inequality (3.17) must hold
for all f (Θ) ∈ F(Θ). Compared to ≺ defined by (3.15), the relation ≺′ is only a strict partial order on
R∗. Restricting the choice of a resulting strategy to the maximal elements of (R∗,≺′) guarantees certain
rationality of the decision making similarly as a restriction to non-dominated strategies in case that a
prior pdf is not considered. However, the maximal elements of a partially ordered set do not possess any
property similar to (3.16). While the maximal elements of (R∗,≺) are, due to (3.16), taken as “equally
good”, which corresponds to the fact that all of them lead to the same value of the expected loss, the
maximal elements of (R,≺′) are just incomparable.

Notes:

• The importance of the above outlined construction of the global prior pdf, at least the case we are
able to complete, consists in the fact that under suitable selection of the pre-prior pdfs it represents
an exact solution of the problem addressed. Any other more generally applicable method should
ideally reduce to the outlined solution if it is applied to local prior pdfs corresponding to some
posterior ones.

• Some kind of a non-informative prior pdf [9] could be a suitable candidate for a pre-prior pdfs. In
such case, the pre-prior pdfs of the individual participants as well as of the global task should be
of the same type.

• Representing pf ( pΘ) by sets of sequences (∆τ )τ∈ pτ∗ or (∆τ , aτ )τ∈ pτ∗ with sets pτ∗ being pairwise
disjoint gives an interpretation to what we have labeled as independent sources of prior information.
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• The assumption on the independence of the sources of prior information, i.e., on the sets pτ∗ being
disjoint, is substantial for the construction of the global prior pdf by (3.12) or classes of prior
pdfs (3.14). However, in practice the independence can be hardly guaranteed. The problem of
combining overlapping information pieces is widely addressed in the literature, see, e.g., [12] or
[13]. Nevertheless, the existing methods commonly assume that the kind of overlapping as well as
its measure are known, which makes them unsuitable for our approach to the multiple participant
decision making. As it is practically impossible to detect the overlapping of information from the
local prior pdfs themselves we expect that if the independence of the sources of prior information
is not given explicitly, then any attempt to treat multiple sources of prior information in an exact
manner will lead to a loss of the weak order on decision strategies.

• Evaluation of (3.12) leads to a global prior pdf in an intractable form even if the global parametric
model is from the exponential family. If this approach is to be applied in practice, some kind of
approximation of the prior pdfs must be involved.

3.5.3 Preference Description

Because the global decision task is constructed as a Bayesian one, the preferences on the global level are
to be described by a loss function on the system. Due to the separated assessments of uncertainty and
preferences in the Bayesian decision making [9], we suppose that the global loss function L

(
d1:̊t
)

should

depend on loss functions pL
(

pd1:̊t
)

of individual participants and not on their parametric models or prior
pdfs. Contrary to local parametric models and prior pdfs, which could be taken as supplemental blocks
of information, the local loss functions describe more or less antagonistic objectives and the global loss
function must be searched as some kind of compromise among them. In accordance with the requirements
for fully cooperating participants stated in Section 3.5, the global loss function is to be constructed as an
even compromise among preferences given by loss function of individual participants so that objectives
of any participant are in no way preferred to objectives of others.

Problems of this type are widely addressed in the literature. The most famous result in this direction
comes from Arrow [5]. Arrow in his impossibility theorem proved that any procedure which assigns a
group preference ordering to a set of individual preference orderings violates at least one of five conditions,
which are generally accepted as necessary ones for the procedure to be fair. However, Arrow’s theorem
deals only with qualitative preference orderings, i.e., preferences expressed in terms of a weak order. In
our case, the point of departure is somewhat different, as due to presence of uncertainty a quantitative
component of preferences must be taken into account.

Construction of a global loss function from a group of local ones (or equivalently in terms of utility
functions) has been addressed by Keeney [29], [41]. In [29] Keeny proved that under presence of uncer-
tainty a group utility function satisfies conditions analogous to that proposed by Arrow if and only if it
is a linear combination of individuals’ utility functions with nonnegative coefficients and at least two of
them are positive. Although the Keeney’s proof has some week points, e.g., he implicitly supposes that
the group utility function depends on the individual ones only pointwise, we find the linear combination of
local loss functions to be a suitable candidate for a global loss functions for fully cooperating participants.

It is well known and easily verified that any positive linear transformation of a loss function preserves
the order on randomized strategies induced via expected loss. It means that loss functions of individual
participants are not determined uniquely, which disallows mutual comparability of the preferences. In
order to avoid the impact of a positive linear transformation of a local loss function on the global one,
we select for each participant a unique loss function representing its preferences on a common scale.
Particularly, we select a loss function which assign the loss 0 to the most preferred data and 1 to the least
preferred ones in case of non-constant bounded loss function, and 0 in case of a constant one, i.e.,

pL( pd1:̊t) =


0 if pL( pd1:̊t) is constant

pL( pd1:̊t)−min pd1:̊t
pL( pd1:̊t)

max pd1:̊t
pL( pd1:̊t)−min pd1:̊t

pL( pd1:̊t)
otherwise

. (3.18)
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If case of unbounded loss function, the inter-participant comparison of preferences cannot be performed
merely on the basis of the loss functions themselves and must be given explicitly.

The normalized local loss functions pL( pd1:̊t) are defined on the environments of individual partici-
pants. In order to combine them into a global loss function it is convenient to extend them to a common
domain, that is, to the complete system. The extension can be done naturally as the preferences of
participant p about data d1:̊t ∈

(
d1:̊t
)∗

are completely determined by a part of data d1:̊t which is related
to its environment, i.e., by the projections ( pS(d1), . . . , pS(d̊t)), where pS(·) is defined by (3.11). The
extended loss functions, distinguished from the original ones by the arguments, are then defined by

pL
(
d1:̊t
)

= pL ( pS(d1), . . . , pS(d̊t)) . (3.19)

Now, assume a global loss functions L(d1:̊t) in a form of a linear combination of the extended local
loss functions (3.19)

L(d1:̊t) =
p̊∑

p=1

pα pL(d1:̊t) (3.20)

with nonnegative weights pα. Due to invariance of preferences with respect to positive linear transfor-
mations of a loss function, we can assume that the weights pα satisfy

∑
p∈p∗

pα = 1. It is immediately
seen that for any positive weights pα the global loss functions (3.20) have the following properties which
make them suitable candidates for a fair global loss function in terms of conditions stated in Section 3.5.

• If for any d, d̃ ∈
(
d1:̊t
)∗

all participants do not prefer d to d̃, then neither d is preferred to d̃ in the

global task. If, in addition, there is at least one participant which prefer d̃ to d then d̃ is preferred
to d in the global task.

• For the quantitative description of preferences it holds

min
p∈p∗

pL(d1:̊t) ≤ L(d1:̊t) ≤ max
p∈p∗

pL(d1:̊t).

The weights pα can be interpreted as the importance of the objectives of the p-th participant – the higher
pα is, the more global preferences are influenced by the preferences of p-th participant. For a global loss
function L(d1:̊t), which does not prefer objectives of any participant to objectives of the others, the
weights pα are to be selected evenly, i.e., pα = 1/p̊ for all p. Note, that (3.20) with weights pα = 1/p̊ is a
compromise among pL( pd1:̊t) in the sense that for any participant p the “partial loss” pα pL(d1:̊t) depends
only on a relative position of d1:̊t with respect the less and to the most preferred data of participant
p. This specificity becomes more obvious especially in case that the local loss functions pL( pd1:̊t) are
expressed, e.g., as a negative profit in a common currency with maximal values being significantly different
for individual participants.

3.6 Summary

To make the design of a distributed decision strategy meaningful, it is necessary to formulate some kind of
a global task, which enables to compare quality of p̊-tuples of participants’ strategies. However, no unique
global task follows from the original participants’ decision tasks directly. On that account, additional
requirements on a “nature” of the global task must be stated. We have made an attempt to formulate the
global task as a Bayesian one, Section 3.4, so that it fits the requirements for fully cooperating participants
stated in Section 3.5. In order to simplify the construction of the global prior pdf, we have focused on a
special case in which the prior information can be transformed to sets of virtual observations.

While a suitable global preference assessment can be simply acquired as a weighted sum of normalized
local loss functions, the treatment of the uncertainty in the global task is a much harder problem. The
outlined solution reveals a number of, more or less, technical problems. The most significant ones are
related to the choice of a suitable global parametric model, form of a global prior pdf resulting from
(3.12), and exploitation of information in a form of non-conjugated local prior pdfs.
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However, apart from the technical issues, the presented approach suffers also from a conceptual
shortcoming. Namely, the requirements for the global task

• to be formulated as a Bayesian one,

• to exploit complete information provided by individual participants,

• not to introduce an information for which there is no evidence

are, in general, contradicting. This problem arises, e.g., if the participants are not able to provide
information about data in the state vector of the global task, or if the prior information of individual
participants cannot be guaranteed to come from independent sources.

If we omit a possibility to leave out problematic pieces of information, a solution of the discussed
problem could be based on employing a more general form of the global task and adding an information
supported by an evidence. Especially the later case seems to be worth of attention. In practice, it means
that a more-detailed modelling should be required. For example, on a participant level all quantities in
state vectors of parametric models are to be modelled. On a global level, modelling could be employed to
clarify relations among prior information provided by individual participants, e.g., a degree of overlapping
of individual pieces of information. However, such models are inevitably highly dependent on a particular
application.

Employing a more general form, i.e., a non-Bayesian one, of the global task would be a rigorous way
to treat the incomplete information. Imprecise probabilities [50] could be appropriate means for this
purpose. Although, from practical point of view, this approach would be more complex than the strictly
Bayesian one, there are indications that it is not intractable; see, e.g., [16].

In this chapter we have focused on a construction of the global task and left the design of the
cooperation methods open. However, the form of the global task suggests what objectives are to be
followed by the cooperation. Namely, the knowledge about the system behaviour possessed by any of
the participants should be provided to all others which are able to exploit it, i.e., to its neighbours.
Furthermore, the objectives of individual participants should be harmonized so that the new objectives
are not contradictory for any pair of neighbours whereas they are close to the original ones. While the
harmonization of the objectives is clearly related to the fully cooperating participants discussed in this
chapter, the knowledge sharing is supposed to be employed in a much wider class of multiple participant
decision making tasks. These observations motivates the need of practically feasible, though possibly
approximate, cooperation methods proposed in the following chapters.
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Chapter 4

Global Objective Setting

In this chapter a method is proposed which enables the participants employing the fully probabilistic
design, see Section 2.4, to create the global objectives so that they are close to a set of local ones. Within
the FPD, the objectives are described by so-called ideal pdfs. The problem of constructing the global
objectives can be then roughly formulated in the following way: for a set of given (local) ideal pdfs of
individual participants defined on their environments find a common ideal pdf on the system so that it
is in some sense close to the given local pdfs. The acquired global ideal pdf can be taken as an analogy
of the global loss function 3.20, which characterizes compromise objectives for a group of participants
performing regular Bayesian decision making.

In Section 4.1, we propose a functional through which the proximity of a joint pdf and a set of marginal
pdfs is measured. The common ideal pdf is then searched as a pdf which minimizes the established
functional. Its properties are investigated in Section 4.2. In Section 4.3, basic elements of an iterative
algorithm for an approximate solution of the optimization task are presented. An application of the
proposed method in the distributed multiple participant decision making is briefly outlined in Section
4.4.

4.1 Notation and Problem Formulation

The problem addressed in this chapter is not strictly related to the rest of the decision making process.
For this reason, some of the items in the notation, which are not essential in this chapter, can be omitted.
Changes in the notation used throughout the chapter are as follows:

• Actions and observations need not be distinguished. On that account, the considered random
quantities are simply denoted by d, possibly with additional subscripts or superscripts.

• Time evolution of the system need not be considered. Thus, the time subscripts are omitted.

• The only pdfs related to individual participants are their ideal pdfs. For this reason, the left
superscript I, used for the ideal pdfs of individual participants, is omitted. It is used only for the
searched common ideal pdf.

With the modified notation, the considered system is described by a vector random quantity d ≡
(d1, d2, . . . , dn), n ∈ N. For each participant p ∈ p∗ ≡ (1, 2, . . . , p̊):

• pd ≡ (di)i∈ pi∗ , where ∅ 6= pi∗ ⊂ {1, 2, . . . , n}, is a random quantity treated by the p-th participant,

• ideal pdf pf( pd) is specified by the p-th participant on its data pd,

• pα is a given nonnegative weight (the meaning of which is clarified later).
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Without loss of generality, we assume that
⋃

p∈p∗
pi∗ = {1, 2, . . . , n}, and

∑
p∈p∗

pα = 1.
As a measure of proximity of a joint pdf f (d) to a set of pdfs pf ( pd) we use a functional D acting on

the set F of all pdfs of d, which, for fixed pdfs pf( pd) and weights pα, is defined by

D(f) =
∑
p∈p∗

pαD ( pf( pd)||f( pd)) . (4.1)

The problem of selecting a common ideal pdf If (d) is then formulated as follows:

For given pdfs pf( pd) and weights pα, find If(d) so that

If(d) ∈ argmin
f∈F

D(f), (4.2)

where D(f) is defined by (4.1).

The particular choice of the functional D is motivated by the following reasons, which stem from the
ideas behind the fully probabilistic design; see Section 2.4.

• Within the FPD framework the proximity of a pair of pdfs is measured by the Kullback-Leibler
divergence.

• Whenever the Kullback-Leibler divergence is used as a measure of proximity of a pdf f(d) and
its approximation g(d), the arguments should be ordered as D (f ||g). It can be justified in the
following way: D (f ||g) =

∫
f(d)(ln f(d) − ln g(d))dd can be interpreted as a negative value of the

expected log-likelihood of pdf g(d) for data distributed according to f(d), shifted by an additive
term

∫
f(d) ln f(d)dd, so that its minimum, reached for g = f , is 0. In the addressed problem the

ideal pdf pf( pd) plays the role of the original pdf and If( pd) is the searched approximation, thus
the Kullback-Leibler divergence D

(
pf( pd)

∣∣∣∣ If( pd)
)

is used. Another reasoning can be found, e.g.,
in [8].

• For any p ∈ p∗, the value of D(f) depends on pf( pd) only through the corresponding marginal pdf
f ( pd).

• Requirements on D
(

pf( pd)
∣∣∣∣ If( pd)

)
to be small for all p ∈ p∗ are contradicting in general. For

positive weights pα, the minimization of the weighted sum (4.1) ensures that the resulting pdf If (d)
is a non-dominated solution, in the sense that there is no other If̃(d) such that

D
(

pf ( pd)
∣∣∣∣∣∣ If̃( pd)

)
≤ D

(
pf ( pd)

∣∣∣∣ If( pd)
)
,

for all p ∈ p∗, and the inequality is strict for some p. At the same time, the weights pα represent
“tuning knobs”, which allow to reflect the “importance” of the objectives of individual participants.

• The objectives described by local ideal pdfs are considered to be consistent if for any two participants
p, p̃ ∈ p∗ it holds

pf
(

p,p̃d
)

= p̃f
(

p,p̃d
)
,

where p,p̃d are data common to participants p and p̃ defined by (3.1). If the objectives given by
pdfs pf( pd) are consistent, then a reasonable common ideal pdf If(d) must satisfy If( pd) = pf( pd)
for all p ∈ p∗. This requirement is reflected by (4.1), because the property of the Kullback-Leibler
divergence (2.3) ensures that D( If) = 0 if, ∀p ∈ p∗, If( pd) = pf( pd), and D( If) > 0 otherwise.

In general, the set of pdfs minimizing D can have more than one element. As there is no reason to
prefer any particular element of this set, the searched pdf If(d) can selected as any one of them.
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4.2 General Solution

To find a pdf If(d) satisfying (4.2) is, in general, a hard problem. We start this section with two examples
the solution of which is trivial. The first one, in which all participants deal with the complete system, is
for its importance formulated as a lemma.

Lemma 4.2.1 Let d ≡ d1, p̊ ≥ 1, and ∀p ∈ p∗, pi∗ ≡ {1}. Then, for ideal pdfs pf(d) and weights pα, the
functional D defined by (4.1) has a unique minimizer If(d) =

∑
p∈p∗

pα pf(d).

Proof: For an arbitrary f (d) ∈ F , D(f) can be written, using (2.17) and the linearity of the Kerridge
inaccuracy in the first argument (2.12), as

D(f) =
∑
p∈p∗

pαD ( pf (d) ||f (d) ) = −
∑
p∈p∗

pαH ( pf (d)) +
∑
p∈p∗

pαK ( pf (d) , f (d)) =

= −
∑
p∈p∗

pαH ( pf (d)) + K

(∑
p∈p∗

pα pf (d) , f (d)

)
. (4.3)

In (4.3), the sum of entropies is independent of f(d) and the Kerridge inaccuracy has - due to (2.13) - a
unique minimizer

∑
p∈p∗

pα pf (d).

The following example is also one of those few the solution of which is trivial. It is, however, very
important, because it represents the most general case with two participants.

Example 4.2.1 Let d ≡ (d1, d2, d3), p̊ = 2, 1i∗ ≡ {1, 2}, and 2i∗ ≡ {2, 3}. The ideal pdfs 1f( 1d), 2f( 2d),
and the weights 1α, 2α are supposed to be given.

Then, D(f) can be written as

D(f) = 1α

∫
1f(d2) 1f(d1|d2) ln

1f(d1|d2)
f(d1|d2)

dd1dd2 + 2α

∫
2f(d2) 2f(d3|d2) ln

2f(d3|d2)
f(d3|d2)

dd3dd2 +

+

(
2∑

p=1

∫
pα pf(d2) ln

pf(d2)
f(d2)

dd2

)
. (4.4)

From the property of the Kullback-Leibler divergence (2.3), it is clear that the first term in (4.4) is
minimized (equal to 0) if f(d1|d2) = 1f(d1|d2). Similarly, the second term is minimized if f(d3|d2) =
2f(d3|d2). The last term in (4.4) is, according to Lemma 4.2.1, minimized by f(d2) =

∑2
p=1

pα pf(d2).
As all three terms in (4.4) can be minimized independently, f(d1, d2, d3) minimizes D if it holds

f(d1|d2) = 1f(d1|d2), f(d3|d2) = 2f(d3|d2), and f(d2) =
2∑

p=1

pα pf(d2). (4.5)

Then, If(d) minimizing (4.4) is, e.g.,

If(d) = 1f(d1|d2) 2f(d3|d2)

(
2∑

p=1

pα pf(d2)

)
.

Note, that if 1f(d2) and 2f(d2) are positive on d∗2, then the conditions (4.5) are also necessary for f(d)
to minimize D.

The example demonstrates that for p̊ = 2 the common ideal pdf has the following appealing properties:

• In spite of the ambiguity of pdfs minimizing (4.4), the marginal pdfs If
(

1d
)

and If
(

2d
)

of the
common ideal pdf are determined unambiguously:

If
(

1d
)

= If(d1, d2) = 1f(d1|d2)

(
2∑

p=1

pα pf(d2)

)
,

If
(

2d
)

= If(d2, d3) = 2f(d3|d2)

(
2∑

p=1

pα pf(d2)

)
.
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• The marginal pdf If (d2), describing objectives on a part of the system which is in common of both
participants, is a mixture (with weights pα) of the corresponding marginal pdfs of the original ideal
pdfs, i.e.,

If(d2) =
2∑

p=1

pα pf(d2).

• The conditional pdfs If(d1|d2), If(d3|d2), describing common objectives on parts of the system
treated by only one of the participants given the quantity in common of both participants, reflect
the original objectives of individual participants:

If(d1|d2) = 1f(d1|d2), If(d3|d2) = 2f(d3|d2).

The next example represents the simplest case the solution of which is nontrivial.

Example 4.2.2 Let d ≡ (d1, d2), p̊ = 3, 1i∗ ≡ {1}, 2i∗ ≡ {2}, and 3i∗ ≡ {1, 2}.
In this case

D(f) = 1α

∫
1f(d1) ln

1f(d1)
f(d1)

dd1 + 2α

∫
2f(d2) ln

2f(d2)
f(d2)

dd2 +

+ 3α

∫
3f(d1, d2) ln

3f(d1, d2)
f(d1, d2)

dd1,dd2. (4.6)

Contrary to the preceding example, the pdf minimizing (4.6) cannot be found directly, because the integrals
in (4.6) cannot be minimized independently.

The rest of this chapter is focused on the general case described by (4.2). If not said otherwise, it is
assumed that p̊, sets pi∗, pdfs pf( pd), and weights pα are given and thus objects defined by them, e.g.,
the functional D, are well specified. In what follows, an additional notation will prove useful:

• p̄d denotes a data vector describing the part of the system not treated by the p-th participant, i.e.,
p̄d ≡ (di)i∈{1,...,n}\ pi∗ .

• G ≡ {f (d) ∈ F|D(f) < +∞} (4.7)
• H ≡ {f (d) ∈ F |∀p ∈ p∗,∀ pd ∈ pd∗, f ( pd) ≥ pα pf ( pd)} (4.8)

The sets G and H defined by (4.7) and (4.8) have the following elementary properties:

1. G is nonempty. To prove it, assume an arbitrary h(d) ∈ F such that h(d) > 0 on d∗. For a pdf

f (d) ≡
∑
p∈p∗

pα pf ( pd) h( p̄d| pd)

it holds

D(f) =
∑
p∈p∗

pα

∫
pf ( pd) ln

pf ( pd)∫ ∑
r∈p∗

rα rf ( rd) h( r̄d| rd)d p̄d
d pd

≤
∑
p∈p∗

pα

∫
pf ( pd) ln

pf ( pd)∫
pα pf ( pd) h( p̄d| pd)d p̄d

d pd = −
∑
p∈p∗

pα ln pα,

and thus f (d) ∈ G.

2. If (d) ∈ G. This property follows directly from the definition (4.7) of the set G and the fact that
G 6= ∅. For this reason, it is sufficient to search for

If(d) ∈ argmin
f∈G

D(f)

instead of (4.2).
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3. H ⊂ G. The inclusion follows from definition (4.1) of the operator D and definition (2.1) of the
Kullback-Leibler divergence.

4. Sets G and H are convex ones. The convexity of the set G follows from the convexity of the
Kullback-Leibler divergence (2.4). The convexity of the set H follows directly from its definition.

A crucial role for derivation of properties of If(d) minimizing the functional D has the operator
A : G → G defined by

Af =
p̊∑

p=1

pαf
(

p̄d
∣∣ pd
)

pf ( pd) . (4.9)

Note, that the operator A is well defined in the sense that if for some p it holds f ( pd) | pd= pd̃ = 0 for
some pd̃ ∈ pd∗, then it holds pf ( pd) | pd= pd̃ = 0, because f (d) ∈ G. The ambiguity in f ( p̄d| pd) | pd= pd̃ is
then irrelevant.

A key property of the operator A is given by the following proposition.

Proposition 4.2.1 ∀f (d) ∈ G,
D(f)−D(Af) ≥ D (Af ||f) .

Proof: The proof is straightforward and is based on definitions of the Kerridge inaccuracy (2.10) and the
Kullback-Leibler divergence (2.1), properties of the Kerridge inaccuracy (2.15), (2.13), and on definition (4.9)
of the operator A.

D(f)−D(Af)
(4.1)z}|{
=

p̊∑
p=1

pα

∫
pd∗

pf ( pd) ln
(Af)( pd)

f ( pd)
d pd

=
p̊∑

p=1

pα

∫
d∗

pf ( pd) f
(

p̄d
∣∣ pd
)
ln

(Af)( pd)
f ( pd)

dd

=
p̊∑

p=1

pα

∫
d∗

pf ( pd) f
(

p̄d
∣∣ pd
)
ln

(Af)( pd)f ( p̄d| pd)
f ( pd) f ( p̄d| pd)

dd (4.10)

(2.10)z}|{
=

p̊∑
p=1

pα
(
K
(

pf ( pd) f
(

p̄d
∣∣ pd
)
, f (d)

)
− K

(
pf ( pd) f

(
p̄d
∣∣ pd
)
, (Af)( pd)f

(
p̄d
∣∣ pd
)))

(2.15),(2.13)z}|{
≥

p̊∑
p=1

pα
(
K
(

pf ( pd) f
(

p̄d
∣∣ pd
)
, f (d)

)
− K

(
pf ( pd) f

(
p̄d
∣∣ pd
)
, (Af)(d)

))
(2.10)z}|{

=

p̊∑
p=1

pα

∫
d∗

pf ( pd) f
(

p̄d
∣∣ pd
)
ln

(Af)(d)
f (d)

dd

(4.9),(2.1)z}|{
= D (Af ||f)

Remind, that the functional D is defined using the Kullback-Leibler divergence. On that account, the conven-
tion 0 ln 0 = 0, adopted in its definition (2.1), is employed in the above expressions. Then, e.g., the equality
(4.10) holds also in case that f ( p̄d| pd) = 0 for some d ∈ d∗.

A direct consequence of Proposition 4.2.1 gives a necessary condition for If (d) to be a minimizer of
D(f).

Proposition 4.2.2 If If (d) ∈ argminf∈G D(f), then it holds

A If = If. (4.11)

Proof: Suppose that If (d) ∈ argminf∈G D(f) and A If 6= If . Then D
(
A If

∣∣∣∣ If
)

> 0 and, due to
Proposition 4.2.1, it holds

D(A If) ≤ D(f)− D
(
A If

∣∣∣∣ If
)

< D(f),

which is in a contradiction with If (d) ∈ argminf∈G D(f).
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Lemma 4.2.2 ∀f (d) ∈ G, Af ∈ H.

Proof: For all p ∈ p∗ it holds

(Af)( pd) =
∑
r∈p∗

rα rf ( rd) f
(

r̄d
∣∣ rd
)
d p̄d ≥ pα pf ( pd) .

Lemma 4.2.3
argmin

f∈G
D(f) ⊂ H

Proof: Let f (d) ∈ argminf̃∈G D(f̃) and f (d) /∈ H. Because Af ∈ H, due to Lemma 4.2.2, it holds Af 6= f ,
and thus D (Af ||f) > 0. From Proposition 4.2.1 it follows that D(Af) < D(f), which is in a contradiction
with f (d) ∈ argminf̃∈G D(f̃).

The opposite implication to Proposition 4.2.2 does not hold in general. However, under an additional
assumption, the equality A If = If provides also a sufficient condition for If (d) to be a minimizer of the
functional D.

Proposition 4.2.3 Let If (d) ∈ H, If (d) > 0 on d∗, and A If = If . Then it holds

If (d) ∈ argmin
f∈G

D(f).

Proof: In this proof we follow the basic idea of the calculus of variations. For fixed pdfs f (d) ∈ H, such that
f (d) > 0 on d∗, and h(d) ∈ F , let us define a function qf,h : [0, 1] → R,

qf,h(ω) ≡ D((1− ω)f + ωh) =
∑
p∈p∗

∫
pf ( pd) ln

pf ( pd)
(1− ω)f( pd) + ωh( pd)

d pd.

At first, we prove that qf,h has a derivative on a (right) neighbourhood of 0, and we evaluate it. For all p ∈ p∗

and pd ∈ pd∗, it holds∣∣∣∣ ∂

∂ω

(
pf ( pd) ln

pf ( pd)
(1− ω)f ( pd) + ωh( pd)

)∣∣∣∣ (4.12)

=
∣∣∣∣ pf ( pd)

h( pd)− f( pd)
(1− ω)f ( pd) + ωh( pd)

∣∣∣∣ ≤ pf ( pd)
h( pd) + f( pd)
(1− ω)f ( pd)

≤ h( pd) + f( pd)
pα(1− ω)

,

where the last inequality follows from f (d) ∈ H, see (4.8). Thus, for all p ∈ p∗, the expression 4.12 has an
integrable upper bound independent of ω on [0, ω0], for some ω0 > 0, which ensures that the derivative of
qf,h(ω) exists on some right neighbourhood of 0. Its value in ω = 0 is equal to

∂qf,h(ω)
∂ω

∣∣∣∣
ω=0

=
∑
p∈p∗

pα

∫
pd∗

pf ( pd)
f( pd)− h( pd)

f ( pd)
d pd

= 1−
∫

d∗

(∑
p∈p∗

pα
pf ( pd)
f ( pd)

)
h(d)dd

(4.9)z}|{
= 1−

∫
d∗

Af (d)
f (d)

h(d)dd. (4.13)

Now assume, that If (d) ∈ H, If (d) > 0 on d∗, A If = If , and D(f) < D( If) for some f (d) ∈ G.
Then, because D is a convex functional on G, it holds

∂q If,f (ω)
∂ω

∣∣∣∣
ω=0

= lim
ε→0+

D((1− ε) If + εf)−D( If)
ε

≤ D(f)−D( If) < 0. (4.14)
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Simultaneously, according to (4.13) it holds

∂q If,f (ω)
∂ω

∣∣∣∣
ω=0

= 1−
∫

A If (d)
If (d)

f (d) dd = 0,

which is in a contradiction with (4.14).

Note, that without the assumption that If (d) > 0 on d∗ the implication in Proposition 4.2.3 need
not hold, as it is illustrated by the following example. On the other hand, most likely this assumption is
not necessary and could be replaced by a weaker one.

Example 4.2.3 Let d ≡ (d1, d2), d∗1 ≡ d∗2 ≡ {0, 1}, p̊ = 2, 1d ≡ d1,
2d ≡ d2, and

1f (d1) ≡
{

p for d1 = 0
1− p for d1 = 1 , 2f (d2) ≡

{
q for d2 = 0
1− q for d2 = 1 ,

for some p, q ∈ (0, 1).
For any If (d1, d2), such that the marginal pdfs If (d1), If (d2) are equal to pdfs 1f (d1) and 2f (d2)

respectively, it holds If (d) ∈ argminf∈G D(f) and D( If) = 0. Obviously, such If(d) exists. It can be
selected, e.g., as

If (d1, d2) ≡


min(p, q) for d1 = 0, d2 = 0
p−min(p, q) for d1 = 0, d2 = 1
q −min(p, q) for d1 = 1, d2 = 0
1−max(p, q) for d1 = 1, d2 = 1

.

Now consider a pdf f̃(d1, d2) defined by

f̃(d1, d2) ≡


1αp + 2αq for d1 = 0, d2 = 0
1α(1− p) + 2α(1− q) for d1 = 1, d2 = 1
0 otherwise

.

It is easy to verify that Af̃ = f̃ for any p, q ∈ (0, 1), but f̃ ∈ argminf∈G D(f) only if p = q.

Proposition 4.2.2 offers an appealing interpretation of If (d) defined by (4.2): assume, for a while, that
all participants specify their ideal pdfs on the complete system. Without considering any criterion, like
(4.2), the convex combination

∑
p∈p∗

pα pf (d) seems to be a suitable candidate for a common ideal pdf.
Now, assume that the participants specify their ideal pdfs pf ( pd) only on their environments. It can be
interpreted so that every participant p accepts any objectives regarding p̄d. In other words, any ideal pdf,
say pf̃(d), such that pf̃( pd) = pf( pd) is accepted by the p-th participant as a description of its objectives.
What conditional pdfs pf̃( pd| p̄d) should be used to extend pf ( pd) to pf̃(d)? A natural answer is “the
ones on which the participants agree”. Then, the desired extensions pf̃( pd| p̄d) are the corresponding
conditional pdfs If ( pd| p̄d). Altogether, such a common ideal pdf must satisfy the condition

If (d) =
∑
p∈p∗

pα pf ( pd) If
(

pd
∣∣ p̄d
)
,

i.e., for the common ideal pdf If (d) it must hold If = A If . Of course, from this consideration it does
not follow that such If (d) exists. It just says, that if it exists, then it could be taken as a suitable
candidate for a common ideal pdf.

4.3 Iterative Algorithm

As an analytical solution of the equation (4.11) is not known (up to few trivial cases, e.g., Example
4.4), Proposition 4.2.2 itself cannot be used to find candidates for the common ideal pdf. However,
under some additional assumptions, an approximation of If (d) ∈ arg minf∈G D(f) can be found using an
iterative algorithm based on the propositions formulated in Section 4.2. A core of the algorithm consist
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in repetitive application of the operator A defined by (4.9). Namely, for an arbitrary pdf ϕ0(d) ∈ G, we
consider a sequence of pdfs (ϕk(d))+∞k=0 defined recursively by

ϕk+1 = Aϕk. (4.15)

Proposition 4.2.1 ensures that D(ϕk) form a decreasing sequence. Moreover, if ϕk(d) > 0 on d∗, it holds,
according to Proposition 4.2.3, that

D(ϕk+1) < D(ϕk) if ϕk 6= ϕk+1,

ϕk ∈ argmin
f∈G

D(f) if ϕk = ϕk+1.

However, to this point, nothing guarantees that D(ϕk)−D(ϕk+1) being arbitrarily small, yet positive,
for some positive ϕk(d), implies that D(ϕk) is close to D( If). In other words, still it is not assured
that limk→∞D(ϕk) = D( If), even if it is provided that ϕk(d) > 0 on d∗. The convergence and some
other issues are discussed in the following paragraphs. The discrete and continuous case are examined
separately.

4.3.1 Iterative Algorithm for Discrete Quantities

Suppose, that d1, . . . , dn are discrete random quantities with values in finite sets d∗1, . . . , d
∗
n. In this case,

the convergence limk→∞D(ϕk) = D( If) can be easily proved, e.g., if for some ε > 0 it holds ϕk(d) > ε on
d∗ for all k ∈ N. This property of ϕk(d) is guaranteed, for example, if for some p ∈ p∗ it holds pd = d and
pf (d) > 0 on d∗. The convergence is proven by Proposition 4.3.1. In its proof the lower estimate on the
Kullback-Leibler divergence of binary random variables proposed by the following lemma is employed.

Lemma 4.3.1 Let s, t ∈ (0, 1) satisfy s
t ≥ C and t ≥ ε for some C > 1 and ε > 0. Then it holds

s ln
s

t
+ (1− s) ln

1− s

1− t
≥ Cε lnC + (1− Cε) ln

1− Cε

1− ε
.

Proof: Let us consider a function u(a, b) ≡ a ln a
b + (1 − a) ln 1−a

1−b for a, b ∈ (0, 1). As for a > b > 0,
∂
∂au(a, b) = ln a(1−b)

b(1−a) > 0, it holds

u(s, t) ≥ u(Ct, t). (4.16)

Now, define a function

v(b) ≡ u(Cb, b) = Cb lnC + (1− Cb) ln
1− Cb

1− b

for b ∈ [0, 1). We prove that its derivative

d
db

v(b) = C ln
C − Cb

1− Cb
+

1− C

1− b

is positive for b > 0: For b = 0, it holds

d
db

v(b)
∣∣∣∣
b=0

= C lnC + 1− C > 0, (4.17)

because (C lnC + 1− C)|C=1 = 0 and d
dC (C lnC + 1− C) = lnC > 0 for C > 1. For the second derivative

of v(b) it holds
d2

db2
v(b) =

(C − 1)2

(1− b)2(1− Cb)
> 0 (4.18)

for b < 1
C . From 4.17 and 4.18 it follows that d

dbv(b) > 0 for b ∈ [0, 1
C ) and thus v(t) ≥ v(ε), which, together

with 4.16 proves the lemma.
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Proposition 4.3.1 Suppose that the sequence (ϕk(d))+∞k=1 of pdfs defined by (4.15) for some ϕ0(d) ∈ G
has the property

∃ε > 0,∀k ∈ N,∀d ∈ d∗, ϕk(d) > ε.

Then it holds
lim

k→∞
D(ϕk) = D( If), (4.19)

where If (d) satisfies (4.2).

Proof: Suppose, that (4.19) does not hold. Then, because from Proposition 4.2.1 it follows that (D(ϕk))+∞k=1

is decreasing, it holds

∃c > 0,∀ If ∈ argmin
f∈G

D(f),∀k ∈ N, D(ϕk)−D( If) ≥ c. (4.20)

As stated in the proof of Proposition 4.2.3, it holds

d
dω

D((1− ω)ϕk + ω If)
∣∣
ω=0

= 1−
∫ (∑

p∈p∗

pα
pf ( pd)
ϕk( pd)

)
If (d) dd. (4.21)

Due to convexity of D(·), it also holds

d
dω

D((1− ω)ϕk + ω If)
∣∣
ω=0

≤ D( If)−D(ϕk). (4.22)

Then, from definition (4.15) of ϕk+1, definition (4.9) of the operator A, and from relations (4.21), (4.22),
and (4.20) it follows that

Z
ϕk+1(d)

ϕk(d)
If (d) dd

(4.15)z}|{
=

Z
Aϕk(d)

ϕk(d)
If (d) dd

(4.9),(4.21)z}|{
= 1−

d

dω
D((1− ω)ϕk + ω If)

(4.22)z}|{
≥ 1 +D(ϕk)−D( If)

(4.20)z}|{
≥ 1 + c,

(4.23)

and thus for some d̃k ∈ d∗ it must hold

ϕk+1(d̃k)
ϕk(d̃k)

≥ 1 + c.

According to Proposition, 2.2.1 it holds that

D (ϕk+1(d)||ϕk(d)) ≥ ϕk+1(d̃k) ln
ϕk+1(d̃k)
ϕk(d̃k)

+
(
1− ϕk+1(d̃k)

)
ln

1− ϕk+1(d̃k)
1− ϕk(d̃k)

. (4.24)

From Lemma 4.3.1 applied to (4.24) it follows that for all k ∈ N it holds

D (ϕk+1(d)||ϕk(d)) ≥ ε(1 + c) ln
ε(1 + c)

ε
+ (1− ε(1 + c)) ln

1− ε(1 + c)
1− ε

, (4.25)

which is positive, as it represents a Kullback Leibler divergence of two non-equal pdfs of a binary random
quantity. Because, according to Proposition 4.2.1,

D(ϕk)−D(ϕk+1) ≥ D (ϕk+1(d)||ϕk(d)) ,

it follows from (4.25) that limk→+∞D(ϕk) = −∞, which is in a contradiction with the non-negativity of the
functional D.

For discrete random quantities an implementation of the iterative algorithm based on (4.15) is straight-
forward. Pdfs of discrete quantities are typically represented by multi-dimensional arrays, the elements of
which are the individual probabilities. The evaluation of ϕk+1(d) then consist in recalculating the array
entries according to (4.15). Number of algebraic operations performed in each iteration is proportional
to p̊d̊, where d̊ denotes a cardinality of d∗.
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An important point, which has not to be mentioned yet, is a stopping rule. Proposition 4.3.1 says
that, under given assumptions, for an arbitrary initial approximation ϕ0(d) ∈ G an arbitrarily good
approximation (in a sense of a value of D(·)) can be acquired by repetitive application of the operator
A; however, to this point we are not able to evaluate the quality of the approximation. According to
Proposition 4.2.3, it holds that if, for some k, it is fulfilled Aϕk = ϕk, then ϕk(d) minimizes D(·).
Nevertheless, in practice one can hardly select an initial approximation ϕ0(d) so that an optimal solution
is found within finite number of iterations.

To judge a quality of the approximation ϕk(d), a lower estimate of D( If) based on (4.22) can be used.
Namely, from (4.22), (4.21), and the definition (4.9) of the operator A it follows that for positive ϕk(d)
it holds

D( If) ≥ D(ϕk) + 1−
∫

Aϕk(d)
ϕk(d)

If (d) dd. (4.26)

The lower estimate of D( If) is then acquire by replacing
∫ Aϕk(d)

ϕk(d)
If (d) dd in (4.26) by its upper estimate

independent of the unknown If (d). For d∗ being finite, the simplest estimate is∫
Aϕk(d)
ϕk(d)

If (d) dd ≤ max
d∈d∗

Aϕk(d)
ϕk(d)

, (4.27)

which gives a lower bound for D( If)

D( If) ≥ D(ϕk) + 1−max
d∈d∗

Aϕk(d)
ϕk(d)

. (4.28)

For (4.27) to be a suitable estimate for a stopping rule, it is necessary to show that the right-hand side
of (4.28) converges to D( If). Under the assumptions of Proposition 4.3.1, the convergence is guaranteed
by the following proposition.

Proposition 4.3.2 Suppose that the sequence (ϕk(d))+∞k=1 of pdfs defined by (4.15) for some ϕ0(d) ∈ G
has the property

∃ε > 0,∀k ∈ N,∀d ∈ d∗, ϕk(d) > ε.

Then, it holds

max
d∈d∗

Aϕk(d)
ϕk(d)

→ 1. (4.29)

Proof: Suppose, that (4.29) does not hold. Then, because
∫

ϕk(d)dd =
∫

Aϕk(d)dd = 1, there exist a
strictly increasing sequence (kj)

∞
j=1 , kj ∈ N, and c > 0 so that, for all j ∈ N,

Aϕkj (d̃j)

ϕkj (d̃j)
≥ 1 + c,

for some d̃j ∈ d∗. The rest of the proof is an analogy of the proof of Proposition 4.3.1.

Stopping rule for the recursive evaluation of approximations ϕk(d) based on the estimate (4.27) has
a form

stop if max
d∈d∗

Aϕk(d)
ϕk(d)

− 1 ≤ ζ, (4.30)

where ζ > 0 is a predefined threshold specifying a precision of the resulting approximation. If the
condition (4.30) is fulfilled for some ϕk(d), then, according to (4.28), it hodls that D(ϕk) − D( If) ≤ ζ.
Furthermore, Proposition 4.3.2 guarantees that under given assumptions the stopping condition (4.30) is
fulfilled within a finite number of iterations.

The estimate (4.27) is too rough for (4.30) to be an efficient stopping rule. A more efficient, but
computationally more expensive, stopping rule can be obtained from (4.26) by employing a more accurate
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estimate of
∫ Aϕk(d)

ϕk(d)
If (d) dd. For example, using (4.11) and the definition (4.9) of the oprator A, we get

∫
Aϕk(d)
ϕk(d)

If (d) dd =
p̊∑

p=1

pα

∫
pd∗

pf ( pd)
∫

p̄d∗

Aϕk( pd, p̄d)
ϕk( pd, p̄d)

If
(

p̄d
∣∣ pd
)
d p̄dd pd

≤
p̊∑

p=1

pα

∫
pd∗

pf ( pd)
(

max
p̄d∈ p̄d∗

Aϕk( pd, p̄d)
ϕk( pd, p̄d)

)
d pd (4.31)

As it holds that
p̊∑

p=1

pα

∫
pd∗

pf ( pd)
(

max
p̄d∈ p̄d∗

Aϕk( pd, p̄d)
ϕk( pd, p̄d)

)
d pd ≤ max

d∈d∗

Aϕk(d)
ϕk(d)

,

the inequality (4.31) can provide a more accurate upper estimate of
∫ Aϕk(d)

ϕk(d)
If (d) dd then (4.27).

4.3.2 Iterative Algorithm for Continuous Quantities

In applications, continuous random quantities are of a great importance. However, for continuous random
quantities, an implementation of the iterative algorithm based on (4.15) is much more difficult.

A proof of convergence of (D(ϕk))+∞k=1 to D( If) cannot be done so easily as in the case of discrete
quantities. Namely, if (D(ϕk))+∞k=1 → D( If) does not hold, then, similarly as in the proof of Proposition
4.3.1, it must hold for some c > 0, all k ∈ N, and all If(d) satisfying (4.2) that∫

ϕk+1(d)
ϕk(d)

If (d) dd ≥ 1 + c.

Then, it must hold, e.g., that sets

Mk ≡
{

d ∈ d∗
∣∣∣∣ϕk+1(d)

ϕk(d)
≥ 1 +

c

2

}
are non-empty. Although it can proved, for example, that Mk satisfy∫

Mk

If (d) dd ≥ c

2
(
p̊− 1− c

2

) ,
which is positive for p̊ ≥ 2, it is difficult to find reasonable conditions on the initial approximation ϕ0(d)
and the pdfs pf (d) which guarantee that for some ε > 0 it holds∫

Mk

ϕk(d)dd ≥ ε,

for all k ∈ N.
Another problem related to continuous quantities is a form of the pdfs ϕk(d). Because the operator A

employs both conditioning and mixing operations, it is probably impossible to find a sufficiently rich class
of pdfs which can be parameterized by a finite dimensional parameter and is closed with respect to an
application of the operator A. A way to overcome this difficulty is to search If(d), or its approximation,
within a given class of pdfs.

In the rest of this paragraph, we focus on a modification of the iterative algorithm so that the
approximations ϕk(d) remain in a form of a finite Gaussian mixture. This class of pdfs has been selected
because Gaussian mixtures represent quite general approximators and a wide set of learning and design
algorithms is available for them; see [24].

First step towards the modified algorithm is a “relaxation” of the relation (4.15) so that ϕk+1(d) is
newly allowed to be searched within a specified set of pdfs: Using the property (2.7) of the Kullback-
Leibler divergence, the definition (4.1) of the functional D can be equivalently written in a form

D(ϕk(d)) =
p̊∑

p=1

pαD
(

pf ( pd) ϕk( p̄d| pd)
∣∣∣∣ϕk(d)

)
. (4.32)
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Each term in (4.32) is a Kullback-Leibler divergence of a pdf of the quantity d, namely pf ( pd) ϕk( p̄d| pd),
from ϕk(d). Due to Lemma 4.2.1, the new approximation ϕk+1(d) defined by (4.15) can be interpreted
as a pdf closest to the pdfs pf ( pd) ϕk( p̄d| pd), p ∈ p∗, in the sense that

ϕk+1(d) ∈ argmin
ϕ∈F

∑p̊

p=1

pαD
(

pf ( pd) ϕk( p̄d| pd)
∣∣∣∣ϕ(d)

)
. (4.33)

If, instead of (4.33), ϕk+1(d) is required to satisfy a weaker condition

p̊∑
p=1

pαD
(

pf ( pd) ϕk( p̄d| pd)
∣∣∣∣ϕk+1(d)

)
≤

p̊∑
p=1

pαD
(

pf ( pd) ϕk( p̄d| pd)
∣∣∣∣ϕk(d)

)
, (4.34)

the property D(ϕk+1) ≤ D(ϕk) remains preserved, because, according to (2.8), it holds

D(ϕk+1) =
p̊∑

p=1

pαD ( pf ( pd) ||ϕk+1( pd)) ≤
p̊∑

p=1

pαD
(

pf ( pd) ϕk( p̄d| pd)
∣∣∣∣ϕk+1(d)

)
. (4.35)

The relation (4.35) together with (4.34) and (4.32) then gives the desired inequality D(ϕk+1) ≤ D(ϕk).
The condition (4.34) for ϕk+1(d) allows to search it within a specified class of pdfs.

The second step is to design a method which, for some class of pdfs M ⊂ F and a pdf ϕk(d) ∈ M,
finds ϕk+1(d) ∈M so that the condition (4.34) is fulfilled and the equality in (4.34) holds only if

ϕk(d) ∈ argmin
ϕ∈M

∑p̊

p=1

pαD
(

pf ( pd) ϕk( p̄d| pd)
∣∣∣∣ϕ(d)

)
. (4.36)

For M being a class of finite Gaussian mixtures, such method can be acquired as a generalization of the
well known EM algorithm [15] proposed below. We start with a brief description of the EM algorithm
itself.

EM algorithm

Generally speaking, the EM algorithm is a method for finding maximum likelihood (ML) estimates
with incomplete observations. Assume, that we are to find a ML estimate

Θ̂ ∈ arg max
Θ∈Θ∗

f
(
d1:̊t
∣∣∣Θ) , (4.37)

where f
(
d1:̊t
∣∣∣Θ) =

∏t̊
t=1 f (dt|Θ). Note, that here d1, . . . , d̊t stand for general random quantities, i.e.,

they are not necessarily related to the system considered in the rest of this chapter. If f (dt|Θ) are given
as marginal pdfs of joint pdfs

f (dt, ct|Θ) , (4.38)

where ct are non-observed quantities, the optimization in (4.37) is typically a hard task. Note, that ct can
be real missing observations, as well as “fictitious” quantities used for definition of f (dt|Θ). A typical
example of the later case are probabilistic mixtures, i.e., pdfs in a form

f (dt|Θ) =
c̊∑

c=1

ωcm(dt|θc), (4.39)

where pdfs m(dt|θc), called components of the mixture, are from a given parametric class of pdfs and
differ by values of their parameters θc. ωc are nonnegative weights, such that

∑c∗

c=1 ωc = 1, and Θ ≡
(ω1, . . . , ωc̊, θ1, . . . , θ̊c). Probabilistic mixture (4.39) can be taken as a marginal pdf of

f (dt, ct|Θ) = ωct
m(dt|θct

), (4.40)

where quantities ct ∈ c∗ are interpreted as identifiers of components.
The EM algorithm constructs a sequence of point estimates Θ̂(i) of the unknown parameter Θ in an

iterative way. In i-th iteration, estimate Θ̂(i) is evaluated from Θ̂(i−1) in two steps:
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E-step: The expected value of the log-likelihood of the parameter Θ, given the observations d1:̊t and
the preceding estimate Θ̂(i−1), is evaluated as a function of Θ:

q(i)(Θ) ≡ E
[
ln f

(
d1:̊t, c1:̊t

∣∣∣Θ) ∣∣∣d1:̊t, Θ̂(i−1)
]
. (4.41)

The expectation in (4.41) is performed with respect to

f
(
c1:̊t
∣∣∣d1:̊t, Θ̂(i−1)

)
=

t̊∏
t=1

f
(
ct

∣∣∣dt, Θ̂(i−1)
)

,

where f
(
ct

∣∣∣dt, Θ̂(i−1)
)
≡ f (ct|dt,Θ)|Θ=Θ̂(i−1) are conditional pdfs acquired from (4.38).

M-step: New estimate Θ̂(i) is selected as a maximizer of the expected value of the log-likelihood q(i)(Θ)
from the E-step

Θ̂(i) ∈ arg max
Θ∈Θ∗

q(i)(Θ). (4.42)

Note, that a necessary assumption for the EM algorithm to have a practical asset is that the optimization
in (4.42) is easier than the direct evaluation of the ML-estimate (4.37). Estimation of parameters of
probabilistic mixtures with components from the exponential family meets this assumption.

Two important properties of the EM algorithm should be stressed:

1. EM algorithm converges monotonically in the sense that

f
(
d1:̊t
∣∣∣ Θ̂(i)

)
≥ f

(
d1:̊t
∣∣∣ Θ̂(i−1)

)
.

2. EM algorithm does not guarantee a convergence to the global maximum. This drawback is typically
treated by repetitious runs of the EM algorithm with different initial estimates Θ̂(0). For details
see, e.g., [20].

Generalized EM algorithm

The above described EM algorithm can be easily generalized so that it can be used for approximation
of a given pdf. The generalization is based on the following fact: maximum-likelihood estimation is
equivalent to the minimization of the Kerridge inaccuracy (2.11) of an empirical pdf and the searched
parametric pdf with respect to the parameter. Indeed, let

r(d) ≡ 1
t̊

t̊∑
t=1

δ(d− dt)

be an empirical pdf from independent observations d1:̊t. The log-likelihood ln f
(
d1:̊t
∣∣∣Θ) can be expressed

in a form
ln f

(
d1:̊t
∣∣∣Θ) = t̊

∫
r(d) ln(f (d|Θ))dd = −t̊K (r(d), f (d|Θ)) ,

and thus
arg max

Θ∈Θ∗
f
(
d1:̊t
∣∣∣Θ) = arg min

Θ∈Θ∗
K (r(d), f (d|Θ)) . (4.43)

In this way, the E-step (4.41) of the EM algorithm can be equivalently rewritten as

q(i)(Θ) = t̊

∫
r(d)f

(
c
∣∣∣d, Θ(i−1)

)
ln f (d, c|Θ)dcdd = −t̊K

(
r(d)f

(
c
∣∣∣d, Θ(i−1)

)
, f (d, c|Θ)

)
.

An iteration of the EM algorithm, i.e., the E-step and M-step together, can be then expressed as

Θ̂(i) ∈ arg min
Θ∈Θ∗

K
(
r(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f (d, c|Θ)

)
. (4.44)
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Notice, that the fact that r(d) is an empirical pdf plays no role in (4.43) and (4.44). On that account,
we can expect that the problem of finding

Θ̂ ∈ arg min
Θ∈Θ∗

K (h(d), f (d|Θ)) , (4.45)

where h(d) is an arbitrary pdf of d, can be solved by a generalized EM algorithm, in which the i-th
iteration consist in evaluating Θ̂(i) so that

Θ̂(i) ∈ arg min
Θ∈Θ∗

K
(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f (d, c|Θ)

)
. (4.46)

The following proposition claims that the monotone convergence of the generalized EM algorithm is
preserved.

Proposition 4.3.3 Consider an arbitrary pdf h(d) and a parametric model f (d|Θ) given in a form
f (d|Θ) =

∫
f (d, c|Θ)dc for some f (d, c|Θ), Θ ∈ Θ∗. For an arbitrary Θ̂(i−1) ∈ Θ∗, such that

K
(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f (d, c|Θ)

)
is finite for some Θ ∈ Θ∗, let

Θ̂(i) ∈ arg min
Θ∈Θ∗

K
(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f (d, c|Θ)

)
. (4.47)

Then, it holds
K
(
h(d), f

(
d
∣∣∣ Θ̂(i−1)

))
≥ K

(
h(d), f

(
d
∣∣∣ Θ̂(i)

))
.

Proof: According to the elementary property (2.15) of the Kerridge inaccuracy, it holds

K
(
h(d), f

(
d
∣∣∣ Θ̂(i−1)

))
=

= K
(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f
(
d, c
∣∣∣ Θ̂(i−1)

))
− K

(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f
(
c
∣∣∣d, Θ̂(i−1)

))
. (4.48)

For the first term in (4.48) it holds, according to (4.47), that

K
(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f
(
d, c
∣∣∣ Θ̂(i−1)

))
≥ K

(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f
(
d, c
∣∣∣ Θ̂(i)

))
.

From (2.14) and (2.13) it follows for the second term in (4.48) that

K
(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f
(
c
∣∣∣d, Θ̂(i−1)

))
≤ K

(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f
(
c
∣∣∣d, Θ̂(i)

))
.

Substituting these two inequalities into (4.48) we get

K
(
h(d), f

(
d
∣∣∣ Θ̂(i−1)

))
≥

≥ K
(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f
(
d, c
∣∣∣ Θ̂(i)

))
− K

(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f
(
c
∣∣∣d, Θ̂(i)

))
=

= K
(
h(d), f

(
d
∣∣∣ Θ̂(i)

))
,

where the last equality again follows from the property (2.15).

Notes:
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• For h(d) being a pdf corresponding to a probability distribution which is absolutely continuous
with respect to the probability distributions determined by pdfs f (d|Θ) for all Θ ∈ Θ∗, we get
even easier proof of the monotone convergence of the generalized EM algorithm using the relation
(2.17) between the Kullback-Leibler divergence and the Kerridge inaccuracy. From the elementary
properties of the Kullback Leibler divergence, namely (2.7) and (2.8), and (4.47) we get:

D
(
h(d)

∣∣∣∣∣∣f (d∣∣∣ Θ̂(i−1)
))

= D
(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

) ∣∣∣∣∣∣f (d, c
∣∣∣ Θ̂(i−1)

))
≥

≥ D
(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

) ∣∣∣∣∣∣f (d, c
∣∣∣ Θ̂(i)

))
≥ D

(
h(d)

∣∣∣∣∣∣f (d∣∣∣ Θ̂(i)
))

• In the generalized version of the EM algorithm, the convergence is also guaranteed only to a local
extreme.

• Similarly as in case of the EM algorithm, the generalized EM algorithm has a practical asset only
if the minimization (4.46) is technically easier then the direct minimization of (4.45).

Generalized EM algorithm for Gaussian mixtures

A resulting form of the generalized EM algorithm depends on the particular choice of the parametric
model f (d|Θ). As stated in the beginning of this subsection, we focus on parametric models in the form
of finite Gaussian mixtures, i.e.,

f (d|Θ) =
c̊∑

c=1

ωcm(d|θc), (4.49)

where

• c̊ ∈ N, ω1, . . . , ωc̊ are non-negative weights, such that
∑c̊

c=1 ωc = 1,

• conditional pdfs m(d|θc) – referred to as components – are Gaussian pdfs, i.e.,

m(d|θc) ≡ Nd(µc,Σc) ≡
1

(2π)
n
2 (detΣc)

1
2

exp
(
−1

2
(d− µc)′Σ−1

c (d− µc)
)

, (4.50)

where n is a dimension of the data vector d, µc ∈ Rn, Σc ∈ Rn,n is positive definite, det denotes
determinant, and θc ≡ (µc,Σc) is a vector of parameters of the c-th component,

• Θ ≡ (ω1, . . . , ωc̊, θ1, . . . , θ̊c) is a vector of parameters of the parametric model.

Considering the identifier of components c to be a random quantity, the parametric model (4.49) can be
taken as a marginal pdf of

f (d, c|Θ) = ωcm(d|θc). (4.51)

Suppose, that a pdf h(d) of a multi-dimensional random quantity d ≡ (d1, . . . , dn), n ∈ N, which is to
be approximated in the sense of (4.45), fulfills∣∣∣∣∫ dkdlh(dk, dl)ddkddl

∣∣∣∣ < +∞, (4.52)

for all k, l ∈ {1, . . . , n}, and that for the (i− 1)-th point estimate Θ̂(i−1) ∈ Θ̂ it holds ω̂
(i−1)
c > 0, for all

c ∈ c∗.
In the i-th iteration of the generalized EM algorithm, given by (4.46), conditional pdf f

(
c
∣∣∣d, Θ̂(i−1)

)
is required: from the Bayes rule and (4.51) we get

f
(
c
∣∣∣d, Θ̂(i−1)

)
=

f
(
d, c
∣∣∣ Θ̂(i−1)

)
f
(
c
∣∣∣ Θ̂(i−1)

) =
ω̂

(i−1)
c m(d|θ̂(i−1)

c )∑
c̃∈c∗ ω̂

(i−1)
c̃ m(d|θ̂(i−1)

c̃ )
. (4.53)
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Substituting (4.53) into (4.46), we get for pdf f (d, c|Θ) in the form (4.51)

K
(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f (d, c|Θ)

)
= −

∑
c∈c∗

∫
d∗

h(d)
ω̂

(i−1)
c m(d|θ̂(i−1)

c )∑
c̃∈c∗ ω̂

(i−1)
c̃ m(d|θ̂(i−1)

c̃ )
(lnωc + lnm(d|θc)) dd

(4.54)
From (4.54) it is clear that minimization of K

(
h(d)f

(
c
∣∣∣d, Θ̂(i−1)

)
, f (d, c|Θ)

)
can be done separately

for ωc and θc. Denoting

ξ(i−1)
c (d) ≡ h(d)

ω̂
(i−1)
c m(d|θ̂(i−1)

c )∑
c̃∈c∗ ω̂

(i−1)
c̃ m(d|θ̂(i−1)

c̃ )
and

η(i−1)
c ≡

∫
ξ(i−1)
c (d)dd,

we get from (4.54)

ω̂(i) ∈ arg min
ω∈ω∗

(
−
∑
c∈c∗

η(i−1)
c lnωc

)
, (4.55)

which is fulfilled if, for all c ∈ c∗,
ω̂(i)

c = η(i−1)
c , (4.56)

because η
(i−1)
c are nonnegative and

∑
c∈c∗ η

(i−1)
c = 1. Due to the assumption that ω̂

(i−1)
c > 0 for all

c ∈ c∗, it holds also ω̂
(i)
c > 0.

Similarly, for θ̂
(i)
c we get

θ̂(i)
c ∈ arg min

θc∈θ∗c

(
−
∫

ξ(i−1)
c (d) ln m(d|θc)

)
dd,

which, for the components m(d|θc) being Gaussian pdfs (4.50), has a form

θ̂(i)
c ∈ arg min

θc∈θ∗c

(
−
∫

ξ(i−1)
c (d)

[
−n

2
ln(2π)− 1

2
ln (detΣc)−

1
2
(d− µc)′Σ−1

c (d− µc)
]

dd

)
. (4.57)

Finding θ̂
(i)
c is analogous to a standard procedure of finding a maximum likelihood estimate of parameters

of a Gaussian pdf. Here, we partially follow the procedure used in [42].
Let us denote the expression minimized in (4.57), taken as a function of µc and Σc, as I(i−1)

c (µc,Σc).
Using a notation

m(i−1)
c ≡ 1

η
(i−1)
c

∫
ξ(i−1)
c (d) d dd,

Q(i−1)
c ≡ 1

η
(i−1)
c

∫
ξ(i−1)
c (d)(d−m(i−1)

c )(d−m(i−1)
c )′dd,

I(i−1)
c (µc,Σc) can be written as

I(i−1)
c (µc,Σc)

=
n

2
η(i−1)

c ln(2π) +
1
2
η(i−1)

c ln(det Σc) +
1
2

∫
ξ(i−1)
c (d) (d− µc)

′ Σ−1
c (d− µc) dd

=
n

2
η(i−1)

c ln(2π) +
1
2
η(i−1)

c ln(det Σc) +
1
2

∫
ξ(i−1)
c (d)tr

(
(d− µc) (d− µc)

′ Σ−1
c

)
dd

=
n

2
η(i−1)

c ln(2π) +
1
2
η(i−1)

c ln(det Σc) +
1
2
tr
((∫

ξ(i−1)
c (d)

(
d−m(i−1)

c

)(
d−m(i−1)

c

)′
dd

+ η(i−1)
c

(
m(i−1)

c − µc

)(
m(i−1)

c − µc

)′)
Σ−1

c

)
=

n

2
η(i−1)

c ln(2π) +
1
2
η(i−1)

c ln(det Σc) +
1
2
η(i−1)

c tr
(
Q(i−1)

c Σ−1
c

)
+

1
2
η(i−1)

c

(
m(i−1)

c − µc

)′
Σ−1

c

(
m(i−1)

c − µc

)
. (4.58)
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From (4.58) it follows that for any fixed positive definite matrix Σc ∈ Rn,n the function I(i−1)
c (µc,Σc)

has the global minimum at µc = m
(i−1)
c , which is independent of Σc. Then, it holds

µ̂(i)
c =

1

η
(i−1)
c

∫
ξ(i−1)
c (d) d dd. (4.59)

To obtain Σ̂(i)
c , we need to find a Σc which minimizes

I(i−1)
c

(
µ̂(i)

c ,Σc

)
=

n

2
η(i−1)

c ln(2π) +
1
2
η(i−1)

c ln (detΣc) +
1
2
η(i−1)

c tr
(
Q(i−1)

c Σ−1
c

)
. (4.60)

For its partial derivative with respect to Σ−1
c , which is technically more convenient then Σc, it holds

∂

∂Σ−1
c

I(i−1)
c

(
µ̂(i)

c ,Σc

)
= −1

2
η(i−1)

c Σ′c +
1
2
η(i−1)

c

(
Q(i−1)

c

)′
, (4.61)

see, e.g., [22]. The derivative (4.61) is equal to 0 for Σc = Q
(i−1)
c . To show that (4.60) has its minimum

at Q
(i−1)
c , we prove that

I(i−1)
c

(
µ̂(i)

c ,Σc

)
− I(i−1)

c

(
µ̂(i)

c , Q(i−1)
c

)
is nonnegative for all positive definite Σc ∈ Rn,n. Substituting Q

(i−1)
c into (4.60), we get

I(i−1)
c

(
µ̂(i)

c , Q(i−1)
c

)
=

n

2
η(i−1)

c ln(2π) +
1
2
η(i−1)

c ln
(
det Q(i−1)

c

)
+

1
2
η(i−1)

c n. (4.62)

The difference of (4.60) and (4.62) is then

I(i−1)
c

(
µ̂(i)

c ,Σc

)
− I(i−1)

c

(
µ̂(i)

c , Q(i−1)
c

)
=

1
2
η(i−1)

c

(
ln (detΣc)− ln

(
det Q(i−1)

c

))
− 1

2
η(i−1)

c n +
1
2
η(i−1)

c tr
(
Q(i−1)

c Σ−1
c

)
=

1
2
η(i−1)

c

(
− ln

(
det
(
Q(i−1)

c Σ−1
c

))
− n + tr

(
Q(i−1)

c Σ−1
c

))
=

1
2
η(i−1)

c (− ln (λ1 · · ·λn)− n + (λ1 + · · ·+ λn)) , (4.63)

where λ1, . . . , λn are eigenvalues of the matrix Q
(i−1)
c Σ−1

c . As x−1− lnx ≥ 0 for all x ≥ 0, and λ1, . . . , λn

are positive, because Q
(i−1)
c Σ−1

c is positive definite, it holds that

n∑
i=1

(λi − 1− lnλi) ≥ 0. (4.64)

From (4.64) it follows that (4.63) is nonnegative. Then, it holds

Σ̂(i)
c =

1

η
(i−1)
c

∫
ξ(i−1)
c (d)(d− µ̂(i)

c )(d− µ̂(i)
c )′dd. (4.65)

Due to the assumption (4.52), it is guaranteed that µ̂
(i)
c and Σ̂(i)

c are finite for all c ∈ c∗.

Iterative algorithm for Gaussian mixtures

Using Proposition 4.3.3, and relations (4.55), (4.59), and (4.65), a basic version of an algorithm
approximating If (d), defined by 4.2, by a finite Gaussian mixture can be designed. In the algorithm we
employ projective operators pS previously introduced in Section 3.5. Namely, pS : Rn → R p̊i is defined
for x ≡ (x1, . . . , xn) by

pS(x) = (xi)i∈ pi∗ . (4.66)
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Analogously, we define operators ppS : Rn,n → R p̊i, p̊i defined for X ≡ (xij)
n
i,j=1 by

ppS(X) = (xij)i∈ pi∗,j∈ pi∗ . (4.67)

With the operators pS and ppS, the parameters of marginal pdfs of a Gaussian pdf can be easily expressed;
see, e.g., [42]. Namely, for Nd(µ,Σ) and any p ∈ p∗ it holds∫

Nd(µ,Σ)d p̄d = N pd ( pµ, pΣ) ,

where
pµ = pS(µ), pΣ = ppS(Σ). (4.68)

Algorithm 4.3.1 (Approximation of If(d) by a Gaussian mixture)
Let p̊, pd, pf ( pd) , pα be given – see Section 4.1.

1. Select parameters c̊, I, K ∈ N, where

• c̊ is a number of components in approximations ϕ
(i)
k (d),

• I is a number of iterations of the generalized EM algorithm,

• K is a number of iterations of the approximating step. (4.34)

2. For all c ∈ c∗, select parameters ω̂c,0 > 0, µ̂c,0 ∈ Rn, Σ̂c,0 ∈ Rn,n of initial approximation ϕ0(d) of
If (d), i.e.,

ϕ0(d) =
c̊∑

c=1

ω̂c,0Nd

(
µ̂c,0, Σ̂c,0

)
.

3. k := 1 (counter of approximating steps (4.34)). Note, that the symbol := denotes an assignment.

4. For all p ∈ p∗, c ∈ c∗, set parameters

pµ̂c,k−1 := pS (µ̂c,k−1) ,

pΣ̂c,k−1 := ppS
(
Σ̂c,k−1

)
.

5. Set

hk(d) := Aϕk−1 =
p̊∑

p=1

pα pf ( pd)

∑c̊
c=1 ω̂c,k−1Nd

(
µ̂c,k−1, Σ̂c,k−1

)
∑c̊

c=1 ω̂c,k−1N pd

(
pµ̂c,k−1, pΣ̂c,k−1

) .

6. For all c ∈ c∗, set parameters

ω̂
(0)
c,k := ω̂c,k−1,

µ̂
(0)
c,k := µ̂c,k−1,

Σ̂(0)
c,k := Σ̂c,k−1.

of ϕ
(0)
k (d) being an initial approximation of the pdf hk(d), i.e., ϕ

(0)
k (d) = ϕk−1(d).

7. i := 1 (counter of EM iterations)

8. For all c ∈ c∗, set

ξ
(i−1)
c,k (d) := hk(d)

ω̂
(i−1)
c,k Nd

(
µ̂

(i−1)
c,k , Σ̂(i−1)

c,k

)
∑c̊

c̃=1 ω̂
(i−1)
c̃,k Nd

(
µ̂

(i−1)
c̃,k , Σ̂(i−1)

c̃,k

) .
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9. For all c ∈ c∗, set parameters of the i-th approximation ϕ
(i)
k (d) of the pdf hk(d):

ω̂
(i)
c,k :=

∫
ξ
(i−1)
c,k (d) dd,

µ̂
(i)
c,k :=

1

ω̂
(i)
c,k

∫
ξ
(i−1)
c,k (d) d dd,

Σ̂(i)
c,k :=

1

ω̂
(i)
c,k

∫
ξ
(i−1)
c,k (d)

(
d− µ̂

(i)
c,k

)(
d− µ̂

(i)
c,k

)′
dd.

10. i := i + 1; if i ≤ I, then go to step 8.

11. For all c ∈ c∗, set parameters

ω̂c,k := ω̂
(I)
c,k ,

µ̂c,k := µ̂
(I)
c,k,

Σ̂c,k := Σ̂(I)
c,k.

of the k-th approximation ϕk(d) of If (d).

12. k := k + 1; If k ≤ K then go to step 4.

The result of Algorithm 4.3.1 are the parameters ω̂c,K , µ̂c,K , Σ̂c,K of the best achieved approximation

ϕK(d) =
c̊∑

c=1

ω̂c,KNd

(
µ̂c,K , Σ̂c,K

)
of If (d).

The above described basic version of the algorithm is far from being directly implementable. However,
it clearly reflects the key point, that consit in the combination of the iterative algorithm based on (4.15)
and the generalized EM algorithm.

Comments on Algorithm 4.3.1:

• All involved functions are fully characterized by finite-dimensional parameters, and thus they can
be represented in a computer.

• Step 9 requires numerical integration, which limits dimension of data d for which the algorithm can
be used.

• In the presented basic version of the algorithm, the number of approximating steps (4.34) (K) as
well as the number of iterations of the generalized EM algorithm (I) are fixed. Instead of it, some
kind of stopping rules for cycles over k and i should be employed.

• The number of components c̊ in the approximations ϕk(d) also need not to be given in advance. It
should be rather selected dynamically according to the evolution of approximations ϕk(d).

• To show that Algorithm 4.3.1 converges monotonically, i.e., D(ϕk) ≤ D(ϕk−1) for all k ∈ {1, . . . ,K},
it remains to prove that the sequence ϕ1(d), . . . , ϕK(d) satisfies the condition (4.34). Indeed, due
to properties (2.17) and (2.12) of Kerridge inaccuracy it holds

p̊∑
p=1

pαD
(

pf ( pd) ϕk−1( p̄d| pd)
∣∣∣∣ϕk(d)

)
=

= −

(
p̊∑

p=1

pαH
(

pf ( pd) ϕk−1( p̄d| pd)
))

+ K

(∑
p

pα pf ( pd) ϕk−1( p̄d| pd), ϕk(d)

)
(4.69)
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The choice ϕ
(0)
k (d) = ϕk−1(d) in the step (6) and repetitive use of Proposition 4.3.3 ensures that

K

(∑
p

pα pf ( pd) ϕk−1( p̄d| pd), ϕk(d)

)
≤ K

(∑
p

pα pf ( pd) ϕk−1( p̄d| pd), ϕk−1(d)

)
. (4.70)

Using (4.69), (4.70), and (2.17) again, we get the desired inequality

p̊∑
p=1

pαD
(

pf ( pd) ϕk−1( p̄d| pd)
∣∣∣∣ϕk(d)

)
≤

p̊∑
p=1

pαD
(

pf ( pd) ϕk−1( p̄d| pd)
∣∣∣∣ϕk−1(d)

)
.

• Although Algorithm 4.3.1 is partially based on a generalization of the EM algorithm, application
of the operator A (step 5) can decrease a chance of convergence to a local minimum.

• Parameters of initial approximation ϕ0 (step 2) are recommended to be selected so that ϕ0 is rather
flat and its components are mutually different enough (due to use of EM algorithm). Initial weights
ω̂c,0 should be selected uniformly.

An interesting modification of Algorithm 4.3.1 can be achieved by setting number of iterations of
the generalized EM algorithm I := 1, i.e., each application of operator A is followed by one step of the
generalized EM algorithm. Because ω̂

(0)
c,k = ω̂c,k−1, µ̂

(0)
c,k = µ̂c,k−1, and Σ̂(0)

c,k−1 = Σ̂c,k (step 6 of Algorithm

4.3.1), we get for ξ
(0)
c,k(d) (step 8)

ξ
(0)
c,k(d) = ω̂c,k−1Nd

(
µ̂c,k−1, Σ̂c,k−1

) p̊∑
p=1

pα
pf ( pd)∑c̊

c=1 ω̂c,k−1N pd

(
pµ̂c,k−1, pΣ̂c,k−1

) . (4.71)

Each term in the summation in (4.71) depends only on pd. This fact simplifies integration in step (9) of
Algorithm 4.3.1, because marginal and conditional pdfs of Nd

(
µ̂c,k−1, Σ̂c,k−1

)
and their moments can

be found analytically.
In order to evaluate parameters of conditional pdfs of a Gaussian pdf, we employ operators p̄S, p̄pS, pp̄S,

and p̄p̄S in addition to the operators pS and ppS defined by (4.66) and (4.67). p̄S : Rn → Rn− p̊i is defined
for x ≡ (x1, . . . , xn) by

p̄S(x) = (xi)i∈{1,...,n}\ pi∗ .

p̄pS : Rn,n → Rn− p̊i, p̊i is defined for X ≡ (xij)
n
i,j=1 by

p̄pS(X) = (xi,j)i∈{1,...,n}\ pi∗,j∈ pi∗ .

Operators pp̄S : Rn,n → R p̊i,n− p̊i and p̄p̄S : Rn,n → Rn− p̊i,n− p̊i are defined analogously to p̄pS. Using the
introduced operators we can easily express conditional pdfs of p̄d given pd for f (d) ≡ Nd(µ,Σ), see, e.g.,
[42]. For all p ∈ p∗ it holds

f
(

p̄d
∣∣ pd
)

= N p̄d

(
p̄µ + p̄pΣ ( pΣ)−1 ( pd− pµ) , p̄Σ− p̄pΣ ( pΣ)−1 pp̄Σ

)
,

where
p̄µ = p̄S(µ), p̄pΣ = p̄pS(Σ), p̄Σ = p̄p̄S(Σ), pp̄Σ =

(
p̄pΣ
)′

. (4.72)
pµ and pΣ are already introduced by (4.68). For the mean, taken as a function of pd and covariance
matrix of (4.72) we use a short notation

p̄|pµ( pd) ≡ p̄µ + p̄pΣ ( pΣ)−1 ( pd− pµ) ,
p̄|pΣ ≡ p̄Σ− p̄pΣ ( pΣ)−1 pp̄Σ.

Denoting

%p,k( pd) ≡
pf ( pd)∑c̊

c=1 ω̂c,k−1N pd

(
pµ̂c,k−1, pΣ̂c,k−1

)
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we get for new estimate of weights ω̂c,k the following relation:

ω̂c,k = ω̂c,k−1

∫
Nd

(
µ̂c,k−1, Σ̂c,k−1

) p̊∑
p=1

pα%p,k( pd)dd = ω̂c,k−1

p̊∑
p=1

pαλc,p,k,

where
λc,p,k ≡

∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd)d pd. (4.73)

For new estimates of means µ̂c,k we get

µ̂c,k =
ω̂c,k−1

ω̂c,k

∫
Nd

(
µ̂c,k−1, Σ̂c,k−1

) p̊∑
p=1

pα%p,k( pd)ddd =
ω̂c,k−1

ω̂c,k

p̊∑
p=1

pανc,p,k,

where for pνc,p,k ≡ pS(νc,p,k) and p̄νc,p,k ≡ p̄S(νc,p,k) it holds

pνc,p,k ≡
∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd) pd d pd,

p̄νc,p,k ≡
∫
Nd

(
µ̂c,k−1, Σ̂c,k−1

)
%p,k( pd) p̄d dd =

=
∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd) p̄|pµ̂c,k−1( pd)d pd.

Finally, new relations for covariance matrices Σ̂c,k are

Σ̂c,k =
ω̂c,k−1

ω̂c,k

p̊∑
p=1

pα

∫
Nd

(
µ̂c,k−1, Σ̂c,k−1

)
%p,k( pd) (d− µ̂c,k) (d− µ̂c,k)′ dd =

ω̂c,k−1

ω̂c,k

p̊∑
p=1

pαΩc,p,k,

where pΩc,k,p ≡ ppS (Ωc,k,p), pp̄Ωc,k,p = ( p̄pΩc,k,p)
′ ≡ pp̄S (Ωc,k,p), and p̄Ωc,k,p ≡ p̄p̄S (Ωc,k,p) are given by

the following relations:

pΩc,p,k =
∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd) ( pd− pµ̂c,k) ( pd− pµ̂c,k)′ d pd

=
∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd) pd pd′d pd− pνc,p,k

pµ̂′c,k − pµ̂c,k
pν′c,p,k + λc,k,p

pµ̂c,k
pµ̂′c,k

pp̄Ωc,p,k =
∫
Nd

(
µ̂c,k−1, Σ̂c,k−1

)
%p,k( pd) ( pd− pµ̂c,k)

(
p̄d− p̄µ̂c,k

)′ dd

=
∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd) ( pd− pµ̂c,k)

(
p̄|pµ̂c,k−1( pd)− p̄µ̂c,k

)′
d pd

=
∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd) ( pd− pµ̂c,k) p̄|pµ̂′c,k−1(

pd)d pd

− ( pνc,p,k − λc,k,p
pµ̂c,k) p̄µ̂′c,k

p̄Ωc,p,k =
∫
Nd

(
µ̂c,k−1, Σ̂c,k−1

)
%p,k( pd)

(
p̄d− p̄µ̂c,k

) (
p̄d− p̄µ̂c,k

)′ dd

=
∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd)

(
p̄|pΣc,k−1 + p̄|pµ̂c,k−1( pd) p̄|pµ̂T

c,k−1(
pd)

− p̄|pµ̂c,k−1( pd) p̄µ̂′c,k − p̄µ̂c,k
p̄|pµ̂′c,k−1(

pd) + p̄µ̂c,k
p̄µ̂′c,k

)
d pd

The outlined modification is summarized by the following algorithm.

Algorithm 4.3.2 (Approximation of If(d) by a Gaussian mixture with one iteration of the generalized
EM algorithm)

Let p̊, pd, pf ( pd) , pα be given – see Section 4.1.
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1. Select parameters c̊, K ∈ N.

• c̊ – number of components in ϕk

• K – number of iterations of the approximating step (4.34)

2. For all c ∈ c∗, select parameters ω̂c,0 > 0, µ̂c,0 ∈ Rn, Σ̂c,0 ∈ Rn,n of initial approximation ϕ0 of
If (d), i.e.,

ϕ0(d) =
c̊∑

c=1

ω̂c,0Nd

(
µ̂c,0, Σ̂c,0

)
.

3. k := 1 (counter of approximating steps (4.34))

4. For all p ∈ p∗, c ∈ c∗, set parameters

pµ̂c,k−1 := pS(µ̂c,k−1),
p̄µ̂c,k−1 := p̄S (µ̂c,k−1) ,

pΣ̂c,k−1 := ppS
(
Σ̂c,k−1

)
,

p̄|pΣ̂c,k−1 := p̄p̄S
(
Σ̂c,k−1

)
− p̄pS

(
Σ̂c,k−1

)
pΣ̂−1

c,k−1
pp̄S
(
Σ̂c,k−1

)
,

and function p̄|pµ̂c,k−1 : R p̊i → Rn− p̄̊i

p̄|pµ̂c,k−1( pd) := p̄µ̂c,k−1 + p̄pS
(
Σ̂c,k−1

)
pΣ̂−1

c,k−1 ( pd− pµ̂c,k−1) .

5. For all p ∈ p∗, set

%p,k( pd) :=
pf ( pd)∑c̊

c=1 ω̂c,k−1N pd

(
pµ̂c,k−1, pΣ̂c,k−1

) .

6. For all c ∈ c∗, p ∈ p∗, set

λc,p,k :=
∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd)d pd,

pνc,p,k :=
∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd) pd d pd,

p̄νc,p,k :=
∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd) p̄|pµ̂c,k−1( pd)d pd.

pΩc,p,k :=
∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd) pd pd′d pd

− pνc,p,k
pµ̂′c,k − pµ̂c,k

pν′c,p,k + λc,k,p
pµ̂c,k

pµ̂′c,k

pp̄Ωc,p,k :=
∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd) ( pd− pµ̂c,k) p̄|pµ̂′c,k−1(

pd)d pd

− ( pνc,p,k − λc,k,p
pµ̂c,k) p̄µ̂′c,k

p̄Ωc,p,k :=
∫
N pd

(
pµ̂c,k−1,

pΣ̂c,k−1

)
%p,k( pd)

(
p̄|pΣc,k−1 + p̄|pµ̂c,k−1( pd) p̄|pµ̂T

c,k−1(
pd)+

− p̄|pµ̂c,k−1( pd) p̄µ̂′c,k − p̄µ̂c,k
p̄|pµ̂′c,k−1(

pd) + p̄µ̂c,k
p̄µ̂′c,k

)
d pd.

7. For all c ∈ c∗, p ∈ p∗, set νc,p,k ∈ Rn and Ωc,p,k ∈ Rn,n so that

pS(νc,p,k) = pνc,p,k, p̄S(νc,p,k) = p̄νc,p,k,

ppS(Ωc,p,k) = pΩc,p,k, pp̄S(Ωc,p,k) = pp̄Ωc,p,k, p̄pS(Ωc,p,k) = pp̄Ω′c,p,k, p̄p̄S(Ωc,p,k) = p̄Ωc,p,k.
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8. For all c ∈ c∗, set new parameter estimates

ω̂c,k := ω̂c,k−1

p̊∑
p=1

pαλc,p,k,

µ̂c,k :=
ω̂c,k−1

ω̂c,k

p̊∑
p=1

pανc,p,k,

Σ̂c,k :=
ω̂c,k−1

ω̂c,k

p̊∑
p=1

pαΩc,p,k.

9. k := k + 1; If k ≤ K then go to step (4).

The result of Algorithm 4.3.2 are parameters ω̂c,K , µ̂c,K , Σ̂c,K of the best achieved approximation

ϕK(d) =
c̊∑

c=1

ω̂c,KNd

(
µ̂c,K , Σ̂c,K

)
of If (d) minimizing (4.1). The asset of this version of the algorithm is that the numerical integration
(step 6) is performed over sets pd∗ only. It means that the applicability of Algorithm 4.3.2 is limited
by the dimensions of quantities pd treated by individual participants, and not by the dimension of the
complete system.

4.4 Application in Multiple Participant Decision making

Apart from constructing the global objectives, the proposed method can be applied also in the distributed
multiple participant decision making. For this purpose, the method can be used by a pair of neighbours
to adjust marginals of their ideal pdfs on common parts of their environments. Another possibility
is to let a participant communicate with all its neighbours simultaneously and adjust the objectives
on its complete environment. The former case leads to the problem addressed in Example 4.2.1, the
analytical solution of which is known. In the latter case, the iterative algorithm, or another suitable
approximation, must be applied, except for a few special cases. In both cases the method is supposed to
be applied repeatedly for various pairs or groups of participants. It is expected that the bigger groups of
simultaneously communicating participants are, the smaller is a chance that the resulting adjusted ideal
pdfs significantly differ from the corresponding marginals of the global ideal pdf.

Note, that in case of the distributed multiple participant decision making, the proposed method
represents just a technical means for objective adjustment. A design of a cooperation strategies, according
to which the participants decides when, to whom, what to communicate, how to exploit the information
acquired, etc., is still an open problem.
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Chapter 5

Bayesian Knowledge Merging

In Section 3.5 we have sketched the role of the knowledge sharing in multiple participant decision making.
Although the design of a distributed solution has been left open, it is expected that it will rely on the
knowledge sharing much like the global task. A distributed solution is to be reached by a cooperation
among participants, which, due to limited computational resources, is supposed to be performed sequen-
tially between pairs of neighbours. On that account, for the design of the cooperation methods a feasible
procedure for knowledge sharing between pairs of neighbours is needed.

As the individual participants can employ completely different parametric models, the communication
must be performed via quantities which are in common of the neighbours, i.e., common data. The relation
(3.12) suggests that, on condition that the knowledge of individual participants can be translated to sets of
virtual observations, the information exchange could be provided by communicating these sets. However,
even in this case it could be technically difficult to find these sets and to exploit them for an update of
the prior pdfs according (3.12). Moreover, this approach does not tackle the general case, in which the
prior knowledge cannot be expressed as a set of virtual observations.

In this chapter we propose a method which could serve as a basis for a practically feasible, thought
possibly approximate, method for knowledge exchange between participants. The presented method
allows a decision maker to exploit a knowledge represented by a joint pdf of data to update its prior pdf.
The participants can acquire such pdfs, or their approximations, from their predictive pdfs and decision
strategies.

In Section 5.1 the problem is stated and its solution for a special case is outlined. This motivates
the heuristic solution of a general case, which is presented in Section 5.2. Sections 5.3 and 5.4 describe
the proposed method tailored to parametric models from the exponential family and in a from of a
probabilistic mixture respectively. In Section 5.5 we briefly mention a case in which the information
represented by a pdf of data is not specified for all quantities in the parameterized model. Finally, the
application of the proposed method for knowledge exchange between participants is discussed in Section
5.6.

5.1 Problem Formulation

Let us assume a time-invariant parametric model f (d|Θ), prior pdf f (Θ), and an information in a form
of pdf g(d). Our goal is to design a method which exploits information described by g(d) to update the
prior pdf f (Θ) so that g(d) is taken with “limited relevance”, i.e., g(d) influences the prior pdf similarly
as a finite number of observations. The following example motivates the proposed solution.

Assume τ̊ ∈ N and a pdf g(d) in a form

g(d) =
1
τ̊

τ̊∑
τ=1

δ (d− dτ )

for some d1, . . . , dτ̊ ∈ d∗, i.e., g(d) is a pdf corresponding to an empirical distribution of d from observa-
tions d1, . . . , dτ̊ . In this case a suitable update of f (Θ) by g(d), denoted by f (Θ|g(d), τ̊), suggests itself
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as the posterior pdf of Θ given d1, . . . , dτ̊ , i.e.,

f (Θ|g(d), τ̊) ≡ f (Θ|d1, . . . , dτ̊ ) . (5.1)

The concept of “limited relevance”of g(d) has in (5.1) a clear sense – it influences the prior pdf f (Θ) in
the same way as τ̊ observations. Note, that the notation f (Θ|g(d), τ̊) is merely a symbol and it has not
a meaning of a conditional pdf.

In (5.1), pdf f (Θ|g(d), τ̊) is expressed using the sequence d1, . . . , dτ̊ . Nevertheless, from g(d) itself
it is possible to acquire only values in the sequence d1, . . . , dτ̊ and their relative frequencies but not
absolute numbers of occurrences. For example, sequences of observations d1, . . . , dτ̊ and d̃1, . . . , d̃2τ̊ such
that d̃τ = d̃τ̊+τ = dτ for all τ ∈ {1, . . . , τ̊} leads to the same empirical distributions. On that account,
parameter τ̊ , or its analogy expressing the “weight” of information g(d), must be supplied externally
together with pdf g(d).

5.2 Solution

In order to reach an analogy of (5.1) for an arbitrary pdf g(d) and τ̊ ≥ 0, we express the posterior pdf
using a relation involving Kerridge inaccuracy and of an empirical pdf and the parametric model, see
[34].

f (Θ|d1, . . . , dτ̊ ) ∝ f (Θ)
τ̊∏

τ=1

f (dτ |Θ) = f (Θ) exp

(
τ̊∑

τ=1

ln f (dτ |Θ)

)
=

= f (Θ) exp

(∫ τ̊∑
τ=1

δ(d− dτ ) ln f (d|Θ)dd

)
=

= f (Θ) exp (−τ̊K (r(d), f (d|Θ))) (5.2)

In (5.2) K (·, ·) denotes Kerridge inaccuracy (2.10) and r(d) is an empirical pdf from data d1, . . . , dτ̊ , i.e.,

r(d) =
1
τ̊

τ̊∑
τ=1

δ(d− dτ ).

Notice, that (5.2) depends on data records d1, . . . , dτ̊ only through the empirical pdf r(d) and the number
of observations τ̊ . Furthermore, τ̊ need not necessarily reflect the number of distinct values in d1, . . . , dτ̊ .
The elements in relation (5.2) can be interpreted so that K (r(d), f (d|Θ)) expresses a quality of approx-
imation of pdf r(d) by f (d|Θ) as a function of Θ ∈ Θ∗ and τ̊ quantifies a relevance of information
represented by pdf r(d). It is important that the fact that τ̊ ∈ N and r(d) is an empirical pdf plays no
role in (5.2) – it is well defined for any τ̊ ∈ R and any pdf r(d). Therefore, for an arbitrary pdf g(d) and
υ > 0, the prior pdf f (Θ) updated by pdf g(d) with weight υ is established as

f (Θ|g(d), υ) ∝ f (Θ) exp (−υK (g(d), f (d|Θ))) . (5.3)

Generalization of (5.3) for parametric model with nonempty regression vector is straightforward.
Assume a parametric model in a form of conditional pdf f (∆|φ,Θ). At this point actions need not to
be explicitly distinguished, thus we can suppose that they are part of the state vector φ. The procedure
which leads to (5.2) indicates that for parametric model f (∆|φ,Θ), joint pdf g(∆, φ), and υ > 0 the
prior pdf f (Θ) updated by g(∆, φ) with weight υ has a form

f (Θ|g(∆, φ), υ) ∝ f (Θ) exp (−υK (g(∆, φ), f (∆|φ,Θ))) . (5.4)

Note, that from the analogy with the empirical pdf r(∆, φ) it follows that g(∆, φ) must be a joint
pdf although the parametric model f (∆|φ,Θ) is not. Roughly speaking, conditional pdf g(∆|φ) gives
information about frequency of observations of individual values of ∆ after a particular regression vector
φ has been observed. However, from g(∆|φ) it is impossible to deduce a weight of such information – it
gives no information about “how often” a particular value of φ arises or if it arises at all.
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As mentioned above, it is fundamentally impossible for the decision maker to deduce a suitable
weight from the pdf g(∆, φ) itself. On that account, the weight υ should be ideally provided together
with g(∆, φ). In case that g(∆, φ) is based, e.g., on a sequence of, say τ̊ , observations than υ = τ̊ is well
justified.

It should be stressed that, except the case in which g(d) and υ can be transformed to a data sequence,
the relation (5.3) is a pure heuristic.

5.3 Application to the Exponential Family

An asset of the presented method is its simple applicability to parametric models from an exponential
family (2.38). Assume a parametric model

f (∆|φ,Θ) = A(Θ) exp (〈B(∆, φ), C(Θ)〉) ,

see Section 2.3.3, and a joint pdf g(∆, φ). For such parametric model, the Kerridge inaccuracy in (5.4)
has the form

K (g(∆, φ), f (∆|φ,Θ)) = − lnA(Θ)−
∫

g(∆, φ)〈B(∆, φ), C(Θ)〉d∆dφ. (5.5)

From (5.5) in (5.4) we get

f (Θ|g(∆, φ), υ) ∝ f (Θ)Aυ(Θ) exp
(〈

υ

∫
g(∆, φ)B(∆, φ)d∆dφ,C(Θ)

〉)
. (5.6)

For a prior pdf in a conjugate form

f (Θ) ∝ Aν0(Θ) exp (〈V0, C(Θ)〉)

pdf f (Θ|g(∆, φ), υ) can be expressed as

f (Θ|g(∆, φ), υ) ∝ Aν(Θ) exp (〈V,C(Θ)〉) , (5.7)

where

ν = ν0 + υ (5.8)

V = V0 + υ

∫
g(∆, φ)B(∆, φ)d∆dφ. (5.9)

In other words, for parametric models from an exponential family and conjugate prior pdf, the evaluation
of (5.4) reduces to updating of parameters V0, ν0 according to (5.8) and (5.9). Compared to (2.40), V0 in
(5.9) is updated by the ν-multiple of the expected value of B(∆, φ) with respect to g(∆, φ).

5.4 Quasi-Bayes Algorithm

For parameterized models in a form of a probabilistic mixture (2.41), the updated prior pdf (5.4) can be
approximately evaluated using a slightly modified quasi-Bayes algorithm, see Section 2.3.3.

Assume a prior pdf in a form analogous to (2.42)

f (Θ) = Diα(κ)
c̊∏

c=1

f (Θc) ,

where Θ ≡ (α, Θ1, . . . ,Θc̊), α ≡ (α1, . . . , αc̊), αc ≥ 0 for all c ∈ c∗,
∑c̊

c=1 αc = 1, and κ ≡ (κ1, . . . , κc̊)
with κc ≥ 0 for all c ∈ c∗. For a joint pdf g(∆, φ) and υ > 0, the modified quasi-Bayes algorithm leads
to the updated prior pdf f (Θ|g(∆, φ), υ) in a form

f (Θ|g(∆, φ), υ) = Diα(κ̃)
c̊∏

c=1

f̃(Θc),
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where for all c ∈ {1, . . . , c̊}

κ̃c = κc + υ

∫
wc(∆, φ)g(∆, φ)d∆dφ,

f̃(Θc) ∝ f (Θc) exp
(

υ

∫
wc(∆, φ)g(∆, φ) ln f (∆|φ,Θc) d∆dφ

)
,

wc(∆, φ) =
κc

∫
f (∆|φ,Θc) f (Θc) dΘc∑

c̃∈c∗ κc̃

∫
f (∆|φ,Θc̃) f (Θc̃) dΘc̃

.

In the modified quasi-Bayes algorithm the information, represented by g(∆, φ) and υ, is processed all
at once. Thus, contrary to the quasi-Bayes algorithm described in Section 2.3.3, the modified algorithm
does not employ any iterations.

5.5 Partial Information

In this paragraph we briefly discuss a case in which the information represented by a pdf g(·) is not
specified for all quantities in the parameterized model. Assume that observation ∆ is a vector random
quantity. Let us split it into a pair of random quantities ∆ ≡ (∆1,∆2). Then, the parametric model has
a form

f (∆1,∆2|φ,Θ) . (5.10)

At first we assume that information g(∆1, φ) is available. The analogy with an empirical pdf and
f (Θ|g(∆1, φ), υ) being a regular posterior pdf immediately leads to the conclusion that for υ > 0 the
updated prior pdf f (Θ) has a form

f (Θ|g(∆1, φ), υ) ∝ f (Θ) exp (υK (g(∆1, φ), f (∆1|φ,Θ))) , (5.11)

where f (∆1|φ,Θ) is a marginal pdf of the parametric model (5.10). However, even if the parametric
model (5.11) is in the exponential family and the prior pdf f (Θ) has a conjugate form, the resulting pdf
(5.11) differs from (5.7). This fact can make the evaluation of (5.11) technically difficult.

Now assume that the information available has a form g(∆1,∆2). To evaluate f (Θ|g(∆1,∆2), υ)
we would need pdf f (∆1,∆2|Θ). Nevertheless, f (∆1,∆2|φ,Θ) cannot be, in general, derived from
the parametric model (5.10) as pdf f (φ|Θ) is not available. This problem is exactly the same as that
discussed in Section 3.5.2 in connection with the construction of a global prior pdf.

5.6 Application in Multiple Participant Decision Making

In this section we focus on a potential application of the proposed method on knowledge sharing between
participants. The basic idea is simple – participant’s knowledge in a form of a prior (or posterior) pdf
to be shared is transformed to a joint pdf of data in common of the cooperating participants. This
pdf is communicated to the neighbour which exploits it using (5.4). A suitable transformation of the
prior/posterior pdf to the joint pdf of data can be acquired using the predictive pdf (2.30) and, eventually,
the decision strategy. However, in a general case, which is shortly discussed at the end of this section,
such a transformation is not so straightforward.

In what follows we illustrate some features of the knowledge sharing based on communicating the
predictive pdfs and application of (5.4). As the method is partially based on heuristics and suffers from
a lack of the underlying theory we use a particular example for this purpose. The example employs
parametric models from an exponential family. For simplicity, we use a static parametric models in
a natural parameterization, which is slightly different from the more general one introduced by (2.38).
Before we approach to the example itself, let us recall some basic facts related to estimation of parametric
models from the exponential family [40].

Let us consider a parametric model

f (d|Θ) = exp

 k̊∑
k=1

Bk(d)Θk −A(Θ)

 , (5.12)

59



where k̊ ∈ N, Bk : d∗ → R, for all k ∈ k∗, Θ ≡ (Θ1, . . . ,Θk̊) ∈ Θ∗ ⊂ Rk̊, and A : Θ∗ → R. Θk in (5.12)
are called natural parameters and B(d) ≡

(
B1(d), . . . , Bk̊(d)

)
is a sufficient statistic of the model. From

the fact that
∫

f (d|Θ)dd = 1 for all Θ ∈ Θ∗ it follows that for A(Θ) it holds

A(Θ) = ln
∫

exp

 k̊∑
k=1

Bk(d)Θk

dd.

Suppose, that
Θ∗ =

{
Θ ∈ Rk̊

∣∣∣A(Θ) < +∞
}

and Θ∗ is an open set.
Now, consider a prior pdf in a conjugate form

f (Θ) ∝ exp

n

k̊∑
k=1

VkΘk − nA(Θ)

 , (5.13)

where n > 0 and Vk ∈ R for all k ∈ k∗.
For the pdfs (5.12) and (5.13) it holds for all k ∈ k∗, see [40],

E [Bk|Θ] =
∫

Bk(d)f (d|Θ)dd =
∂A(Θ)
∂Θk

, (5.14)

E

[
∂A(Θ)
∂Θk

]
=

∫
∂A(Θ)
∂Θk

f (Θ) dΘ = Vk. (5.15)

From (5.14) and (5.15) we get an important equality for the expectation of a sufficient statistic with
respect to the predictive pdf. For all k ∈ k∗ ≡ {1, . . . , k̊}, it holds∫

Bk(d)f (d|Θ) f (Θ) dΘdd = Vk. (5.16)

The following example extensively employs prior/posterior pdfs in a conjugate form. In the example
we use for the conjugate pdfs a notation with explicitly indicated parameters of the pdfs. Namely, the
conjugate pdf (5.13) is denoted as f (Θ|n, V ), where V ≡

(
V1, . . . , Vk̊

)
.

Example 5.6.1 Consider a pair of participants dealing with the same data d ≡ 1d ≡ 2d and having
parameterized models from the exponential family with natural parameterization (5.12), i.e., for p ∈ {1, 2},

pf (d| pΘ) = exp

 p̊k∑
pk=1

pB pk(d) pΘ pk − pA ( pΘ)

 , (5.17)

where p̊k, pB pk, pΘ, and pA are defined analogously to k, Bk,Θ, and A in (5.12). Let pΘ∗ be open sets
and satisfy

pΘ∗ =
{

pΘ ∈ R
p̊k
∣∣∣ pA( pΘ) < +∞

}
.

Suppose, that the participants have conjugate prior pdfs, i.e., for p ∈ {1, 2}, the prior pdfs are in a form

pf ( pΘ| pn, pV ) ∝ exp

 pn

p̊k∑
pk=1

pV pk
pΘ pk − pn pA ( pΘ)

 , (5.18)

where pn > 0 and pV ≡
(

pV1, . . . ,
pV p̊k

)
∈ R p̊k. Moreover, suppose that there is a sequence of observations

d1:̊τ , for some τ̊ ∈ N, available to the first participant. Thus, its actual knowledge is represented by the
posterior pdf 1f

(
1Θ
∣∣d1:̊τ

)
which is also conjugate. Denoting, for all 1k ∈ 1k∗,

1U 1k ≡
1
τ̊

τ̊∑
τ=1

1B 1k(dτ ),
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the posterior pdf can be expressed as

1f
(

1Θ
∣∣d1:̊τ

)
= 1f

(
1Θ
∣∣ 1n̄, 1V̄

)
, (5.19)

where 1V̄ ≡
(

1V̄1, . . . ,
1V̄ 1̊k

)
and

1n̄ = 1n + τ̊ ,

1V̄ 1k =
1n

1n + τ̊
1V 1k +

τ̊
1n + τ̊

1U 1k,

for all 1k ∈ 1k∗.
Now, observe what happens if the first participant provides its predictive pdf and a corresponding

weight to the second participant, which exploits this information using (5.4). We consider two particular
cases of the predictive pdf:

1. The first participant provides the predictive pdf 1f (d) based on the prior pdf 1f
(

1Θ
∣∣ 1n, 1V

)
, i.e.,

1f (d) =
∫

1f
(
d
∣∣ 1Θ

)
1f
(

1Θ
∣∣ 1n, 1V

)
d 1Θ

and the weight 1n.

2. The first participant provides the predictive pdf 1f
(
d
∣∣d1:̊τ

)
based on the posterior pdf 1f

(
1Θ
∣∣ 1n̄, 1V̄

)
,

i.e.,
1f
(
d
∣∣d1:̊τ

)
=
∫

1f
(
d
∣∣ 1Θ

)
1f
(

1Θ
∣∣ 1n̄, 1V̄

)
d 1Θ

and the weight 1n̄.

In the first case, the updated prior pdf of the second participant has a form

2f
(

2Θ
∣∣ 1f (d) , 1n

)
∝ 2f

(
2Θ
)
exp

(
− 1nK

(
1f (d) , 2f

(
d
∣∣ 2Θ

)))
,

from which we get, using (5.17), (5.18), and the definition (2.10) of the Kerridge inaccuracy,

2f
(

2Θ
∣∣ 1f (d) , 1n

)
∝ exp

( 2n + 1n
) 2̊k∑

2k=1

(
2n

2n + 1n
2V 2k +

1n
2n + 1n

∫
1f (d) 2B 2k(d)dd

)
2Θ 2k −

(
2n + 1n

)
2A
(

2Θ
) .

It means that the updated prior pdf 2f
(

2Θ
∣∣ 1f (d) , 1n

)
remains in the exponential family and, using the

notation introduced in (5.18), we can write

2f
(

2Θ
∣∣ 1f (d) , 1n

)
= 2f

(
2Θ
∣∣ 2n♥, 2V ♥) , (5.20)

where 2V ♥ ≡
(

2V ♥
1 , . . . , 2V ♥

2̊k

)
and

2n♥ = 2n + 1n, (5.21)

2V ♥
2k =

2n
2n + 1n

2V 2k +
1n

2n + 1n

∫
1f (d) 2B 2k(d)dd, (5.22)

for all 2k ∈ 2k∗. Analogously, for the predictive pdf 1f
(
d
∣∣d1:̊τ

)
the updated prior pdf of the second

participant can be written as

2f
(

2Θ
∣∣ 1f

(
d
∣∣d1:̊τ

)
, 1n̄
)

= 2f
(

2Θ
∣∣ 2n♣, 2V ♣) , (5.23)
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where 2V ♣ ≡
(

2V ♣
1 , . . . , 2V ♣

2̊k

)
and

2n♣ = 2n + 1n̄ = 2n + 1n + τ̊ ,

2V ♣
2k =

2n
2n + 1n̄

2V 2k +
1n̄

2n + 1n̄

∫
1f
(
d
∣∣d1:̊τ

)
2B 2k(d)dd

=
2n

2n + 1n + τ̊
2V 2k +

1n + τ̊
2n + 1n + τ̊

∫
1f
(
d
∣∣d1:̊τ

)
2B 2k(d)dd (5.24)

for all 2k ∈ 2k∗.
If, for some 1k ∈ 1k∗ and 2k ∈ 2k∗, it holds 1B 1k = 2B 2k, then, according to (5.16), the relations

(5.22) and (5.24) can be expressed as

2V ♥
2k =

2n
2n + 1n

2V 2k +
1n

2n + 1n
1V 1k (5.25)

and

2V ♣
2k =

2n
2n + 1n̄

2V 2k +
1n̄

2n + 1n̄
1V̄ 1k

=
2n

2n + 1n + τ̊
2V 2k +

1n
2n + 1n + τ̊

1V 1k +
τ̊

2n + 1n + τ̊
1U 1k (5.26)

respectively.

The example illustrates some interesting features of the proposed method:

• The knowledge sharing based on communicating the predictive pdf and application of (5.4) is able
to provide accurate knowledge sharing in some cases. To clarify it, we evaluate a posterior pdf

2f
(

2Θ
∣∣ 1f (d) , 1n, d1:̊τ

)
∝ 2f

(
2Θ
∣∣ 1f (d) , 1n

)
f
(
d1:̊τ

∣∣ 2Θ
)

(5.27)

of the second participant corresponding to the prior pdf (5.20) updated by the data d1:̊τ . Denoting,
for all 2k ∈ 2k∗,

2U 2k ≡
1
τ̊

τ̊∑
τ=1

2B 2k(dτ ),

the posterior pdf can be expressed as

2f
(

2Θ
∣∣ 1f (d) , 1n, d1:̊τ

)
= 2f

(
2Θ
∣∣ 2n♦, 2V ♦) , (5.28)

where 2V ♦ ≡
(

2V ♦
1 , . . . , 2V ♦

2̊k

)
and

2n♦ = 2n♥ + τ̊ = 2n + 1n + τ̊ ,

2V ♦
2k =

2n♥

2n♥ + τ̊
2V ♥

2k +
τ̊

2n♥ + τ̊
2U 2k =

=
2n

2n + 1n + τ̊
2V 2k +

1n
2n + 1n + τ̊

∫
1f (d) 2B 2k(d)dd +

τ̊
2n + 1n + τ̊

2U 2k,

for all 2k ∈ 2k∗. The parameters 2n♣, 2V ♣ and 2n♦, 2V ♦ of the updated prior pdf (5.20) and the
posterior pdf (5.28) respectively have the following properties.

1. 2n♣ = 2n♦
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2. If, for some 1k ∈ 1k∗ and 2k ∈ 2k∗, it holds that 1B 1k = 2B 2k, then from (5.16) and the
equality of statistics 1U 1k = 2U 2k it follows that 2V ♣

2k = 2V ♦
2k.

These properties can be interpreted so that the piece of knowledge from data d1:̊τ which is related
to the parameter 2Θ 2k is transferred accurately. Note, that the equality 1B 1k = 2B 2k is not a
necessary condition for 2V ♣

2k = 2V ♦
2k. Due to the linearity of expectation, it is sufficient to require

that

2B 2k =

1̊k∑
1k=1

β 1k
1B 1k (5.29)

for some β1, . . . , β 1̊k ∈ R. Notice also, that if 1B 1k = 2B 2k holds for some 1k ∈ 1k∗ and 2k ∈ 2k∗,
then the resulting value of the parameter 2V ♣

2k is independent of the “rest” of the parametric model
1f
(
d
∣∣ 1Θ

)
, i.e., of the statistics 1Bk(d) for k ∈ 1k∗ such that k 6= 1k. This result can be straightly

generalized to the case in which 2B 2k satisfies the condition (5.29). 2V ♣
2k is then independent of the

statistics 1Bk(d), for 1k ∈ 1k∗ such that β 1k 6= 0.

• In a general case, i.e., for 2k ∈ 2k∗ such that the condition (5.29) is not satisfied, the value of
2V ♣

2k is different from 2V ♦
2k. Whereas the parameter 2V ♦

2k depends on data d1:̊τ directly through the
statistic 2U 2k, the parameter 2V ♣

2k is influenced by the data through the expectation of 2B 2k(d) with
respect to the predictive pdf f

(
d
∣∣d1:̊τ

)
. Note, that the relation (5.24) makes the parameter 2V ♣

2k

dependent on the complete parametric model 1f
(
d
∣∣ 1Θ

)
, i.e., on all statistics 1B 1k(d) for 1k ∈ 1k∗,

as well as on the entire parameter V̄ of the posterior pdf (5.19). In this sense the proposed method
provides only approximate knowledge sharing.

• The following feature of the proposed method is not strictly related to the parametric models from
the exponential family but holds generally. The relation (5.4) for updating the prior pdf f (Θ) by
the information in the form g (∆, φ) , ν is “reversible” in the sense that knowing g (∆, φ) and ν the
prior pdf f (Θ) could be reached from f (Θ|g (∆, φ) , ν) by the relation

f (Θ) ∝ f (Θ|g(∆, φ), υ) exp (υK (g(∆, φ), f (∆|φ,Θ))) . (5.30)

This property is important for practical applications as it is expected that in a pair of neighbours
the knowledge will be shared repeatedly in time. Assume, for instance, that the first participant in
Example 5.6.1 initially provides the predictive pdf 1f (d) to the second participant. Later, after it
acquires data d1:̊τ , it provides also the predictive pdf 1f

(
d
∣∣d1:̊τ

)
. If the second participant exploits

both these information pieces via (5.4), its updated prior pdf

2f
(

2Θ
∣∣ 1f (d) , 1n, 1f

(
d
∣∣d1:̊τ

)
, 1n̄
)
∝ 2f

(
2Θ
∣∣ 1f (d) , 1n

)
exp

(
− 1n̄K

(
1f
(
d
∣∣d1:̊τ

)
, 2f

(
d
∣∣ 2Θ

)))
incorporates the information from 1f (Θ) – through 1f (d) and through 1f

(
d
∣∣d1:̊τ

)
. Knowing 1f (d)

and 1n, the relation (5.30) allows to update 2f
(

2Θ
∣∣ 1f (d) , 1n

)
to 2f

(
2Θ
∣∣ 1f

(
d
∣∣d1:̊τ

)
, 1n̄
)

correctly
by

2f
(

2Θ
∣∣ 1f

(
d
∣∣d1:̊τ

)
, 1n̄
)

∝ 2f
(

2Θ
∣∣ 1f (d) , 1n

)
exp

(
1nK

(
1f (d) , 2f

(
d
∣∣ 2Θ

))
− 1n̄K

(
1f
(
d
∣∣d1:̊τ

)
, 2f

(
d
∣∣ 2Θ

)))
.

In this way, the presented method could be used not only to share a complete participant’s knowl-
edge, but also to communicate its increments or changes caused, e.g., by a redesign of a decision
strategy.

In Example 5.6.1 we have supposed that the parametric models are static ones, i.e., their state
vectors are empty. In such case, the prior pdf can be easily transformed to the joint pdf of the data in
common of the participants as a marginal from the predictive pdf. However, in a general case a suitable
transformation is not so straightforward. Assume, for an illustration, that the participant sharing its
knowledge has a parametric model 1f

(
1∆t

∣∣ 1at,
1φt−1,

1Θ
)
, decision strategy 1f

(
1at

∣∣ 1d1:t−1
)
, and prior

pdf 1f
(

1Θ
)
. For simplicity, we can suppose that the quantities common with the participant’s neighbour
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are
(

1∆t,
1at,

1φt−1

)
. Then, the participant needs a joint pdf 1f

(
1∆t,

1at,
1φt−1

)
. Of course, this joint

pdf cannot be derived form the parametric model, decision strategy, and the prior pdf. Suppose, for a
while, that the decision strategy 1f

(
1at

∣∣ 1d1:t−1
)

is time invariant. In this case, the actions 1at necessarily
depends only on some finite dimensional subvector of 1d1:t−1 of a fixed structure. For simplicity, we can
assume that this subvector is 1dt− 1T :t−1, where 1T is the length of the state vector 1φt−1, see Section
3.2. The participant is then able to construct a conditional pdf

1f
(

1∆t,
1at

∣∣∣ 1dt− 1T :t−1
)

=
∫

1f
(

1∆t,
1at

∣∣ 1φt−1,
1Θ
)

1f
(

1Θ
)
d 1Θ 1f

(
1at

∣∣∣ 1dt− 1T :t−1
)

,

from which a stationary pdf 1f̃
(

1dt− 1T :t−1
)

could be derived, if it exists. Finally, a suitable approxima-

tion of 1f
(

1∆t,
1at,

1φt−1

)
can be acquired as a marginal pdf from

1f
(

1∆t,
1at

∣∣∣ 1dt− 1T :t−1
)

1f̃
(

1dt− 1T :t−1
)

.

Nevertheless, in practice the decision strategy 1f
(

1at

∣∣ 1d1:t−1
)

is evolving in time and thus cannot be
taken as time invariant. In such cases a more detailed modelling must be employed to reach a suitable
approximation of 1f

(
1∆t,

1at,
1φt−1

)
.

Note, that a byproduct of the proposed method is that the relation (5.4) can be used for exploiting
an expert information in a form of an arbitrary joint pdf g(∆, a, φ) whenever this pdf can be taken as
a limit, or an approximation, of an empirical pdf and the information provided has, for some reason, a
relevance analogous to a finite number of observations. This property has been employed, e.g., in [25],
[33], and [32].
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Chapter 6

Summary and Conclusions

The objective of the thesis is to design practically feasible methods that allow a group of Bayesian decision
makers acting in the same system to communicate information pieces on their knowledge and objectives
and use them to enhance the quality of the decision making. The main part of the work could be split
into to parts:

• Chapter 3, in which the decision making with multiple participants is introduced and studied.

• Chapters 4 and 5, in which the communication methods themselves are proposed.

In Chapter 3 a discussion of a possible extension of the single participant Bayesian decision making
towards the multiple participant one is presented. Due to the complexity of the addressed problem, a
case study has been employed for this purpose. The key assumptions, which determines our approach,
are that no consistencies of parametric models, prior pdfs, and objectives of individual participants are
a priori required and that all computations are to be performed by the participants themselves, whereas
their computational resources are limited, see Section 3.3. Although our primary aim is the multiple
participant decision making in a distributed form, it comes out that some kind of a central decision
making, called here a global task, must be inevitably considered, Section 3.4. The global task serves as
a criterion which enables to compare p̊-tuples of decision strategies of individual participants. We have
attempted to construct the global task as Bayesian one. However, there is no unique way to treat the
multiplicity of uncertainty assessments and objectives of individual participants. On that account, we
have adopted additional conditions that specify a particular form of the global task, see Section 3.4. In
Section 3.5 we have outlined partial problems related to the construction of the global parametric model,
prior pdf, and loss function. At this stage we have made use of assumptions that allow to clarify the
sources of inconsistencies of parametric models and prior pdfs of individual participants.

The results acquired in this chapter lead to the following conclusions:

• Any normative distributed decision making induces certain kind of the global task, that provides
a criterion according to which the p̊-tuples of decision strategies of individual participants are
compared, Section 3.4. However trivial this observation is, it plays a crucial role in the design of a
distributed decision making. It implies that any attempt to design the distributed solution directly
from the local tasks, without considering a related global task, is just a simplification for which it
is payed by a loss of the normativeness of the resulting decision making.

• The participants themselves do not provide enough information for the global task to be constructed
as a Bayesian one in the sense of Section 2.3, see Section 3.5.2. Any procedure that maps the
information provided by individual participants to the global parametric model and prior pdf must,
more or less explicitly, model the relation between participants’ information and the “true” model
of the system. This information model should reflect possible reasons of inconsistency, measure of
overlapping, and eventually other aspects related to multiplicity of information sources. However,
the information acquired from the participants do not provide any evidence on which the choice
of a suitable information model could be based. In Section 3.5.2 the lack of evidence has been
compensated by the assumptions that the inconsistency of local parametric models is solely caused
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by technical limitations of the participants and that the local prior pdfs represent information pieces
from independent sources.

This issue seems to be the most serious open problem of the proposed treatment of the multiple
participant decision making. On one hand, it is clear that the information model cannot be left
completely unspecified because in such case there would not be any known relation between partic-
ipants’ information pieces and the “true” model of the system. On the other hand, the assumption
that the information model is fully specified is rather unrealistic, especially if the distributed form
of the decision making is aimed at. A compromise between the two extreme cases could potentially
provide a way out: Whenever some kind of parametric information model could be assumed to be
generally acceptable for some class of applications, the complete uncertainty about the information
model reduces to the uncertainty about its unknown parameter. The parametric information mod-
els need not be necessarily represented merely by conditional pdfs, but could be possibly of a more
general form. The relation between local and global parametric models and local and global prior
pdfs based on the assumption stated in Section 3.5.2 and extended by some model of dependency
of participants’ information could serve as an example of such parametric information model. In
this case, the parameter coincides with the parameter of the dependency model. Another type of
the information model could be based, e.g., on the assumption that the participants information
correspond to the “true” model of the system affected by some error of known type but with un-
known parameters. Modeling of the dependency among information sources is widely addressed in
the literature, see, e.g., [51] or [37].

The uncertainty about the unknown, ideally finite dimensional, parameter of the information model
can be treated via standard procedures of decision making under uncertainty. Nevertheless, it should
be stressed that the parameter relates to aspects of the information model for which no relevant
prior information can be acquired from individual participants. In other words, an availability of
any “informative” prior pdf of the parameter cannot be supposed.

At this point several scenarios of further development can be considered. We briefly mention two
of them:

1. The prior pdf is left unspecified and the partial order of global decision strategies induced by
their dominance is considered as the criterion according to which the strategies are compared.

2. The prior pdf is selected as a non-informative one and the global strategies are compared
according the expected global loss. However, it is not clear at all what kind of non-informative
prior should be selected for individual information models. Moreover, this approach should
be ideally supported by learning of the parameter, which is possible only if the participants
communicates sequentially. In this case, it would be also necessary to extend the participants’
parametric models and prior pdfs so that they are able to reflect the development of knowledge
about the information model.

In any case, this issue should be a matter of further discussion.

• The assumption on limited computational resources of the participants is insufficiently formalized,
which is in a sharp contradiction with its significance. For example, the choice of participant’s
parametric model is mostly a compromise between its prior knowledge about the system and its
technical limitations, see Section 3.5.2. From the parametric model itself it is impossible to separate
these two aspects, which heavily complicates the constructing of the global task. In Section 3.5.2 this
difficulty has been overcome by the assumption that the inconsistency of participants’ parametric
models is solely caused by the technical limitations.

• The special case in which the local prior pdfs are in a conjugate form enables to represent the
knowledge of individual participants commonly as sets of observations, see Section 3.5.2. This
approach allows to combine the participants’ knowledge in a natural way, even if the participants
employ different parametric models. We believe that this special case may serve as a starting point
for the treatment of a more general forms of prior information.
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In Chapter 4, a method is proposed which enables to establish the global objective in case that
the participants employ the fully probabilistic design. The global objective, represented by the global
ideal pdf, is selected so that it is in some sense close to the ideal pdfs of the individual participants.
The measure of proximity is selected as a weighted sum (4.1) of the Kullback-Leibler divergences of the
participants’ ideal pdfs to the corresponding marginal pdfs of the global ideal pdf, Section 4.1. The global
ideal pdf is then searched as a minimizer of this functional. The major part of Chapter 4 is focused on
an analysis of the proposed optimization task and finding its approximate solution.

The main results of this chapter are as follows:

• A necessary condition for a global ideal pdf to be the optimal one is stated in Proposition 4.2.2.
The condition is given by the equation (4.11), which is analytically intractable, except for a few
special cases.

• Proposition 4.2.3 states that the equation (4.11) is, under an additional assumption, also a sufficient
condition for a global ideal pdf to be the optimal one.

• An approximate solution of the optimization task defining the global ideal pdf can be reached using
an iterative algorithm based on repetitive applications of the operator (4.9). Its convergence is,
under a relatively mild assumption, guaranteed by Proposition 4.3.1.

• The iterative algorithm cannot be directly implemented for continuous quantities because of the
intractable form of the pdfs approximating the global ideal pdf. To overcome this difficulty, a
generalized EM algorithm is introduced in Section 4.3.2. The generalized EM algorithm can be
used for an approximation of a given pdf by a probabilistic mixture. Its monotone convergence
is guaranteed by Proposition 4.3.3. Combining the two algorithms we get Algorithm 4.3.1 and its
optimized version – Algorithm 4.3.2, which allow to find an approximate global ideal pdf in the
form of a finite Gaussian mixture.

In Chapter 5 we present a method which allows a Bayesian decision maker to exploit a knowledge
represented by a joint pdf of data. In multiple participant decision making this method can be used as
an approximate, but practically feasible, means for knowledge sharing between participants. The core
of the proposed method is the relation (5.4). Its practical feasibility stems from the fact that the for a
parametric model from the exponential family and a conjugate prior pdf the updated prior pdf remains
in a conjugate form, see Section 5.3. The method can be also used with parametric models in a form
of a finite mixture. In this case the updated prior pdf can be evaluated using a modified quasi-Bayes
algorithm, see Section 5.4. Knowledge sharing between participants based on communicating a predictive
pdf and application of the relation (5.4) is discussed in Section 5.6. It is also illustrated that under some
assumptions on the parametric models of the communicating participants the proposed method is able to
provide accurate knowledge sharing. However, in a general case the transferred knowledge can partially
depend on the participants’ parametric models. The limitation of the proposed method is that the
participant providing its knowledge to a neighbour is required to specify a joint pdf of data in common
with the neighbour, which can be often done only approximately.

6.1 Contributions

The main contributions of the thesis can be summarized as follows:

• The case study in Section 3.5 allows a better understanding of the bottlenecks faced in the Bayesian
decision making with multiple participants.

• A feasible and theoretically supported algorithmic solution for the minimization of the weighted sum
of the Kullback-Leibler divergences (4.2) has been reached for both discrete and continuous random
quantities. The proposed algorithms allow to establish common objectives of the participants
employing the fully probabilistic design.

• A method has been proposed which allows a Bayesian decision maker to exploit an information
represented by a joint pdf of data to update its prior pdf. In the multiple participant decision making
this method provides a practically feasible means for knowledge sharing between participants.
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Apart from the above listed main contributions also several minor ones have been acquired:

• The generalized EM algorithm proposed in Section 4.3.2 provides a means for an approximation of
complex pdfs by finite probabilistic mixtures.

• The method for knowledge sharing between participants proposed in Section 5.2 can be used for
exploiting experts information in a form of a joint pdf of data.

• The comments on the fully probabilistic design in Appendix B point out its limitations and open a
critical discussion on this kind of design.

6.2 Open Problems

• In the current state of development, the formulation of the multiple participant decision making is
still inadequate. Especially, both the basic assumptions and general aims are insufficiently specified.
For a future development the following issues should be addressed:

– The assumptions on limited computational resources have to be specified in more details and
in an appropriate form.

– An extent of information that could be possibly acquired from an external source, i.e., not
from the participants themselves, has to be specified.

– The aims that are to be followed by the multiple participant decision making must be arranged.

• Even a simple instance of the multiple participant decision making is a technically demanding task
and requires suitable approximating procedures.

– The construction of the global prior pdf in Section 3.5 as well as the updating of prior pdfs of
individual participants in Section 5.2 is typically done using an information which is specified
only partially, i.e., not for all quantities in the corresponding parametric models. In such
cases, the updated prior pdfs can easily became intractable even for parametric models from
the exponential family. Similarly, the predictive pdfs representing participants’ knowledge, see
Section 5.6, can be hardly tractable. On that account, suitable approximation methods for
handling such pdfs must be found.

– In the multiple participant decision making a specific kind of problems stems from the incon-
sistency of the individual parametric models. The construction of the global task in Section
3.5.2 is one of them. Although a general treatment of the problem has been sketched, it is
technically entirely deficient. We hope that the apparatus of the information geometry [47]
could provide means to acquire a better insight into this kind of problems.

• A design of a distributed form of the multiple participant decision making is a still an open problem.
The methods proposed is Chapters 4 and 5 provide means for communication of the participants,
but a design of particular communication strategies, according to which the participants decides
when, with whom, and what to communicate, remains unsolved.

• The relation (5.4), which allows a Bayesian decision maker to update its prior pdf by an information
in form of a joint pdf of data, is partially based on heuristics. This limits its further development
as a procedure for exploiting expert information.

68



Appendix A

Binary Relations and Orders

Decision makers preferences are often characterized in terms of binary relations. In this appendix, defi-
nitions and properties of several types of binary relations are summarized. They are taken from [19].

A binary relation R on a set M is

• reflexive if xRx, for all x ∈ M ,

• irreflexive if not xRx, for all x ∈ M ,

• symmetric if xRy ⇒ yRx, for all x, y ∈ M ,

• asymmetric if xRy ⇒ not yRx, for all x, y ∈ M ,

• antisymmetric if (xRy, yRx) ⇒ x = y, for all x, y ∈ M ,

• transitive if (xRy, yRz) ⇒ xRz, for all x, y, z ∈ M ,

• negatively transitive if (not xRy, not yRz) ⇒ not xRz, for all x, y, z ∈ M ,

• connected if xRy or yRx for all x, y ∈ M ,

• weakly connected if x 6= y ⇒ (xRy or yRx), for all x, y ∈ M ,

• a partial order if R on M is reflexive, antisymmetric, and transitive,

• a strict partial order if R on M is irreflexive and transitive,

• a weak order if R on M is asymmetric and negatively transitive,

• a strict order if R on M is a weakly connected weak order,

• an equivalence if R on M is reflexive, symmetric, and transitive.

For a binary relation ≺ on a set M representing preferences about elements of M , i.e., x ≺ y means that
x is less preferred then y, we define a relation of indifference ∼:

x ∼ y ⇔ (not x ≺ y, not y ≺ x) . (A.1)

The preference-indifference relation � is defined as a union of ≺ and ∼:

x � y ⇔ x ≺ y or x ∼ y. (A.2)

The following theorem summarizes basic properties of a weak order.

Theorem A.0.1 Suppose that ≺ is a weak order on a set M and the relations ∼ and � are defined by
(A.1) and (A.2), respectively. Then
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• exactly one of x ≺ y, y ≺ x, x ∼ y holds for all x, y ∈ M ;

• ≺ is transitive;

• ∼ is an equivalence;

• (x ≺ y, y ∼ z) ⇒ x ≺ z, and (x ≺ y, y ∼ z) ⇒ x ≺ z, for all x, y, z ∈ M ;

• � is transitive and connected;

• with ≺′ on the set M/∼, being the set of equivalence classes of M under ∼, defined by

a ≺′ b ⇔ x ≺ y for some x ∈ a, y ∈ b

≺′ on M/∼ is a strict order.
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Appendix B

Critical Comments on FPD

The definition of the optimal decision strategy in the sense of (2.48) has certain drawbacks of both
theoretical and practical nature. They are briefly discussed here. In the discussion we exploit a simple
decision making task involving

• action a and observation ∆,

• loss function L(a,∆),

• outer model of the system f (∆|a).

The fundamental defect of FPD is that it cannot be taken as an extension of decision making on
non-randomized actions to decision making on randomized actions. Within the Bayesian framework, see
Section 2.3, the preference order on randomized actions f (a) is induced by the expected loss

Lr(f(a)) ≡ E [L(a,∆)] =
∫

L(a,∆)f (∆|a) f (a) d∆da. (B.1)

Its restriction to non-randomized actions, represented by δ(a − ã) for ã ∈ a∗, corresponds to expected
utility

Ln(a) ≡ E [L(a,∆)|a] =
∫

L(a,∆)f (∆|a) d∆.

defined for non-randomized actions directly.
In case of FPD, preferences among randomized actions are given by a functional Lf : F(a) → R,

Lf (f (a)) ≡ D
(
f (∆|a) f (a)

∣∣∣∣ If (a,∆)
)
, (B.2)

for some ideal pdf If (a,∆) ∈ F(a,∆). For If (a,∆) being a pdf of an absolutely continuous distribution
it holds ∀ã ∈ a∗,Lf (δ(a− ã)) = +∞, which implies that such Lf does not induce any non-trivial ordering
on non-randomized actions.

Often it is argued that FPD represents a regular Bayesian decision making with the loss function
ln f(a,∆)

If(a,∆)
. Such argument is unacceptable as such “loss function” is not a functional on a set a∗ × ∆∗

but on a set F(a)× a∗ ×∆∗ and thus it does not determine preference ordering on the set a∗ ×∆∗.
Representation of objectives by ideal pdfs, which should be one of the assets of FPD, brings also

practical difficulties. Namely, analytical solution of FPD (2.49) requires specification of the ideal pdf as a
joint pdf of (a,∆). In this way a decision maker is indirectly pushed to specify conditional pdf If(∆|a).
This point seems being irrational as the decision maker has no possibility to influence the resulting
conditional pdf of ∆ given a, which is fixed and given by the outer model of the system. Nevertheless,
the choice of If (∆|a) has an impact on the resulting optimal f (a). An interesting alternative would
be to specify marginal ideal pdfs If (a) and If (∆) only. However, this approach does not fit into FPD
framework, as it would require simultaneous minimization of Kullback-Leibler divergences

D
(
f (a)

∣∣∣∣ If (a)
)
, D

(∫
f (∆|a) f (a) da

∣∣∣∣∣∣∣∣ If (∆)
)

, (B.3)
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which are, in general, contradictory requirements. To overcome this difficulty it is recommended to
specify the joint ideal pdf in a form

If(a,∆) = If(a) If(∆) (B.4)

and use regular FPD (2.48). Apparently, this approach is not suitable as (B.4) claims just that ∀a ∈
a∗, If (∆|a) = If (∆). In case that If (∆) =

∫
f (∆|a) If (a) da, the optimal solution based on mini-

mization of Kullback-Leibler divergences (B.3) would be f (a) = If (a), but FPD with the ideal pdf in
form (B.4) leads to

f (a) ∝ If (a) exp
(
−
∫

f (∆|a) ln
f (∆|a)
If (∆)

d∆
)

. (B.5)

Obviously, f (a) in (B.5) is, in general, not equal to If (a).
In practice, it would be also interesting to specify objectives in form of If (∆) only and find an optimal

randomized action so that

Of (a) ∈ argmin
f(a)∈F(a)

D

(∫
f (∆|a) f (a) da

∣∣∣∣∣∣∣∣ If (∆)
)

. (B.6)

However, to find an analytical solution of (B.6) is a hard, if not insolvable, task.
FPD also does not allow to formulate some important types of preferences, which could be easily

described by regular loss functions on data (and internals possibly) (2.21). This negative feature of FPD
is illustrated on simple examples.

In the first example it is illustrated that by means of FPD it is impossible to describe equality of
preferences equivalent to a loss function constant on some set.

Example B.0.1 In this example we consider one quantity only - action a. Let [0, 1] ⊂ a∗, and a loss
function L : a∗ → R be defined by

L(a) =
{

0 for a ∈ [0, 1]
1 otherwise .

Obviously, this loss function, or its expectation, is minimized by any action a ∈ [0, 1], or any randomized
action f (a) such that

∫ 1

0
f (a) da = 1. It is impossible to reach such results by means of FPD. To

demonstrate it, suppose that If (a) ∈ F(a) is an ideal pdf such that D
(
f (a)

∣∣∣∣ If (a)
)

is minimized iff
f (a) ∈ F0(a), where

F0(a) ≡
{

f (a) ∈ F(a)
∣∣∣∣∫ 1

0

f (a) da = 1
}

.

Then, for some C ∈ R, it holds
D
(
f (a)

∣∣∣∣ If(a)
)

= C (B.7)

iff f (a) ∈ F0. Let A,B ⊂ [0, 1] be disjoint measurable sets, such that
∫

A
da =

∫
B

da > 0 and denote
m ≡

∫
A

da. Assume a pair of pdfs f1(a), f2(a) ∈ F0(a) defined by

f1(a) =
1
m

IA(a), f2(a) =
1
m

IB(a).

Because
∫

f1(a) ln f1(a)da =
∫

f2(a) ln f2(a)da, it follows from (B.7) that∫
A

ln If(a)da =
∫

B

ln If(a)da.

Let us denote q ≡
∫

A
ln If(a)da. Now, consider another pair of pdfs f3(a), f4(a) ∈ F0(a) defined by

f3(a) =
u

m
IA(a) +

1− u

m
IB(a), f4(a) =

v

m
IA(a) +

1− v

m
IB(a),
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for arbitrary u, v ∈ (0, 0.5) which satisfy u 6= v. For f3(a), f4(a) it holds

D
(
f3(a)

∣∣∣∣ If(a)
)

= u ln
u

m
+ (1− u) ln

1− u

m
− q (B.8)

D
(
f4(a)

∣∣∣∣ If(a)
)

= v ln
v

m
+ (1− v) ln

1− v

m
− q. (B.9)

From (B.7), (B.8), and (B.9) it follows that

u lnu + (1− u) ln(1− u) = v ln v + (1− v) ln(1− v),

which is in a contradiction with the assumption u 6= v as the function x lnx+(1−x) ln(1−x) is injective
on the interval (0, 0.5).

FPD can be also hardly used if the objectives are to maximize expected value of some of the involved
quantities. Such objectives could be suitably expressed by a strictly decreasing loss function. In case
of FPD it is argued that for this purpose it is sufficient to select an ideal pdf concentrated close to an
unreachable (high) value of the considered quantity. This approach has indeed some defects. First of
all, nothing in the formulation of FPD ensures that such unreachable value must exist. Furthermore, the
unreachability of some value depends on the outer model of the system. For different outer models the
same objectives then would be described by different ideal pdfs. Finally, this approach does not work in
general as it is illustrated in the following example.

Example B.0.2 Let ∆∗ ≡ R, a∗ ≡ [0, 1], and the outer model of the system be

f (∆|a) ≡ δ(∆− a). (B.10)

The objective is to maximize expected value of ∆.
Within the Bayesian framework this objective is described by the loss function L(a,∆) ≡ −∆. For

randomized actions in

f∗(a) =
{

f (a) ∈ F(a)
∣∣∣∣∫ 1

0

f (a) da = 1
}

,

this loss function leads to the expected loss in a form

Lr(f (a)) =
∫ 1

0

∫
R
−∆δ(∆− a)f (a) d∆da = −

∫ 1

0

af (a) da. (B.11)

Not surprisingly, expected loss (B.11) is minimal iff

f (a) = δ(a− 1). (B.12)

In order to express objectives involving only quantity ∆ in terms of FPD we reduce the minimization
of Kullback-Leibler divergence to marginal pdfs of ∆, i.e., we search for

argmin
f(a)∈F(a)

D

(∫
f (∆|a) f (a) da

∣∣∣∣∣∣∣∣ If (∆)
)

. (B.13)

Note, that minimization of Kullback-Leibler divergence of marginal pdfs of ∆ is not substantial for the
conclusions following from the example.

As for f (∆) it holds

f (∆) =
∫

δ(∆− a)f (a) da = f (a) |a=∆,

it is sufficient to search for
argmin

f(∆)∈f∗(∆)
D
(
f (∆)

∣∣∣∣ If (∆)
)
, (B.14)

where

f∗(∆) ≡
{

f (∆) ∈ F(∆)
∣∣∣∣∫ 1

0

f (∆) d∆ = 1
}

.
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f (a) is then in (B.13) iff for some f (∆) in (B.14) it holds f (a) = f (∆) |∆=a for all a ∈ [0, 1].
For f (∆) ∈ f∗(∆) we get

D
(
f (∆)

∣∣∣∣ If (∆)
)

=
∫ 1

0

f (∆) ln
f (∆)
If (∆)

d∆ = − lnK + D

(
f (∆)

∣∣∣∣∣∣∣∣ If (∆)
K

I[0,1](∆)
)

, (B.15)

where

K ≡
∫ 1

0

If (∆) d∆.

From (B.15) it follows, due to (2.3), that Of (a) is a minimizing argument in (B.13) iff

Of (a) =
If (∆) |∆=a

K
I[0,1](a). (B.16)

From (B.16) it is clear that a concentration of the ideal pdf above the upper bound of ∆ has no impact
on the resulting optimal randomized action Of (a) regardless an amount of the probability assigned to the
interval above the upper bound or the variance of ∆ under If (∆). In this case, the only relevant feature
of the ideal pdf is its shape on [0, 1].

Analogously to Example B.0.2 it could be demonstrated that it is somewhat problematic to use FPD
in order to attract some of the involved quantities as close as possible to a desired value. In FPD, it is
recommended to use for this purpose an ideal pdf which is concentrated close to the desired value. From
(B.16) it is seen that this approach does not lead to the desired result if the optimal solution is not known
a priori.

Some of the discussed weaknesses of FPD can be eliminated by a generalization of FPD in which a
set of ideal pdfs If∗(∆, a) is specified instead of a single ideal pdf. The optimal action is then defined by

Of (a) ∈ argmin
f(a)∈F(a)

(
min

If(a,∆)∈ If∗(a,∆)
D
(
f (∆|a) f (a)

∣∣∣∣ If (a,∆)
))

. (B.17)

For example, equality of preferences, discussed in Example B.0.1, can be expressed by

If∗(a) ≡
{

f (a) ∈ F(a)
∣∣∣∣∫ 1

0

f (a) da = 1
}

.

On the other hand, it seems that the problem discussed in Example B.0.2 cannot be satisfactorily solved
even with this generalization. Moreover, contrary to FPD based on a single ideal pdf the generalization
(B.17) do not have an analytical solution.

As discussed in the beginning of this paragraph, the incapability of FPD to formulate certain kind
of objectives is a consequence of the fact, that FPD is not an extension of a decision making on data.
Furthermore, in FPD the ordering of preferences of randomized actions is given by a specific functional
on randomized actions – the Kullback-Leibler divergence from an ideal pdf (B.2). This functional is
non-linear for any ideal pdf. Contrary to that, in Bayesian decision making the ordering is given by the
expected loss (B.1), which is always a linear functional on randomized actions. From this point of view,
FPD and Bayesian decision making form completely different approaches.
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