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1 Introduction
Bayesian approach to decision making under uncertainty relies on the fact that all probability densities
involved in the problem are known. This assumption is justified in the case single of single decision-
maker, however it is hard to meet in the case of distributed decision-making. In distributed scenario
[4], the decision-makers exchange probability densities and use them within their own decision-making
procedure. A methodology how to make use of such information was proposed in [5] using combination
of probability densities.

1.1 Combination of probability densities
The field of combination of probability densities, also known as merging, is very rich. A survey in [3]
provides commentary to 92 papers on the topic. From the range of available methods we select the
following candidates:
• classical methods of arithmetic and geometric composition [3],

• Bayesian merging of probabilities based on log-normal ‘hyper’-model proposed in [5],
Methods not considered in this report typically require specification of arbitrary functions (e.g. ‘per-
formance functions’ of [10]) or additional strategies of choosing weight in various variants of weighted
arithmetic or geometric composition [3, 6].

An alternative to the chosen methods is was presented e.g. in [13] where an additional model of
probability interaction is required. This model has a good Bayesian interpretation and can be used to
adjust the merging procedure in a principled way. However, in this study, we will focus on the class of
methods without such model.

1.2 Importance Sampling
Importance sampling [2] refers to a range of techniques for generating an empirical approximation of
f (x):

f (x) ≈ fδ(x) = 1
n

n∑
i=1

δ
(
x− x(i)

)
, (1)

where x(i), i = 1, . . . , n are independent identically distributed samples from the density f(x) and δ(·)
denotes the Dirac δ-function. We reserve the symbol fδ(·) for the empirical density. Therefore, this
approach is feasible only if the we can sample from the exact posterior, f (x) . If this is not the case,
we can draw samples from a chosen proposal density (importance function), q (x), as follows:

f (x) ≈ f (x)
q (x)

1
n

n∑
i=1

δ
(
x− x(i)

)
. (2)

Using the sifting property of the Dirac δ-function, the approximation can be written in the form of a
weighted empirical density, as follows:

fδ (x) ≈
n∑
i=1

wiδ
(
x− x(i)

)
, (3)

wi ∝
f (x)
q (x)

. (4)

Under this importance sampling procedure, the approximated density need only be evaluated point-
wise. Furthermore, normalizing constant of f(·) is not required, since (3) can be normalized trivially
via a constant c =

∑n
i=1 wi.

The weighted empirical density can be converted into a non-weighted empirical density via a pro-
cedure known as re-sampling [2]. In principle, this procedure randomly creates a number of copies of
each sample which is proportional the sample weight in expected value.
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2 Merging of densities defined on the same multivariate vari-
able

For simplicity, we will consider merging of finite number of densities, fs(x), s = 1, . . . , S, defined on
variable x. The task is to merge all densities into one, f̃(x).

2.1 Classical approaches
Arithmetic merging

f̃(x) = 1
S

S∑
s=1

fi(x). (5)

Weighted variants of this approach were also proposed [3, 7].
Geometric merging

f̃(x) =
S∏
s=1

fs(x)
1
S . (6)

Weighted variants of this approach were also proposed [3].

2.2 Supra-Bayesian merging with log-normal model
It can be shown that both classical approaches can be obtained point-wise as expected values of
Bayesian estimation for different models, [5]. In this approach, known as supra-Bayesian, merging of
densities in a point x̂ is interpreted as parameter estimation, values of densities in x̂ are considered as
data ds ≡ fs(x̂) generated from a model f(d|θ), where θ = f(x̂) is the true underlying density. The
unknown underlying density is estimated as posterior expectation

f̃(x̂) ≡ Ef(d|d1,...,dS)(d). (7)

Arithmetic merging arise when ds are normally-distributed with unknown mean µ and variance σ:

f(d|µ, σ) = N (µ, σ).

Then, the posterior estimate

Ef(d|d1,...,dS)(d) = Ef(µ,σ|d)(µ) = 1
S

S∑
s=1

ds. (8)

Substituting ds = fs(x) into (8) yields (5).
Geometric merging arise as a special case (β →∞, see Appendix A) of the log-normal ‘hyper’-model

[5]

f(log(d)|µ, σ) = N (µ, σ),

with prior on parameters µ, σ
f(µ, σ) ∝ exp(−βσ), β > 0. (9)

Here, µ = f(x) is the value of the underlying density.
Analytical solution of the marginal

Ef(d|d1,...,dS)(d) = Ef(µ,σ|d)(exp(µ+ 1
2
σ)), (10)
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is a complicated function of BesselK functions, see Appendix A. Its general form can be greatly
simplified for known value of S (i.e. the number of sources):

Ef(d|d1,d2)(d) = exp

{
µ̂+

√
2βλ

(
1− 0.5

√
4β − 3
β

)}
, (11)

Ef(d|d1,d2,d3)(d) =
BesselK

(
0,
√

2βλ
√

3β−2
3β

)
BesselK

(
0,
√

2βλ
) exp(µ̂). (12)

Here, BesselK denotes modified Bessel function of the second kind, µ̂ = 1
S

∑
ln(ds), S = S, β is a

parameter of prior density on σ, see Appendix B for discussion of its choice, and λ is a remainder after
least squares,

λ =
∑

ln2(ds)− Sµ̂2.

Similar formulae to (11)–(12) can be derived for higher values of S. For even values of S, the result is
of the form of (11) while results similar to (12) are obtained for odd values of S.

However, for practical purposes when S is higher or varying [5] proposed to use an approximate
version of (10)

Ef(d|d1,...,dS)(d) = Ef(µ|d,σ)δ(σ=σ̂)(exp(µ+ 1
2
σ)) =

exp

{
µ̂+ −S

2 + (S + 1)
√
S2 − 2S + 1 + 8β λ+ 1
8β S

}
. (13)

Remark 1. In effect, the only free parameters is the prior parameter β. It is shown in Appendix B that
extreme values of this parameter, i.e. 1 and ∞ correspond to approximately-arithmetic and geometric
merging, respectively. For practical purposes, a choice of β within this interval seems to be more
reasonable option.

2.3 Merging of fragmental densities
The approach described in the previous Section can be applied only to densities defined on the same
variable. Merging of incompatible sources—e.g. f(x1|x2) and f(x1)—the approach can be used when
the sources are extended—e.g. by multiplying by f(x2) and f(x2|x1), respectively—to the common
variables. In practical applications, it may be advantageous to seek principled extension for the
particular approximation. In this paper, we assume that such extension is not available and thus
we wish to minimize its impact on the resulting merger. An optimizing approach for this task was
proposed in [5].

Consider a set of sources
F : {fs(xs,d|xs,c)}Ss=1

where xs,d denotes multivariate variable on which the sth source is defined, and xs,c variable in
condition of the sth source. The common variables is then a union of all variables

x =
S⋃
s=1
{xs,d, xs,c}.

We seek a global merger f̃(x) which can be projected into a density on any combination of variables
using standard probability calculus (i.e. marginalization and conditioning). It can be shown that
optimum of f̃(x) minimizing the impact of the extension to the merger is given by an implicit equation.

Algorithm 2. The following iterative merging is solving the implicit equation [5] by successive ap-
proximations:
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1. Build initial guess of the merger on common variable f̃ (0)(x), set iterative counter j = 0.

2. For each source,

(a) factorize f̃ (j)(x) such that

f̃ (j)(x) = f̃ (j)(xs,0|xs,d, xs,c)f̃ (j)(xs,d|xs,c)f̃ (j)(xs,c). (14)

Here, xs,0 denotes variables from x that are not present in sth source.
(b) Create sth extended source by complementing the original source by projections of the current

merger to the missing variables:

f̃ (j)
s (x) = f̃ (j)(xs,0|xs,d, xs,c) fs(xs,d|xs,c) f̃ (j)(xs,c). (15)

3. Merge extended sources
{
f̃

(j)
i (x)

}
into f̃ (j+1)(x), using merging of densities on common vari-

ables.

4. If a divergence of f̃ (j)(x) from f̃ (j+1)(x) > threshold, set j = j + 1, goto 2. Otherwise, stop.

Note that the supra-Bayesian approach to probability merging requires to evaluate the likelihoods
of the source pdfs including the normalizing constant. This is practically acceptable for merging of
densities on the same variable, however, it poses a problem within the iterative procedure above where
the resulting merger is must be re-normalized for the next iteration. Renormalization of the result is
not a problem for the arithmetic mean (5) which can be easily re-normalized, neither for the geometric
mean (6) which is also simple for exponential family of densities. However, renormalization of the
log-normal merging is non-trivial and must be done numerically.
Remark 3 (Grid-based evaluation). Point-wise evaluation of the merger on a rectangular grid is ap-
pealing for evaluation of the normalization constant, marginal and conditional densities. In that case,
the posterior density is approximated by a piecewise-linear density. However, well-positioned and fine
grained grid may be build only for densities with limited support. Otherwise, the number of grid
points may be too large to handle, especially for higher dimensional problems.

3 Importance sampling for probabilistic merging
Key properties of the log-normal merging—i.e. point-wise construction with subsequent renormalization—
are consistent with assumptions of the importance sampling procedure.

3.1 Merging of weighted empirical densities
Consider a task of merging two densities (3) with common samples x(i) but different weights wi.
Merging is then performed at samples x(i), yielding the result in the form of weighted empirical
density at the same points as the sources, but with modified weights, w̃i.

This can be formalized as projection of the merger into weighted empirical density. Since we can
not draw samples from the merger, we need to find a suitable proposal density. In the first step of
algorithm 2, we may use the chosen initial density f̃ (0)(x) as such proposal. At each sample, the
non-normalized value of the merger can be computed at each point x(i)using (10) where each source
is computed using (15). The resulting merger after the first iteration is:

f̃ (1)(x) ≈
n∑
i=1

f̃ (1)(x(i))
f (0)(x(i))

δ(x− x(i)) =
n∑
i=1

wiδ(x− x(i)). (16)

wi = f̃ (1)(x(i))
f (0)(x(i))

. (17)
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However, since the result of merging of (16) is in the form of empirical density this result can not be
directly applied in the j + 1 step for two reasons:

1. the samples generated for f̃ (0) may be in low-density regions of f̃ (1), which calls for re-sampling.

2. values of marginal and conditional projections of f̃ (1)(x) are required in the next step.

The inability to perform these steps on empirical density motivates us to approximate the resulting
merger by a smooth density with known normalization.

3.2 Mixture approximation
We choose Gaussian mixtures as a suitable approximator due to their universal approximator property
[9],

f̃(x) ≈ fmix(x) =
K∑
k=1

αkN (µk,Σk), (18)

where K denotes the number of components in the mixture, µk mean and Σk variance of the kth
component. The simultaneous use of two distinct approximations, i.e. the empirical density and the
Gaussian mixture, requires to define mutual conversions between them.

The conversion from Gaussian mixture is straightforward. If the f̃ (1) merger is in the mixture form
(18), both operations required in the previous Section are available as follows:

1. Generating samples from mixture models is a straightforward operation,

2. Marginal density f̃(xs,c) required in (15) is again a mixture of Gaussians

f̃ (j)(xs,c) =
∫
f̃ (j)(xs,0, xs,d, xs,c)dxs,0ds,d =

K∑
k=1

αkN (µk,s(c),Σk,s(c))

where µk,s(c) is a sub-vector of µk and Σk,s(c) is a sub-matrix of Σk, each containing only elements
corresponding to xs,c.
The conditional density f̃(xs,0|xs,d, xs,c) required in (15) can be computed as a ratio of marginals:

f̃ (j)(xs,0|xs,d, xs,c) = f̃ (j)(x)
f̃ (j)(xs,d, xs,c)

=
∑K
k=1 αkN (µk,Σk)∑K

k=1 αkN (µk,s(d,c),Σk,s(d,c))
.

However, conversion of (16) into a mixture is not a trivial task and it is treated in the next Section.

3.2.1 Mixture estimation

Conversion from a non-weighted empirical density to a mixture model can be approached via divergence
minimization. When the minimized divergence is a Kullback-Leibler density (or Kerridge inequality),
the resulting minimizer correspond to maximum likelihood [8]. This result does not hold for a weighted
empirical density. We can explore two possibilities:

1. Use re-sampling to convert the weighted density to an empirical density. Use maximum likelihood
estimation.

2. Derive a new minimizer for Kerridge inequality with respect to weighted empirical density.

Both approaches will be studied using the Expectation-Minimization (EM) idea [1] and their relation
will be shown at the end of this Section.

Estimation of the mixture model via the EM algorithm is based on defining internal (latent) variable
lk,i as a label if lk,i = 1 if the ith data record was generated by the kth component of the mixture and
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lk,i = 0 otherwise. Assuming that we know that the ith data sample, xi, was generated from the kth
component f(xi) = f(xi|µk,Σk), the observation density of the ith sample can be rewritten using lk,i
notation as follows:

f(xi|li) =
K∏
k=1

f(xi|µk,Σk)lk,i (19)

Then, the mixture model (18) arise by complementing (19) by f(li) = αi and integrating over li,
li = [l1,i, . . . , lK,i].

The advantage of this parametrization is that estimation of parameters µk,Σk is trivial if li is
known for each i. Then, the statistics of the posterior density f(µk,Σk|x1, . . . , xn) is of the Gauss-
inverse-Wishart form with statistics Vk, νk which are updated as follows [11, 12]:

Vk =
n∑
i=1

lk,i

[
xi
1

]
[x′i 1]

, νk =
n∑
i=1

lk,i.

The idea of EM algorithm is to replace unknown lk,i by their estimates, estimate parameters µk,Σk,
re-estimate lk,i and so on until convergence. Based on the estimate used in the algorithm we distinguish
two variants:

EM-algorithm where
l̂k,i ∝ f(x = xi|µ̂k, Σ̂k), (20)

using estimates µ̂k, Σ̂k are parameter estimates from the previous iteration.

QB-algorithms where
l̂k,i ∝

∫
f(x = xi|µk,Σk)f(µk,Σk)dµkdΣk, (21)

EM-like algorithm where lk,̂i = 1 for î = arg max l̂k,i where l̂k,i is from (21). This variant correspond
to an alternative formulation of EM algorithm for mixtures, where the expectation step is over
the component parameters and the maximization step is with respect to the label variable. In
classical EM algorithm for mixtures it is the other way around.

see [12] for more details.
In the QB case, the estimate of l̂k,i ∈ [0, 1] can be interpreted as a weight of contribution of the

ith data sample to the statistics of parameters µk and Σk. This observation motivates the following
modification of the QB algorithm for weighted empirical densities:

1. Weights l̂k,i are estimated using (20) or (21),

2. Statistics of the estimates of µk and Σk are updated with weight

l∗k,i = l̂k,iwin. (22)

I.e

Vk =
n∑
i=1

l∗k,i

[
xi
1

]
[x′i 1]

, Sk =
n∑
i=1

l∗k,i.

Here, wi are normalized weights (17),
∑n
i=1 wi = 1.

Remark 4 (Soft re-sampling). Note the outlined approach offers solution to both approaches mention
at the beginning of the Section, i.e. re-sampling and weighted estimation. In the case of the re-sampled
empirical density for which wi = 1/n, (22) reduces to the standard QB algorithm. The operation of re-
sampling creates copies of samples, e.g. the jth sample is multiplied mjtimes, mj ∈ [1, 2, . . . n], hence
the jth data record is added with weight

∑mj
i=1 lk,j = mj lk,j . Since mj is a discrete quantity that

should be as proportional to wj as possible, the proposed algorithm can be seen as soft re-sampling.
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3.3 Merging Algorithm
Algorithm 5. Stochastic Merging algorithm.

1. Choose initial proposal density g(j)(x), j = 0.

2. Generate samples, x(i) from g(j)(x).

3. Estimate mixture approximation f (j)
mix(x) from samples x(i).

4. Run one iteration of Algorithm 2 at points x(i) using f̃ (j)(x) ≡ f
(j)
mix(x) to obtain empirical

density of the merger f̃ (j+1)
δ (x).

5. If convergence was reached, stop.
Otherwise, compute effective sample size eff = 1/w′w and

(a) If the effective sample size is lower that chosen threshold, goto 2.
(b) Otherwise, goto 3.

3.4 Open issues
Since the main merging algorithm is iterative, there are always issues related to initialization and
determination of converged state. So far, we have no definite solution to these issues, only remarks on
their specifics for the considered case.

3.4.1 Initialization of the proposal

The above algorithm requires the knowledge of initial proposal density g0, when this density is not
known, it has to be designed from the sources. Note that the sources are a combination of conditional
and marginal densities. If they were non-conflicting, sampling from these could be accomplished by
the means of the Gibbs sampling. Thus, a heuristic initialization of the algorithm can use the following
modification of the Gibbs sampling algorithm that can be applied even for the case of conflicting
sources (however, without any guarantee of convergence):

1. Choose initial value of a sample, x(0)

2. Set iteration counter j = 0,

3. Choose jth (random?) ordering of the sources, s1 . . . sn.

4. From each source si,

(a) substitute those values of x(j), that are in the conditioning part of si
(b) generate new partial sample x̃(i) and copy its values to appropriate elements of x(j).

5. Increase iteration counter j, goto 3.

3.4.2 When to stop the algorithm

The original stopping rule of the the iterative algorithm proposed in Section 2.3 is based on comparing
divergence of two subsequent approximations of the merged density. This variant of the stopping rule
is also applicable in this case, however, the importance sampling procedure offers another measure of
convergence. Since the result of merging in ith iteration is used as proposal for the next iteration, the
two subsequent merging results are used to compute the importance weights (17). Thus, when the
whole algorithm converges, the weights wi should converge to 1.

The main advantage of this measure is the fact that it takes into account the influence of both
approximation used in this approach—i.e. the empirical density and the mixture model—hence it may
indicate even poor performance of the mixture estimation.
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4 Experiments
All above mentioned algorithms were implemented in C++ toolbox BDM, which is freely available
from http://mys.utia.cas.cz:1800/trac/bdm.

4.1 Log-normal merging
The first test of the proposed approximation is the analytical example studied in Appendix B, Fig.
4. Specifically, two one-dimensional Gaussian densities with mean values −5, 5 and variances 2, 10
respectively, were tested. Two experiments with log-normal merging with β = 1.2 using analytical
marginal were run with different number of samples. The first experiment with 1000 and the second
with 100 samples. Each experiment was fitted with mixture of 3 Gaussian components using QB
approach. The results in Fig 1 indicate that for high number of samples, the mixture model provides
a very good approximation. However, for smaller number of samples, two modes of the density were
not distinguished.

4.2 Merging of fragmental sources
The first experiment with fragmental sources was to test if the procedure converges to the correct
answer in the case of potentially compatible sources. The sources were as follows:

f1(x|y) = N (1y + 1, 0.01),
f2(x) = N (2, 0.02). (23)

Note that for y = 1, the sources are compatible. However, y is considered to be unknown and its
density will be optimized by Algorithm 2. For this simple case with predictable results, we can tested
performance of the algorithm on a regular grid. Convergence of iterations in Algorithm 2 for 20× 20
regular grid x ∈< 0, 4 >, y ∈< −1, 3 > is illustrated in Figure 2 via mean and variance of the joint
merger f̃(x).

Note that evaluation on the grid, even with lower number of evaluation points (400 for grid and
1000 for importance sampling) converges faster to the expected result, ŷ = 1, x̂ = 2. Moreover, the
importance sampling procedure does not converge exactly to the expected value, but to biased values
ŷ = 1.05, x̂ = 2.03. The exact value of the bias depends on random seed used in the procedure.

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

Figure 1: Approximate log-normal merging of two Gaussian densities. Solid line denote analytical
merging formula evaluated on a grid. Dashed line denote the fitted mixture model evaluated on the
same grid. Left: experiment for 1000 samples. Right: experiment for 100 samples.
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Figure 2: Convergence of the joint merger for sources (23) on discrete 20×20 grid (top row) and using
importance sampling procedure (bottom row). Left: effective sample size, (eff = Ns/w

′w), Right:
mean value with 2std bounds of the joint merger f̃(x).
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Figure 3: Convergence of the joint merger for sources (23) using importance sampling procedure when
initiated far from the optimum.
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Offset can be obtained even for evaluation on the grid, e.g. when the grid is not symmetrical around
the expected results, or if it does not cover some parts of the space where the expected merger has
significant values. Note also, that the direction of convergence of the mean value changes after re-
sampling (sharp change on the effective sample size graph). This suggests to modify Algorithm 5 to
allow Algorithm 2 reach steady-state.
Remark 6. Modification of Algorithm 5 which performs re-sampling only when Algorithm 2 reaches
steady-state. Note from Fig. 23, that effective sample size is dropping during convergence. Before
reaching steady-state, the effective sample size may reach very low values inducing numerical instability
of the procedure. In cases when the initial guess of the merger was far away from the converged value,
such numerical instability occurred regularly.

Significant advantage of the importance sampling procedure is the ability to converge to the correct
location even when from distant initial density. Convergence of the procedure with initialization at
N ([0, 0], 0.1I2) is displayed in Figure 3.

4.3 Merging of conditional fragmental sources
The final merger from the previous experiment converged to the expected position in which the sources
were almost consistent. In this experiment, we attempt to merge sources which are consistent for more
than one point. Sources

f1(x|y) = N (y + 1, 0.01),
f2(x|z) = N (2z − 1, 0.01),

are consistent for any y = 2z − 2. Since the sources do not contain any information about the mutual
relation of y and z, we expect that the iterative algorithm will preserve the relation of the initial
density. For example, for choosing y = z the expected value of the merger is [3, 2, 2], while for y = −z
the expected merger has mean value at [ 1

3 ,−
2
3 ,

2
3 ].

A Monte Carlo study of 100 runs of the importance sampling algorithm with β = 1, c = 1, n = 2000
and 40 iterations was run for two initial densities:

f̃
(0)
A (x, y, z) = N

 1.5
1
1

 ,
 1

1 0.95
0.95 1

 , f̃
(0)
B (x, y, z) = N

 0
0
0

 ,
 1

1 −0.95
−0.95 1

 ,

the former favoring y ≈ z, the latter y ≈ −z. Results of the Monte Carlo for mean value of the joint
merger are in the following table:

Monte Carlo mean MC median MC std
estimates for f (0)

A [2.21,1.20,1.66] [2.59,1.59,1.79] [1.39,1.40,0.52]
estimates for f (0)

B [0.30,-0.70,0.65] [0.33,-0.66,0.66] [0.25,0.26,0.01]
In most of the cases, the converged mean of the merger is where expected, which is demonstrated

by the median. However, switches or slow shifts towards another points were frequent which shifted
the mean value and caused large standard deviation. In this experiment, the number of iterations was
set to 40 since convergence of the algorithm was hard to assess. The merger was slowly wandering in
the whole space.

Results of the same example were tested for the grid-based approach, Remark 3. The results were
heavily dependent on the chosen grid. If the grid was too coarse, rapid switches between various points
were common. A finer grid of e.g. 40 points in one direction achieved smoother results, however, it
significantly increased the number of necessary computations.

5 Conclusion
The log-normal merging of probability densities proposed by [5] was studied. The main results are:
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1. Analytical solution for posterior expectation of the log-normal ‘hyper’-model.

2. Evaluation procedure of the merging using importance sampling and mixture of Gaussians.

The first result is achieved when the number of sources S is known. We have shown that properties
of the log-normal merging heavily depends on the chosen prior quantity β ∈ [1,∞]. Boundaries of
the admissible range of β were found to correspond to two classical approaches: arithmetic (only
approximately) and geometric merging, respectively. It can be argued that these boundaries are
extremes and β should be chosen slightly off the boundaries.

The new method of evaluation using importance sampling was tested in simulation and the results
compared with numerical evaluation on a rectangular grid. The conclusions are:

• Evaluation of the merging procedure on the grid appears to be a better option for smaller
dimensional densities with well known and limited area of support with high density. The main
advantage of this approach is simplicity of implementation, fast convergence, no additional tuning
knobs.

• Evaluation using importance sampling with mixture models appears to be more suitable for
higher dimensional densities and for sources where prediction of high-density regions is hard or
impractical. The approach is still in early stage of development, with many tuning knobs to be
chosen especially in the mixture estimation procedure. Also, assessment of convergence of the
iterative algorithm is more demanding that in the case of grid evaluation.

• The iterative algorithm seems to converge to the expected solution in ‘simple’ cases with well
predictable solution. However, convergence may be problematic in more demanding cases with
highly uninformative sources. Therefore, the algorithm should be used carefully in such situa-
tions.

The algorithm can be still significantly improved. Specifically in on-line scenarios where repetitive
merging of similar densities will be performed, the samples and mixture parameters from the previous
step can be used to initialize the procedure in the subsequent step.

A Log-Normal Merging
Analytical marginal of the log-normal model is computed here using symbolic software maple. Notation
of the output is slightly changed; here, the number of sources is denoted ν instead of S which was used
in the main text.

> restart:with( RealDomain ):assume(g::real,g>0);

\QTR{_cstyle10}{Warning, these protected names have been redefined and unprotected:
Im, Re, ‘\symbol{94}‘, arccos, arccosh, arccot, arccoth, arccsc,
arccsch, arcsec, arcsech, arcsin, arcsinh, arctan, arctanh, cos, cosh,
cot, coth, csc, csch, eval, exp, expand, limit, ln, log, sec, sech,
signum, simplify, sin, sinh, solve, sqrt, surd, tan, tanh}\QTR{_cstyle10}{}
Observation model - lognormal density on g
> assume(mu::real);assume(sigma::real,sigma>0);
> f_nn:=1/d*exp(-1/2*(log(d)-mu)^2/sigma);

f_nn := e(−1/2 (ln(d)−µ˜)2
σ˜ )

d
> nk:=int(f_nn,d=0..infinity);

nk :=
√
π
√

2
√
σ˜

> f:=f_nn/nk;
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f := 1
2
e(−1/2 (ln(d)−µ˜)2

σ˜ )√2
d
√
π
√
σ˜

Its expected value
> Eg:=int(d*f,d=0..infinity);

Eg := e(µ˜+1/2σ˜)

Posterior on parameters - Normal-Gamma density
> assume(nu::real,nu>2);assume(lambda::real,lambda>0);assume(sl::real);
> assume(beta::real,beta>0);
> fms_nn:=sigma^(-1/2*nu)*exp(-1/2*1/sigma*(nu*(sl-mu)^2+lambda))*exp(-
> beta*(sigma));

fms_nn := σ˜(−1/2 ν˜) e(−1/2 ν˜ (sl˜−µ˜)2+λ˜
σ˜ ) e(−β˜σ˜)

> simplify(Eg*fms_nn);

e(−1/2 −2µ˜ σ˜−σ˜2+ν˜ sl˜2−2 ν˜ sl˜µ˜+ν˜µ˜2+λ˜+2 β˜ σ˜2
σ˜ ) σ˜(−1/2 ν˜)

> nk_ms:=int(int(fms_nn,mu=-infinity..infinity),sigma=0..infinity):
> fms:=fms_nn/nk_ms:

Its marginals
> fm:=simplify(int(fms,sigma=0..infinity)):

> fs:=simplify(int(fms,mu=-infinity..infinity)):
Expectations of marginals
> Ms:=solve(diff(fs,sigma)=0,sigma);

Ms := 1
4
−ν˜ + 1 +

√
ν˜2 − 2 ν˜ + 1 + 8β˜λ˜

β˜
, −1

4
ν˜− 1 +

√
ν˜2 − 2 ν˜ + 1 + 8β˜λ˜

β˜
> with(student):completesquare(Ms[01],nu);

1
4
−ν˜ + 1 +

√
(ν˜− 1)2 + 8β˜λ˜
β˜

> fmc:=fms/fs:
> fmc:=simplify(fmc);

fmc := 1
2

√
2 e(−1/2 ν˜ (sl˜−µ˜)2

σ˜ )√ν˜√
σ˜
√
π

> Emu:=(int(mu*fmc,mu=-infinity..infinity));

Emu := sl˜
> Ed:=int(Eg*fmc,mu=-infinity..infinity);

Ed := e(1/2 σ˜ ν˜+σ˜+2 ν˜ sl˜
ν˜ )

> Eds:=simplify(subs(sigma=Ms[1],Ed));

Eds := e(1/8 −ν˜2+ν˜
√
ν˜2−2 ν˜+1+8 β˜λ˜+1+

√
ν˜2−2 ν˜+1+8 β˜λ˜+8 ν˜ sl˜ β˜

β˜ ν˜ )

> Eda:=int(Ed*fs,sigma=0..infinity);

12



Eda := 2(1/4 ν˜−5/4) esl˜ λ˜(5/4−1/4 ν˜) β˜(5/4−1/4 ν˜)


2(5/2−1/2 ν˜) (ν˜2 − 1 + β˜ (2− ν˜ + 1

ν˜β˜
)λ˜) %1(1/2 ν˜+1/2) BesselK(1

2
ν˜ + 1

2
, %1)

β˜2 (2− ν˜ + 1
ν˜β˜

)2 λ˜2

−
2(5/2−1/2 ν˜) (ν˜− 1) %1(1/2 ν˜+1/2) BesselK(1

2
ν˜ + 3

2
, %1)

β˜(3/2) (2− ν˜ + 1
ν˜β˜

)(3/2) λ˜(3/2)

/(

√
λ˜
√
β˜ BesselK(1

2
ν˜ + 1

2
,
√
β˜
√

2
√
λ˜)
√

2− ν˜ BesselK(1
2
ν˜− 1

2
,
√
β˜
√

2
√
λ˜)

+ BesselK(1
2
ν˜− 1

2
,
√
β˜
√

2
√
λ˜))

%1 :=
√
β˜
√

2− ν˜ + 1
ν˜β˜

√
λ˜

Greatly simplified when nu is known
> Eda_nu2:=simplify(subs({nu=2},Eda));

Eda_nu2 := 2

√
4β˜− 3
β˜

e(−1/2
√
β˜
√

2
√

4 β˜−3
β˜

√
λ˜+sl˜+

√
β˜
√

2
√
λ˜)
√√

β˜
√
λ˜β˜(3/4)

λ˜(1/4) (4β˜− 3)
> Eda_n2_b1:=simplify(subs({beta=1},Eda_nu2));

Eda_n2_b1 := 2 e(sl˜+1/2
√

2
√
λ˜)

> Eda_n2_b2:=simplify(subs({beta=2},Eda_nu2));

Eda_n2_b2 := 2
5
√

5
√

2 e(sl˜−1/2
√

2
√

5
√
λ˜+2

√
λ˜)

> Eds_n2:=subs(nu=2,Eds);

Eds_n2 := e(1/16 −3+3
√

1+8 β˜λ˜+16 sl˜ β˜
β˜ )

B On the choice of prior
The result of log-normal merging heavily depend on the choice of coefficient β in prior density (9).
This coefficient is necessary to compensate the term exp( 1

2σ) in (10) which is increasing with σ →∞
yielding infinite value of the merged density. This term is compensated by β = 1

2 , however it is still
not sufficiently compensated for the case with two sources,

E(d) = 2

√
4β − 3
β

β exp
(
− 1

2
√
β
√

2
√

4 β−3
β

√
λ+ µ̂+

√
β
√

2
√
λ
)

(4β − 3)
,

hence, β > 3
4 in order to obtain acceptable solution. Similarly, for four sources β > 5

8 , from which we
can extrapolate that β > S+1

2S . This condition was however derived only to assure finite values of f̃(x̂)
at point x̂, without any attempt to normalize the resulting f̃(x) on its support. This may be difficult
since

lim
β→S+1

2S

E(d)→∞.
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Figure 4: Merging of two one-dimensional Gaussian sources for different values of β, from top to
bottom β = [ 2

3 ,
31
30 , 2]. Blue lines denote source pdfs, green line is the arithmetic merger, red is the

marginalized (10) and magenta the conditioned (13) merger.

In order to address normalization, we would have to substitute source densities into the final formula
for E(d). A range of experiment was performed with two Gaussian sources. The results are summarized
in Figure 4. We note the following:

• For β below the analytical limit, the exact marginal is not well defined, however, the conditional
estimate (13) is still well defined. The result of conditional merger for β = 1

2 is undesired, since
it favors low density areas.

• The conditional merger for β = 9
16 is almost exactly the arithmetic merging, for lower β it has

the effect as with β = 1
2 , for higher β it is narrowing the resulting density.

• Numerical normalization of the resulting merger was possible only for β > 1 and was getting
increasingly difficult around 1, that is why the plot in figure 4 is at value 31

30 .

Hence, the log-normal approach to merging offers a smooth transition between the arithmetic and
geometric merging. In the exact case, the arithmetic merger arise for β = 1 (at least for S = 2) and
the geometric merger arise for β →∞.
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