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Abstract : The model predictive control is an advanced method of process
control. The controller relies on the dynamic model of the process obtained by
the system identification. The control quality depends strongly on the quality
of the used model.

The linear models are often employed for the approximated description of the
nonlinear controlled system due to the simplicity of the identification algorithms.
However, this models have only limited validity. The nonlinear models describe
the system generally much better than the linear ones but their identification is
a nontrivial task.

Here, a model that is both easily identifiable and sufficiently precise is pre-
sented. The state model with uniform innovations (SU model) proposes an
alternative to the standardly used linear state-space model with normal inno-
vations that leads to the Kalman filter. By the SU model, the state and output
innovations are considered to have the uniform distribution. This assumption
implements the nonlinearity into the originally linear system. The system states
and parameters are estimated on-line with fixed memory on the sliding window.
The sliding window as the alternative of the forgetting allows to catch the slow
parameter changes. The MAP estimation of the SU model reduces to the linear
eventually convex programming.

The main advantages of the proposed model are the simplicity of the estima-
tion algorithm and the possibility to estimate both the parameters and states
including the innovation boundaries.

The paper is concerned with the problem of the approximative solution of
the on-line joint state and parameter estimation.

1 Introduction

The real system is often modelled by a state space model. Here, the subtasks
of parameter estimation and of the filtration (state estimation) arise. The in-
novations of state evolution as well as observation model are often supposed
to have normal distribution. Kalman filtering (KF) [4], is then the first-option
estimation method. The main advantage of the KF is the simplicity but its
use is restricted by assumed knowledge of the parameters including innovation
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covariances. So the various extension of KF are used like the extended KF, the
iterated extended KF and the unscented KF, see e.g. [7].

Above mentioned model deals with normally distributed innovations. The
Gaussian distribution has unbounded support. This fact can often be accepted
as a reasonable approximation of reality, which is mostly bounded. In some
case, however, this assumption is unrealistic.

The state model with uniform innovations (SU model) introduced by author
in [2] proposes an alternative to the above mentioned model. By the SU model,
the state and output innovations are considered to have the uniform distribution.

In order to use the SU model for the model predictive control [1], the model
identification should run continuously (on-line). The Bayesian parameter and
state estimation [3] is performed on the sliding window. That keeps the com-
putational feasibility in the reasonable ranges and at the same time it allows to
catch the slow parameter changes.

The exact solution of the on-line estimation with memory length is too com-
plex. Therefore, it is necessary to propose the approximate solution of this
problem. The paper is concerned with the problem of the approximative on-line
joint state and parameter estimation of the SU model.

2 List of the notation

≡ equality by definition
∝ equality up to a constant factor (proportionality)
x∗ a set of x-values, x ∈ x∗

x̊ the number of members in the countable set x∗

x` the length of the vector x; vectors are always columns
xt, ut, yt unobserved state, known input and observed output of the system, respectively

the subscript t ∈ t∗ ⊂ {0, 1, 2, . . .} labels discrete time
dt the data record at time t; dt = (yt, ut)
xk:l the ordered sequence (xk, xk+1, . . . , xl), 1 ≤ k ≤ l; xk:l ≡ [x′k, x′k+1, . . . , x

′
l]
′;

′ transposition
x, x lower and upper bound on x, respectively (they are used entry-wise)
xr the quantity r with non-numerical superscript x;
f(·|·) probability density functions (pdf); respective pdfs are distinguished

by the argument names; no formal distinction is made
between a random variable, its realization and an argument of a pdf

3 State model with uniform innovations

3.1 Model description

The considered system is modelled by the following state (1) and observation
(2) equations

xt = cAtxt−1 + cBtut + cFt + xet (1)
yt = cCtxt + cDtut + cGt + yet, (2)

where
xt, ut, yt are state, input and output vectors respectively;
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cAt,
cBt,

cFt,
cCt,

cDt,
cGt are model matrices of appropriate dimensions;

they are sums of the form

cAt = At + eA, cBt = Bt + eB, etc., where (3)

At contains known, generally time-variant entries of cAt.
eA contains unknown time-invariant entries of cAt and zeros (similarly
for other system matrices); the unknown entries are collected into the
”coefficient part” θ of the unknown parameter Θ (5)

xet, yet are the vectors of the state and output innovations respectively; they
are assumed to be zero mean with constant variances, mutually condition-
ally independent and identically distributed.

The innovation are assumed to have uniform distribution

f ( xet) = U (0, xr) , f ( yet) = U (0, yr) (4)

where U (µ, r) is uniform pdf on the box with the center µ and half-width of
the support interval equal to r.

To collect all estimated parameters, we denote

Θ ≡ [θ, xr, yr] , θ ≡ [ eA, eB, eF, eC, eD, eG] . (5)

Equations (1) and (2) together with the assumptions (4) define the uniform
state-space model (SU model).

We assume that generator of inputs u1:̊t ≡ [u′1, . . . , u
′
t̊
]′ meets natural con-

ditions of control [3], i.e., it uses explicitly neither state values nor unknown
parameters. Further, we suppose that the initial state x0 and parameter Θ are
uniformly distributed on the set S0 defined by the inequalities

S0 =
{
x0 ≤ x0 ≤ x0, 0 < xr ≤ xr, 0 < yr ≤ yr, θ ≤ θ ≤ θ

}
. (6)

They are assumed a priori mutually independent, hence

f (x0,
xr, yr, θ) = f (x0) f ( xr) f ( yr) f (θ) .

A possible restrictions on the state values are in the form

Sx = {x ≤ xt ≤ x}, t ∈ t∗. (7)

Then, the joint pdf of data d1:̊t, dt = (yt, ut), the state trajectory x0:̊t and
parameter Θ of the SU model is

f
(
d1:̊t, x0:̊t,Θ

)
∝

x`∏
i=1

( xri)−t̊

y`∏
j=1

( yrj)−t̊χ(S)f (Θ) (8)

where
x`, y` is the size of the state and output vector, respectively
χ(S) is the indicator of the support S.

The convex set S is given as follows

S = S0 ∩ SΘ ∩ Sx. (9)
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with S0 given by (6) and Sx by (7). The set SΘ is specified by inequalities

− xr ≤ xt − (At + eA)xt−1 − (Bt + eB)ut − (Ft + eF ) ≤ xr

− yr ≤ yt − (Ct + eC)xt − (Dt + eD)ut − (Gt + eG) ≤ yr (10)

with t ∈ t∗ = {1, 2, . . . , t̊}. Note that the inequalities (10) follow from the (1)
and (2) with lower and upper noise values given by (4).

3.2 General estimation problem

For the purpose of estimation, the joint pdf (8) can be rewritten as follows

f
(
d1:̊t, x0:̊t,Θ

)
= f (D,X) = f (D|X) f (X) (11)

The estimated (unknown) quantities from (8) are collected into X. The re-
maining (known) quantities are collected into D. Generally, D contains known
elements from the set

{
dt̊, x0:̊t, θ

}
and X contains unknown elements from

the set
{

x0:̊t, θ, xr, yr
}

. By construction, it holds D ∩ X = ∅ and D ∪ X =

{d1:̊t, x0:̊t, θ, xr, yr}.
Using the notation (11), we can formulate the estimation problems as follows.

The posterior pdf f (X|D) is searched for on the basis of the prior pdf f (X)
and of the pdf describing known quantities f (D|X).

According to the Bayes rule, the required posterior pdf f (X|D) is propor-
tional to f (D|X) f (X) on support S defined by (9). The number of vertices
of the support is proportional to the number of data. This is a large number
for realistic situations. Consequently, evaluation of moments of this pdf is com-
putationally demanding. This is why we evaluate the maximum a posteriori
probability (MAP) estimate X̂MAP [5] of the unknown X.

Taking the negative logarithm of the posterior pdf and applying the approx-
imation ln(r) ≈ r − 1, 0 < r ≤ 2, we get

X̂MAP = arg minX∈S

 x`∑
i=1

xri +
y`∑

j=1

yrj

 . (12)

where x`, y` is the size of the state and output vector and S is given by (9).

3.3 On-line joint parameter and state estimation

The real-time (on-line) estimation provides the state and parameter estimates
in each time step. Standard Bayesian learning [3] with a fixed lag ∂ ≥ 0 works
with the data dt−∂:t and states xt−∂:t. The superfluous state xt−∂−1 and data
item dt−∂−1 are integrated out from the posterior pdf in every time step t.

The Bayesian on-line estimation with restricted memory evolves the join pdf

f
(
dt−∂:t, xt−∂:t,Θ

)
, t ∈ t∗ = {1, 2, . . . , t̊}, (13)

where integer 1 < ∂ � t̊ means memory length.
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For t ≥ ∂ + 2 holds

f
(
dt−∂:t, xt−∂:t,Θ

)
∝

x`∏
i=1

( xri)−∂+1

y`∏
j=1

( yrj)−∂χ( ∂S̃)

×f (Θ) g(xt−∂ |ut−1, d
t−∂:t−2,Θ) (14)

where g represents non-uniform pdf that arises after integration. In the time
instant t, g is power function containing the power up to t. With increasing
t, the estimation becomes intractable because of increasing complexity of the
support of the posterior pdf. Therefore, an approximation is proposed.

3.4 Approximate estimation

The factor g in (14) is to be approximated by a pdf f̃(xt−∂ |ut−1, d
t−∂:t−2,Θ),

t ∈ t∗ so that it holds for measured data dt−∂:t−2, ut−1,

g(xt−∂ |ut−1, d
t−∂:t−2,Θ)

f̃(xt−∂ |ut−1, dt−∂:t−2,Θ)
≈ 1, x ∈ x∗,Θ ∈ Θ∗. (15)

We propose for t ≥ ∂+2 the approximation by the ,,cutt off” the superfluous
old states with g(xt−∂ |ut−1, d

t−∂:t−2,Θ) from (14) replaced by the product

f (xt−∂ |xt−∂−1, ut−∂ ,Θ)
t−1∏

τ=t−∂

f
(
uτ

∣∣dt−∂:τ−1
)
,

with xt−∂−1 = x̂t−∂−1; x̂t−∂−1 is the point estimate of xt−∂−1 from the previous
estimation step. Then holds

f
(
dt−∂:t, xt−∂:t,Θ

)
∝

x`∏
i=1

( xri)−∂+1

y`∏
j=1

( yrj)−∂+1χ( ∂S)f (Θ) . (16)

where
∂S = ∂S0 ∩ ∂SΘ ∩ ∂Sx (17)

∂S0 =
{
xt−∂−1 = x̂t−∂−1, 0 < xr ≤ xr, 0 < yr ≤ yr, θ ≤ θ ≤ θ

}
, cf. (6),

∂Sx = Sx (7),

∂SΘ is given by the inequalities

− xr ≤ xτ − (Aτ + eA)xτ−1 − (Bτ + eB)uτ − (Fτ + eF ) ≤ xr

− yr ≤ yτ − (Cτ + eC)xτ − (Dτ + eD)uτ − (Gτ + eG) ≤ yr

with τ ∈ {t− ∂, t− ∂ + 1, . . . , t}, t ∈ t∗ = {∂ + 1, ∂ + 2, . . . , t̊}, cf. (10).

Using the notation (11), the estimation problem consists now in the searching
for the posterior pdf f (X|D) on the basis of the prior pdf f (X) and of the pdf
describing observed quantities f (D|X) with D = dt−∂:t, X = (xt−∂:t, θ, xr, yr),
t ∈ t∗, ∂ > 0.

The unknown estimated quantity is
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X =
[
(xt:t−∂)′, col( eA)′, col( eB)′, col( eF )′, col( eC)′, col( eD)′, col( eG)′, xr′, yr′

]′
(18)

where t ∈ t∗ = {∂ +1, . . . , t̊} and col(M) stacks the non-zero rows of the matrix
M into a column vector.

The MAP estimate (12) takes now the following form

X̂MAP = arg minX∈ ∂S

 x`∑
i=1

xri +
y`∑

j=1

yrj

 . (19)

The MAP estimate can be obtained by the method of the convex program-
ming [6]. We are searching for the minimum of the function in (19) on the set
∂S (17). Our estimation algorithms are running in the Matlab environment (see
www.mathworks.com) using its optimization toolbox.

4 Illustrative example

The designed algorithm is applied on estimation of the queue lengths that form
on the arms of the controlled four-arm intersection. The intersection is described
by the following quantities

name notation unit description
queue length ξt;i u.c. number of the cars before the TL

(for the i-th arm)
occupancy Ot;i % relative time of detector activation
input intensity It;i u.c/per. amount of cars

passing through the input detector
passage Pt;i u.c/per. amount of cars passing from arm i

into the intersection space
output intensity Yt;i u.c/per. amount of cars

passing through the output detector
saturated flow Si u.c/per. saturated flow - max. amount of cars that

can go through the arm i of the intersection
turning rate αji % ratio of cars that from direction j

turn to the direction i
green time zt;i % ratio of the ”green” time

and period (TL cycle time)
- κi, βi, λi - constants describing linear relation

between queue length and occupancy

where
u.c. means unit car
t is time index
i, j denote i-th and j-th arm of the intersection, respectively
TL means the traffic light
per. is period
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The data were obtained by the Aimsun simulator (see www.aimsun.com).
For the intersection specification, the SU model equations (1) and (2) are used.
Here, the system output consist of the occupancies Ot and output intensities Yt

on the individual intersection arms for the whole workweek (five days). Total
amount of the data entries is about 5.000; the data are sampled with the period
of 90 second. The green time zt is the system input. The queue length ξt is the
state that is estimated together with the parameters κ, β, λ. The known part
of the model matrices are composed from Si, αji, It.

The estimation was running with the various memory length ∂. For the
result evaluation, the mean error (ME) of the state estimates is used

ME =
1
t̊

t̊∑
t=1

|x̂t − xt|

where x̂t is estimated state, xt is the simulated state, t̊ is the number of the
data samples. The ME for the particular intersection arms are on the Fig. 1

Figure 1: Mean errors of queue length estimates depending on ∂

The experiment shows that the best results are reached with the small ∂.
We suppose that it is caused by the continuously changing character of traffic
flow. Therefore the shorter memory length is ∂ is suitable for the estimation.

5 Conclusion

5.1 Achieved results

The proposed approach provides the following advantages: (i) it allows estima-
tion of the innovation range and (ii) it allows (without excessive computational

Int. Workshop on Assessment and Future Directions of NMPC
Pavia, Italy, September 5-9, 2008

7



Regular Paper

demands) to respect ,,naturally” hard, physically given, prior bounds on model
parameters and states, (iii) it enables the joint estimation of parameters, state,
and innovation bounds, whereas the realistic hard bounds on the estimated
quantities reduce the ambiguity of the model (arising from estimating a prod-
uct of two unknowns) (iv) it enables parameter tracking through the memory
length ∂, (v) it provides an easy entry of of the partial knowledge on the pa-
rameters and (vi) it opens a way for Bayesian filtering of non-linear systems.

5.2 Future research

The following research aims to improve the quality of the approximation. In-
stead of the proposed ,,cutt off” approximation, the non-uniform pdf
g(xt−∂ |ut−1, d

t−∂:t−2,Θ) will be substitute the uniform one f̃(xt−∂ |ut−1, d
t−∂:t−2,Θ)

so that g and f̃ will have the same support.
Further, the SU model forms the starting point for the non-uniform models

with restricted support.
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