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Abstract— The linear state-space model with uniform inno-
vations (LU model) proposed in previous author’s work is
extended here. The states and parameters of LU model are
estimated under hard physical bounds. The estimation of the
innovation boundaries is also included. Maximum a posteriori
probability estimation reduces to the linear programming. The
on-line estimation is running within a sliding window.

Compared to the original model, we consider that model
matrices can be time-variant. Also, offset terms are included.
We present the problem of the joint parameter and state
estimation, i.e., the state filtering with unknown model matrices.
The ambiguity in the state estimates can be substantially
decreased by partial knowledge of some entries in the model
matrices. The simple example illustrates this approach.

I. INTRODUCTION

The real system is often modelled by a state space
model. Here, the subtasks of parameter estimation and of
the filtration (state estimation) arise. The innovations of state
evolution as well as observation model are often supposed
to have normal distribution. Kalman filtering (KF) [4] is
then the first-option estimation method. The main advantage
of the KF is the simplicity but its use is restricted by
assumed knowledge of the parameters including innovation
covariances. So the various extension of KF are used like
the extended KF, the iterated KF and the unscented KF. All
these extensions are compared in [6].

The above mentioned model deals with normally dis-
tributed innovations. The Gaussian distribution has un-
bounded support. This fact can often be accepted as a rea-
sonable approximation of reality, which is mostly bounded.
In some case, however, this assumption is unrealistic, e.g.,
in modelling of transportation systems (for encountered
problems see e.g. [7]) or do not fit subsequent processing, for
instance, robust control design [3]. Then, techniques similar
to those dealing with unknown-but-bounded equation errors
are used, see references in [8]. They often intentionally give
up stochastic interpretation of the innovations and develop
and analyze various algorithms of a min-max type, cf.
[9]. The unknown parameters (or states) lie then within
the bounded set. The complexity of this set is very high
so approximation is needed to obtain recursively feasible
solution. The unknown-but-bounded approaches [10], [11]
face this problem by a recursive construction of a simple
(typically outer) approximation of the bounded set (support
of the distribution describing knowledge about estimated
quantities). The approximation by an ellipsoid is described
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in [10]. An alternative way is an approximation by a mul-
tivariate box. This methodology is used in [11]. It brings
simplicity to the subsequent use, as it provides very simple
description of uncertainty. This solution can be extended
so that approximated area consists of an union of non-
overlapping boxes. This algorithm is described in [12].

The min-max type algorithms are definitely useful but
the related decision-making tasks are unnecessarily difficult
because of the broken connection to the established statistical
tools.

The linear state model with uniform innovations (LU
model) introduced by the author in [1] proposes an alter-
native to the above mentioned approaches. It keeps simulta-
neously the advantages of the probabilistic approach and the
simplicity of the estimation algorithm.

By the LU model, the state and output innovations are
considered to have the uniform distribution. Here, we extend
the original LU model and perform its estimation.

The paper is concerned with the problem of quality of the
state estimates. The simulated example shows that partial
knowledge of the model matrices decreases the mean error
of the estimates.

II. LIST OF THE NOTATION

≡ equality by definition
∝ equality up to a constant factor (proportionality)
x∗ a set of x-values, x ∈ x∗

x̊ the number of members in the countable set x∗

x` the length of the vector x; vectors are always
columns

ut, yt known input and observed output of the system,
respectively; the subscript t ∈ t∗ ⊂ {0, 1, 2, . . .}
labels discrete time

xt unobserved state
dt the data record at time t; dt = (yt, ut)
xk:l the ordered sequence (xk, xk+1, . . . , xl), 1 ≤ k ≤

l; xk:l ≡ [x′k, x′k+1, . . . , x
′
l]
′

′ transposition
x, x lower and upper bound on x, respectively (they are

used entry-wise)
Θ̂ point estimate of the parameter Θ based on the

available data
x̂t point estimate of the state xt based on the available

data
xr a quantity r with a non-numerical superscript x
f(·|·) probability density functions (pdf); respective pdfs

are distinguished by the argument names; no formal



distinction is made between a random variable, its
realization and an argument of the pdf

III. LINEAR STATE MODEL WITH UNIFORM
INNOVATIONS

A. Model description

The considered system is modelled by the following state
(1) and observation (2) equations

xt = cAtxt−1 + cBtut + cFt + xet (1)
yt = cCtxt + cDtut + cGt + yet, (2)

where
xt, ut, yt are state, input and output vectors respectively;
cAt,

cBt,
cFt,

cCt,
cDt,

cGt are model matrices of appro-
priate dimensions; they are sums of the form

cAt = At + eA, cBt = Bt + eB, etc., where (3)

At contains known, generally time-variant, entries of cAt,
eA contains unknown time-invariant entries of cAt and zeros
(similarly for other system matrices);
the unknown entries are collected into the “coefficient part”
θ of the unknown parameter Θ (5);
xet, yet are the vectors of the state and output innovations
respectively; they are assumed to be zero mean with constant
variances, mutually conditionally independent and identically
distributed.

The innovation are assumed to have uniform distribution

f ( xet) = U (0, xr) , f ( yet) = U (0, yr) (4)

where U (µ, r) is uniform pdf on the box with the center µ
and half-width of the support interval equal to r.

To collect all estimated parameters, we denote

Θ ≡ [θ′, xr′, yr′]′ , θ ≡ [col( eA)′, col( eB)′, (5)

col( eF )′, col( eC)′, col( eD)′, col( eG)′]′ ,

where
col(M) is an operator that converts matrix M with α rows
and β columns into a column vector of the length αβ.

Equations (1) and (2) together with the assumptions (4)
define the linear uniform state-space model (LU model).

We assume that generator of inputs u1:̊t ≡ [u′1, . . . , u
′
t̊
]′

meets natural conditions of control [2], i.e., it uses explicitly
neither state values nor unknown parameters. Further, we
suppose that the initial state x0 and parameter Θ are uni-
formly distributed on the set S0 defined by the inequalities

S0 =
{
x0 ≤ x0 ≤ x0, Θ ≤ Θ ≤ Θ

}
. (6)

The state x0 and parameters Θ are assumed a priori
mutually independent, hence

f (x0,
xr, yr, θ) = f (x0) f ( xr) f ( yr) f (θ) .

Possible restrictions on the state values are in the form

S2 = {x ≤ xt ≤ x}, t ∈ t∗ = {1, 2, . . . , t̊}. (7)

Then, the joint pdf of data d1:̊t, dt = (yt, ut), the state
trajectory x0:̊t and parameter Θ of the LU model is

f
(
d1:̊t, x0:̊t,Θ

)
∝

x`∏
i=1

( xri)−t̊

y`∏
j=1

( yrj)−t̊χ(S)f (Θ) (8)

where
x`, y` is the size of the state and output vector, respectively,
χ(S) is the indicator of the support S.

The convex set S is given as follows

S = S0 ∩ S1 ∩ S2. (9)

with S0 given by (6) and S2 by (7). The set S1 is specified
by inequalities

− xr ≤ xt − cAtxt−1 − cBtut − cFt ≤ xr

− yr ≤ yt − cCtxt − cDtut − cGt ≤ yr (10)

with t ∈ t∗ = {1, 2, . . . , t̊}. Note that the inequalities (10)
follow from the (1) – (3) with lower and upper noise bounds
given by (4).

B. On-line joint parameter and state estimation

The Bayesian learning, i.e., parameter estimation and
state filtration [2], consist in the evaluation of the posterior
probability density function (pdf) describing the unknown
quantity. This task is too complex because of the time-
increasing complexity of the support of the posterior pdf.
Therefore, we evaluate the maximum a posteriori probability
(MAP) estimate [5] of the unknown quantity.

The real-time (on-line) estimation provides the state and/or
parameter estimates in each time step. Standard Bayesian
learning with a fixed lag ∂ ≥ 0 works with the data dt−∂:t

and states xt−∂:t. The superfluous state xt−∂−1 and data item
dt−∂−1 are integrated out from the posterior pdf in every
time step t. This integration induces non-uniform terms in
the posterior pdf. We approximate these terms in order to
preserve the uniformity. The approximate joint pdf takes the
form

f̃(dt−∂:t, xt−∂:t,Θ) (11)

∝
x`∏

i=1

( xri)−(∂+1)

y`∏
j=1

( yrj)−(∂+1)χ(S̃t)f (Θ)

with t ∈ t∗ = {∂ + 1, . . . , t̊}, 1 < ∂ � t̊
where
χ(S̃t) is the indicator of the support S̃t.

The time variant convex set

S̃t = S̃0t ∩ S̃1t ∩ S̃2t (12)

stems from the original set S (9). It holds for the individual
sub-matrices, τ ∈ {t− ∂, . . . , t}, t ∈ {∂ + 1, . . . , t̊},

S̃0t =
{
xt−∂−1 = x̂t−∂−1, Θ ≤ Θ ≤ Θ

}
, (13)

S̃1t = (14)



{− xr ≤ xτ − cAτxτ−1 − cBτuτ − cFτ ≤ xr,

− yr ≤ yτ − cCτxτ − cDτuτ − cGτ ≤ yr},

S̃2t = {x ≤ xτ ≤ x}. (15)

The on-line joint estimation consist in the evaluation of
the pdf

f
(
xt−∂:t,Θ

∣∣dt−∂:t
)
, t ∈ {∂ + 1, . . . , t̊}, 1 < ∂ � t̊. (16)

The corresponding MAP estimate is obtained as follows.
Taking the negative logarithm of the posterior pdf and
applying the approximation ln(r) ≈ r − 1, 0 < r ≤ 2,
we get

X̂MAP = arg minXt∈S̃t

 x`∑
i=1

xri +
y`∑

j=1

yrj

 (17)

where
Xt contains estimated quantities, i.e., states and parameters,
reorganized into the column vector,
S̃t is given by (12).

To solve this problem, we use the method of the linear
programming (LP) [5],

Find a vector Xt such that J ≡ C′Xt

=
x`∑

i=1

xri +
y`∑

j=1

yrj → min (18)

while AtXt ≤ Bt, Xt ≤ Xt ≤ Xt, t ∈ t∗ (19)

where
C′ ≡ [0′(X`−x`−y`),1

′
(x`+y`)], C

` = X`; 0(len), 1(len) are
the vectors of zeros and ones, respectively, both of the length
len;
At and Bt are known matrix and vector, respectively; they
result from the inequalities describing the set S̃1t (14);
Xt, Xt are known vectors; they stem from the sets S̃0t (13)
and S̃2t (15).

In the case of the joint estimation of the parameters and
states, the conditions of the linearity are not fulfilled because
of the terms eAxt−1 in (1) and eCxt in (2). We linearize
these terms in the following way

eAxt−1 = ( eA− Â)xt−1 + Âxt−1 (20)
= ( eA− Â)(xt−1 − x̂t−1)
+ ( eA− Â)x̂t−1 + Âxt−1

≈ eAx̂t−1 − Âx̂t−1 + Âxt−1, t ∈ t∗,

where Â, x̂t−1 are the newest available estimates of the
parameter eA and state xt−1, respectively. It is supposed
that the mean of ( eA− Â)(xt−1 − x̂t−1) ≈ 0

Using similar expansion for eCxt, t ∈ t∗, we get
eCxt ≈ eCx̂t − Ĉx̂t + Ĉxt (21)

Then, the resulting inequalities for LP (18) are in the
following form, τ ∈ {t− ∂, . . . , t}, t ∈ {∂ + 1, . . . , t̊},

xτ − eAx̂τ−1 − Âxτ−1 −Aτxτ−1 − eBuτ − eF − xr

≤ −Âx̂τ−1 + Bτuτ + Fτ

−xτ + eAx̂τ−1 + Âxτ−1 + Aτxτ−1 + eBuτ + eF − xr

≤ Âx̂τ−1 −Bτuτ − Fτ

eCx̂τ + Ĉxτ + Cτxτ + eDuτ + eG− yr

≤ +yτ + Ĉx̂τ −Dτuτ −Gτ

− eCx̂τ − Ĉxτ − Cτxτ − eDuτ − eG− yr

≤ −yτ − Ĉx̂τ + Dτuτ + Gτ

(22)

x ≤ xτ ≤ x

0 ≤ xr ≤ xr, 0 ≤ xr ≤ yr

xt−∂−1 = x̂t−∂−1, θ ≤ θ ≤ θ

x̂t−∂−1 is the estimate of xt−∂−1 from the previous step.
Note that the estimates based on the data up to time

t − 1, i.e., dt−∂−1:t−1 are used for LP performed in the
time t. Therefore, we have only the estimates from x̂t−∂ to
x̂t−1 at disposal. The missing estimate x̂t is replaced by its
prediction, i.e.,

x̂t = (At + Â)x̂t−1 + (Bt + B̂)ut + (Ft + F̂ ). (23)

Then, At, Bt are in the form

At =
[
A11t A12t A13t A14t

A21t A22t A23t A24t

]
, Bt =

[
B1t

B2t

]
with

A11t

=



I(x`,x`) −Â−At 0(x`,x`) . . . 0(x`,x`)

−I(x`,x`) Â + At 0(x`,x`) . . . 0(x`,x`)

0(x`,x`) I(x`,x`) −Â−At−1 . . . 0(x`,x`)

0(x`,x`) −I(x`,x`) Â + At−1 . . . 0(x`,x`)

...
...

...
. . .

...
0(x`,x`) 0(x`,x`) . . . . . . I(x`,x`)

0(x`,x`) 0(x`,x`) . . . . . . −I(x`,x`)


,

A12t ≡


−SEL eA,x̂t−1 −SEL eB,ut

−SEL eF,1

SEL eA,x̂t−1 SEL eB,ut
SEL eF,1

...
...

...
−SEL eA,x̂t−∂−1 −SEL eB,ut−∂

−SEL eF,1

SEL eA,x̂t−∂−1 SEL eB,ut−∂
SEL eF,1

 ,

where



SELM ;vt =

 selM (vt, 1) . . . 0
...

. . .
...

0 . . . selM (vt, v
`)

 , (24)

selM (vt, i) creates a reduced vector (scalar) ṽt from
vt ∈ {xt, ut, 1}, t ∈ t∗; it selects entries of vt with indeces
corresponding to the non-zero columns on the i-th row of
the matrix (vector) M , M ∈ { eA, eB, eF, eC, eD, eG};
note that if all entries on i-th row are equal to zero, then ṽt

is an “empty” vector.

Note that A12t has 2(∂ + 1)x` rows and m columns, the
upper bound on m is x`(x` + u` + 1),

A13t = 0(2(∂+1)x`,n), maximal size of n is y`(x` +u` +1).

A14t ≡ 1(2(∂+1),1) ⊗
[
−I(x`) 0(x`,y`)

]
,

where ⊗ denotes Kronecker product,

A21t =


Ĉ + Ct 0(y`,x`) . . . 0(y`,x`)

−Ĉ − Ct 0(y`,x`) . . . 0(y`,x`)

...
...

. . .
...

0(y`,x`) 0(y`,x`) . . . Ĉ + Ct−∂

0(y`,x`) 0(y`,x`) . . . −Ĉ − Ct−∂

 ,

A22t = 02(∂+1)y`,m, m is defined by A11,

A23t ≡


SEL eC,x̂t SEL eD,ut SEL eG,1

−SEL eC,x̂t
−SEL eD,ut

−SEL eG,1

...
...

...
SEL eC,x̂t−∂

SEL eD,ut−∂
SEL eG,1

−SEL eC,x̂t−∂
−SEL eD,ut−∂1 −SEL eG,1

 ,

where selM (vt, i) is defined by (24), x̂t is obtained as the
prediction (23). Note that A23t has 2(∂ + 1)y` rows and n
columns with n defined by A12t.

A24t = 1(2(∂+1),1) ⊗
[
0(y`,x`) − I(y`)

]
,

B1t =



−Âx̂t−1 + Btut + Ft

+Âx̂t−1 −Btut − Ft

...
−Âx̂t−∂ + Bt−∂+1ut−∂+1 + Ft−∂+1

+Âx̂t−∂ −Bt−∂+1ut−∂+1 − Ft−∂+1

At−∂ x̂t−∂−1 + Bt−∂ut−∂ + Ft−∂

−At−∂ x̂t−∂−1 −Bt−∂ut−∂ − Ft−∂


,

where x̂t is obtained as the prediction (23),

B2t =


Ĉx̂t + yt −Dtut −Gt

−Ĉx̂t − yt + Dtut + Gt

...
Ĉx̂t−∂ + yt−∂ −Dt−∂ut−∂ −Gt−∂

−Ĉx̂t−∂ − yt−∂ + Dt−∂ut−∂ + Gt−∂

 .

The resulting algorithm has two principal distinctions from
the extended KF: (i) the algorithm updates estimates on the
whole window of the length ∂ and (ii) the realistic hard
bounds on the estimated quantities reduce the ambiguity
of the model arising from estimating a product of two
unknowns.

IV. ILLUSTRATIVE EXAMPLE

A. Simulated model

The two state system with scalar input and output and
uniform noise is simulated. The model is described by the
LU model (1), (2) and (4), t ∈ t∗ = {1, . . . , t̊}, with

cAt =
[

1 0.5
−0.5 0

]
, cBt =

[
1
3

]
, cFt =

[
0
0

]
,

cCt =
[

1 1
]
, cDt = 0, cGt = 1,

xr =
[

10−1

10−1

]
, yr = 10−1.

Note that all model matrices are time invariant in this
example. Therefore, we omit their time indexes for the
simplicity.

The input is simulated as a random, uniformly distributed,
signal from the interval [−1, 1]. The input values are inde-
pendent for different time moments. The data set consists of
t̊ = 500 data pairs (inputs and outputs).

B. Evaluation of experiments

To evaluate the quality of the estimation, the mean error
(ME) of the output predictions and ME of the state or
parameter estimates are used, respectively. Generally, the ME
of the quantity E is computed entry-wise in the following
way

MEE =
1
t̊

t̊∑
t=1

|Et −Rt| (25)

where Et are the predicted outputs, state estimates and
parameter estimates, respectively; Rt are the true values
of the outputs and states, respectively; t̊ is the number
of the samples. In the case of the parameter estimation,
Rt = R, t ∈ {1, 2, ..., t̊}, R ∈ { eA, eB, eF, eC, eD, eG}.

C. Joint parameter and state estimation

Here, the states xt, t ∈ t∗, the model matrices
eA, eB, eF, eC, eD, eG and the innovation boundaries xr,
yr are estimated. The estimation algorithm is running on-line
with various memory lengths ∂. Two cases are considered.



[a] All model matrices are completely estimated, i.e.,
eA = cA, eB = cB, etc. The restrictions on the entries
of the model matrices are chosen so that all entries of the
estimated model matrices should be within the interval given
by

cM(i, j)−K1 ≤ eM(i, j) ≤ cM(i, j) + K2,

where cM(i, j) and eM(i, j), i ∈ {1, 2, . . . ,m}, j ∈
{1, 2, . . . , n}, are i-th rows and j-th column entry of the
simulated model matrix cM and the estimated model matrix
eM , respectively, both of the size (m,n); K1, K2 are positive
scalars.

[b] The 2nd row and 2nd column entry of the model matrix
cA and the vector cF are supposed to be known. The above
mentioned restrictions are used on the remaining entries.

The comparison of the ME of the state estimates for cases
[a] and [b] and various memory lengths ∂ is on Figure 1.
We can see that the ME of the state estimates is smaller in
the case of the partially known model matrices.

The comparison of the ME of model parameters is on
Figure 2. The parameter cG was chosen as a representative
because of the most remarkable difference between the case
[a] and [b].

Fig. 1. The mean errors of the state estimates depending on memory length
∂ for all model matrices unknown (dashed line) and partially known model
matrices (solid line)

D. Discussion of the results
The experiment with the joint parameter and state es-

timation supports the intuitive expectation that knowledge
of some model matrix entries improves the quality of the
estimation measured by the ME of estimate errors.

Moreover, partial knowledge of the model matrices de-
creases or even remove the ambiguity of the state and
parameter estimates caused by the products eA xt−1 and
eC xt in the model equations (1) and (2), respectively. This
fact is important in the real data application. There, every
small piece of the information about model matrices can
improve the quality of the estimation.

In the case of the LU model, the incorporation of our
knowledge into the model is easy. It consists in the adding
of the constraints, i.e., additional inequalities and equalities,
into the linear programming.

Fig. 2. The mean errors of cG estimate depending on memory length ∂
for all model matrices unknown (dashed line) and partially known model
matrices (solid line)

V. CONCLUSIONS AND FUTURE WORKS

A. Achieved results

The proposed approach provides the following advantages:

• it enables the joint estimation of parameters, state, and
innovation bounds whereas the realistic hard bounds
on the estimated quantities reduce the ambiguity of
the model (arising from estimating a product of two
unknowns);

• it allows (without excessive computational demands) to
respect ,,naturally” hard, physically given, prior bounds
on model parameters and states;

• it provides an easy entry of of the partial knowledge on
the parameters;

• it allows estimation of the innovation range.

B. Future research

We aim at further improving of the estimates quality. The
possible ways are:

• using of the method of the non-linear mathematical
programming;

• applying of a more precise approximation for the pos-
terior pdf.

Till now, we worked only with MAP estimates. We aim
to refine our results also by an estimation of the precision
of these point estimates. The original MAP estimation task
gives result X̂ for the posterior pdf f(X|D). Now, we
aim to find the approximative uniform pdf f̃(X|D) =
UX

(
X̂, XR

)
so that the distance between f and f̃ is

minimal. For this purpose, the Kullback-Leibler divergence
[13] will be used that measures well proximity of a pair of
pdfs.
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