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Variational Bayesian Filtering
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Abstract—The use of the Variational Bayes (VB) approxi-
mation in Bayesian filtering is studied, both as a means to
accelerate marginalized particle filtering, and as a deterministic
local (one-step) approximation. The VB method of approximation
is reviewed, together with restrictions that allow various compu-
tational savings to be achieved. These variants provide a range
of algorithms that can be used in a principled trade-off between
quality of approximation and computational cost. In combination
with marginalized particle filtering, they generalize previously
published work on variational filtering, and they extend currently
available methods for speeding up stochastic approximations in
Bayesian filtering. In particular, the free-form nature of the
VB approximation allows optimal selection of moments which
summarize the particles. Other Bayesian filtering schemes are
developed by replacing the marginalization operator in Bayesian
filtering with VB-marginals. This leads to further computational
savings at the cost of quality of approximation. The performance
of the various VB filtering schemes is illustrated in the context
of a Gaussian model with a nonlinear sub-state, and a hidden
Markov model.

Index Terms—Bayesian filtering, Variational Bayes, particle
filtering, EM algorithm, hidden Markov model.

I. INTRODUCTION

IN this paper, we are concerned with the classical prob-
lem of inferring the state variables which parameterize a

sequence of observation models in the following manner:

dt ∼ f (dt|θt) , θt ∼ f (θt|θt−1) . (1)

Here, θt is a vector known as the state variable and dt are
the observations. By Bayesian filtering, we mean the recursive
evaluation of the filtering distribution, f (θt|Dt), using Bayes’
rule [9], [21], [29]:

f (θt|Dt−1) ≡ f (θ1) , t = 1,

f (θt|Dt−1) =
∫
f (θt|θt−1) f (θt−1|Dt−1) dθt−1, t = 2, ...,

(2)
f (θt|Dt) ∝ f (dt|θt) f (θt|Dt−1) , t = 1, 2, .... (3)

Here, f (θ1) is the prior distribution, and Dt = [d1, . . . , dt]
denotes the aggregated set of observations. The integration in
(2), and elsewhere in this paper, is over the whole support of
the integrand. (2) is referred to as the time update, and (3) as
the data update, as illustrated in Fig. 1.

Bayesian filtering, as defined above, is just one formulation
of the classical stochastic nonlinear filtering problem [2]. Other
formulations exist, such as stochastic differential equations.
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Bayesian filtering has been used in signal processing for tasks
such as blind deconvolution [15] in communication systems,
speech recognition [3], and the design of navigation systems
[25].

Bayesian filtering is analytically tractable if (i) the marginal-
ization over θt−1 in (2) is analytically tractable, and (ii)
the resulting marginal distribution, f (θt|Dt), has the same
functional form as the previous step, f (θt−1|Dt−1), allowing
the procedure to be iterated. (i) and (ii) are satisfied for only a
very limited class of models [7]. Typically, therefore, methods
of distributional approximation are required. Specifically, we
must replace f (θt|Dt) by a distributional approximation,
f̃ (θt|Dt).

Once again, we require that the functional form of the
approximate distribution be preserved during the update. If
this can be achieved via the exact Bayesian filtering steps
(2,3), then the scheme is known as a global approximation.
If, however, f̃(θt|Dt) is in a different functional class from
f̃(θt−1|Dt−1), then iterative approximation is required to
restore the functional form at each time, t. Iterative approx-
imation of this kind is known as a local approximation. The
distinction between global and local approximations was first
introduced in a non-Bayesian context [31], while a Bayesian
interpretation was given in [14]. Global approximations for
Bayesian filtering include point mass filters [5] and sequential
Monte Carlo methods [9]. Local approximations include the
extended Kalman filter [2] and the unscented filter [13].
Stochastic techniques have proved particularly popular for
global approximation since they can achieve arbitrarily high
accuracy. However their computational cost can be prohibitive.
In contrast, local approximations tend to be deterministic,
involving functional expansions of the distributions. Typically,
these are computationally efficient but the error of approxima-
tion can accumulate with time. An active subject of research is
to explore the combination of local and global approximations
in an effort to improve computational efficiency without sig-
nificant reduction in the accuracy of approximation [18], [26],
[27]. Our aim in this paper is to explore the deterministic
Variational Bayes approximation as a local approximation and
in combination with global techniques.

The Variational Bayes (VB) approximation was developed
in statistical physics—where it is known as the naïve mean-
field approximation [20]—for non-recursive (off-line) infer-
ence of time-invariant parameters. One of the earliest appli-
cations was in off-line inference of hidden Markov models
[17], and off-line signal processing applications of VB are now
common [22]. The use of VB in recursive inference of time-
invariant parameters was presented in [24], and an application
to identification of extended autoregressive models appears
in [23], [28]. Inference of the state trajectory in the linear
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f(θt−1|Dt−1) ×

f(θt|θt−1)

R
dθt−1

Time update

f(θt, θt−1|Dt−1)

B

Data update

f(θt|Dt−1)

f(dt|θt)

f(θt|Dt)

Fig. 1. An operator diagram illustrating Bayesian filtering. The ‘×’ operator denotes multiplication of arguments; ‘
R

d·’ denotes marginalization of the stated
parameter as in (2); and ‘B’ denotes an application of Bayes’ rule as in (3).

Gaussian model defining the Kalman filter with unknown
parameters was presented in [4], [33], but the inference was
off-line (i.e. from a fixed number of data), avoiding marginal-
ization over θt−1 (2). The application of the VB approximation
to the fundamental problem of Bayesian filtering—i.e. the
requirement to marginalize over θt−1 (2)—was studied for a
constrained model class in [32], and also in [29]. Inconsistency
of the VB approximation in the Kalman filter context was
noted in both off-line [33] and on-line [29] scenarios.

The theory of the VB approximation is reviewed in Sec-
tion II, including its simplified variants, namely functionally-
constrained VB and restricted VB. These variants allow VB
to be combined with other approximations, such as stochastic
sampling which is briefly reviewed in Section III. The resulting
Variational Bayesian particle filtering scheme is presented in
Section IV. In this scheme, VB acts as a local approximation
of the data update step in marginalized particle filtering, and
therefore requires the time update step to be analytically
tractable (Fig. 1). This requirement is relaxed in Section V,
where VB is used to approximate both the time and data update
steps.

II. THE VARIATIONAL BAYES APPROXIMATION

The Variational Bayes (VB) approximation is a determinis-
tic, free-form technique for optimal distributional approxima-
tion, in the sense given by the following theorem [29].

Theorem 1: Let f (θ|D) be the posterior distribution of
multivariate parameter, θ, and let θ = [θ′1, θ

′
2]′ be a chosen

partition into sub-vectors (where ′ denotes transposition). Let
f̆ (θ|D) be an approximating distribution restricted to the set
of conditionally independent distributions:

f̆ (θ|D) = f̆ (θ1, θ2|D) = f̆ (θ1|D) f̆ (θ2|D) . (4)

Any minimum of the following Kullback-Leibler divergence
(KLD) from f̆ (·) to f (·),

KL(f̆ (θ|D) ||f (θ|D)) =
∫
f̆ (θ|D) ln

f̆ (θ|D)
f (θ|D)

dθ, (5)

is achieved when f̆ (·) = f̃ (·), such that

f̃ (θi|D) ∝ exp
(
Ef̃(θ/i|D) [ln (f (θ,D))]

)
, i = 1, 2. (6)

Here, θ/i denotes the complement of θi in θ. �
We will refer to the f̃ (θi|D) (6) as the VB-marginals.

Also here, and throughout the paper, Ef(θ) [g(θ)] denotes
the expected value of the function g(θ) with respect to the
distribution f(θ). Since the functional form of each VB-
marginal (6) emerges from a functional optimization, rather

than being imposed beforehand, we will refer to VB as a
free-form optimization technique. The theorem also extends
to partitions of θ into several sub-vectors.
Theorem 1 provides a powerful tool for approximating proba-
bility (density) functions (p(d)fs) that exhibit a separable form
[29]:

ln f (θ1, θ2, D) = g (θ1, D)′ h (θ2, D) . (7)

Here, g (θ1, D) and h (θ2, D) are finite-dimensional vectors.
Using (7) in (6), the VB-marginals become

f̃ (θ1|D) ∝ exp
(
g (θ1, D)′ ̂h (θ2, D)

)
, (8)

and similarly for θ2. In (8), ĥ(·) ≡ Ef̃(θ2|D) [h (·)] are the
necessary VB-moments of f̃(θ2|D). An Iterative VB (IVB) [29]
moment-swapping algorithm is implied.

Algorithm 2.1 (Iterative VB (IVB) algorithm): Cyclic iter-
ation of the following steps, n = 1, 2, 3, . . ., monotonically
decreases the KLD (5):

1) Compute the current update of the VB-marginal of θ2
at iteration n, via (6):

f̃ [n] (θ2|D) ∝ exp
{

Ef̃ [n−1](θ1|D)

[
g (θ1, D)′

]
h(θ2, D)

}
.

(9)
2) Use the result of 1) to compute the current update of

the VB-marginal of θ1 at iteration n, via (6):

f̃ [n] (θ1|D) ∝
{
g (θ1, D)′ Ef̃ [n](θ2|D) [h(θ2, D)]

}
.

(10)
Here, the initializer, f̃ [0] (θ1|D), may be chosen as any
tractable distribution. Convergence of the algorithm to fixed
VB-marginals, f̃ [∞] (θi|D), ∀i, was proved in [24].

In many nonlinear cases of g and/or h, the VB-marginals (6)
will be non-standard in form, and so the required VB-moments
will be difficult to evaluate. This underlines the free-form
nature of the approximation (Section 1). It may be necessary
in such cases to replace any non-standard VB-marginal—for
example f̃ (θ2|D)—with a tractable alternative. In the next
two sub-sections, we present variants of the VB approximation
designed to achieve this aim.

Remark 1: Constraints on the separable form of
f (θ1, θ2, D) (7) can be imposed as a way to ensure tractability
of the VB-marginals (6), and such constraints yield special
cases of Algorithm 2.1. An important constraint is the
extended exponential family (EEF) assumption, which yields
the propagation algorithm of [10]. When Algorithm 2.1 is
applied to Bayesian networks with EEF nodes, the variational
message-passing algorithm [34] emerges. However, in the
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on-line (Bayesian filtering) context, the EEF constraint is
too restrictive, since the filtering distribution is required to
be functionally invariant under the marginalization in (2)
(Section I). We relax the EEF assumption in the Variational
Bayesian Filtering techniques that we develop in Sections IV
and V, and instead we achieve tractability using the VB
variants of the next two sub-sections.

A. The Functionally-Constrained VB Approximation

In this case, an extra step is introduced within each IVB
cycle. Specifically, f̃ (θ2|D) is projected into a tractable al-
ternative, f̂ (θ2|D), via a subsidiary projection rule. It is the
moments of this distribution that are fed back to f̃ (θ1|D) (8).
In fact, the popular Expectation-Maximization (EM) algorithm
[8] is a case in point, where

f̂ (θ2|D) ≡ δ
(
θ2 − θ̂2

)
, (11)

and θ̂2 = arg maxθ2 f̃ (θ2|D) is the mode of the second VB-
marginal. In this case, f̃ (θ1|D) becomes

f̃ (θ1|D) ≡ f
(
θ1|θ̂2, D

)
,

via (8) and the sifting property of the Dirac δ-function, δ(·).

B. The Restricted VB (RVB) Approximation

We replace f̆ (θ2|D) by a tractable fixed distribution,
f (θ2|D). Then, by Theorem 1:

f̃ (θ1|D) ∝ exp
(
Ef(θ2|D) [ln (f (θ,D))]

)
. (12)

Hence, a single substitution of necessary moments from f(·)
is required and IVB cycles are avoided. It is interesting to
note that a number of popular distributional approximations
are special cases of (12): (i) certainty equivalence, where f ≡
δ(θ2 − θ̂2) for some fixed θ̂2, in which case (12) becomes
f
(
θ1|θ̂2, D

)
, i.e. the conditional; and (ii) the Quasi-Bayes

approximation, where f ≡ f (θ2|D), the exact marginal [29].
If h(·) in (7) is linear, then (i) and (ii) are equivalent for the
choice θ̂2 = Ef(θ2|D) [θ2].

We conclude this section by listing the following
distributional objects, which will be used in this paper:
f(θ|D) the exact distribution/model;
f̃(θ|D) a VB-based (free-form) optimizer;
f̂(θ|D) a functionally-constrained projection of f̃(θ|D);
fδ(θ|D) special case of f̂(·), being an empirical approxi-

mation of f(θ|D) (Section III-A);
f(θ|D) a fixed distribution.

C. The choice of restrictions

The two variants of the VB scheme presented above allow
other distributional approximations to be combined with VB.
We will be particularly interested in the rôle of the empirical
approximation as a functionally-constrained distribution (see
Section II-A). As we will see in Section IV, the resulting com-
putational scheme is closely related to Sequential Importance
Sampling, which we will now review.

III. SEQUENTIAL IMPORTANCE SAMPLING

A. Particle Filtering

Particle filtering (PF) [9] refers to a range of techniques for
generating an empirical approximation of f (Θt|Dt), where
Θt = [θ1, . . . , θt] is the state trajectory:

f (Θt|Dt) ≈ fδ (Θt|Dt) ≡
1
n

n∑
i=1

δ
(

Θt −Θ(i)
t

)
. (13)

In this paper, we reserve the symbol fδ(·) for the (possibly
weighted) empirical approximation of f(·). In (13), Θ(i)

t ,
i = 1, . . . , n, are i.i.d. samples from the posterior, and so
this approach is feasible only if we can sample from the exact
posterior, f (Θt|Dt) . If this is not the case (as commonly
arises), we can draw samples from a chosen proposal distri-
bution (importance function), q (Θt|Dt), as follows:

f (Θt|Dt) =
f (Θt|Dt)
q (Θt|D)

q (Θt|Dt)

≈ f (Θt|Dt)
q (Θt|Dt)

1
n

n∑
i=1

δ
(

Θt −Θ(i)
t

)
. (14)

In this case, Θ(i)
t ∼ q(·). Using the sifting property of the

Dirac δ-function, (14) can be written in the form of a weighted
empirical approximation, as follows:

f (Θt|Dt) ≈ fδ (Θt|Dt) ≡
n∑
i=1

w
(i)
t δ

(
Θt −Θ(i)

t

)
, (15)

w
(i)
t ∝

f
(

Θ(i)
t |Dt

)
q
(

Θ(i)
t |Dt

) . (16)

Under this importance sampling procedure, the true posterior
distribution, f(·), need only be evaluated point-wise. Further-
more, the normalizing constant of f(·) is not required, since
(15) is normalized trivially via the constant c =

∑n
i=1 w

(i)
t .

In Bayesian filtering (2,3), the challenge is to generate
the samples, θ(i)t , and evaluate the importance weights, w(i)

t ,
recursively. Using (1) and standard Bayesian calculus, (16) can
be written in the following recursive form:

w
(i)
t ∝

f
(
dt|θ(i)t

)
f
(
θ
(i)
t |θ

(i)
t−1

)
q
(
θ
(i)
t |Θ

(i)
t−1, Dt

) w
(i)
t−1. (17)

Now, θ(i)t are drawn from the denominator of (17), which can
be chosen as f (θt|θt−1) (1). Thus, the weighted empirical
form of the posterior distribution (15) is preserved during
each Bayesian filtering update (Fig. 1), as is characteristic of a
global approximation. Successful implementation of the par-
ticle filter involves other considerations such as re-sampling,
appropriate choice of the importance function, etc. [9].

B. Marginalized Particle Filtering

The main advantage of importance sampling is its general-
ity. However, in cases where θt is high-dimensional, it may be
computationally prohibitive to generate the required particles,
θ
(i)
t . Furthermore, it is necessary to generate large numbers
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of such particles in these high-dimensional cases, in order to
achieve an acceptable error of approximation. These problems
can be overcome when the structure of the model (1) allows
analytical marginalization over a subset, θ1,t, of the full state
vector θ′t = [θ′1,t, θ

′
2,t] [9], [25]. Therefore, we consider the

factorization

f (Θt|Dt) = f (Θ1,t|Θ2,t, Dt) f (Θ2,t|Dt) , (18)

where f (Θ1,t|Θ2,t, Dt) is analytically tractable, while
f (Θ2,t|Dt) is not. We replace the latter by a weighted
empirical approximation, in analogy to (14), yielding

f (Θt|Dt) ≈
n∑
i=1

w
(i)
t f

(
Θ1,t|Θ(i)

2,t, Dt

)
δ
(

Θ2,t −Θ(i)
2,t

)
,

(19)

w
(i)
t ∝

f
(

Θ(i)
2,t|Dt

)
q
(

Θ(i)
2,t|Dt

) . (20)

Note that we now need to sample only from the space of θ2,t.
The weights can, once again, be evaluated recursively:

w
(i)
t ∝

f
(
dt|θ(i)2,t

)
f
(
θ
(i)
2,t|θ

(i)
2,t−1

)
q
(
θ
(i)
2,t|Θ

(i)
2,t−1, Dt

) w
(i)
t−1. (21)

From (19), we note that f (Θ1,t|Dt) is a mixture (convex
combination) of conditional Bayesian filters. Hence, the model
(1) must admit a partition,

[
θ′1,t, θ

′
2,t

]
, for which θ1,t−1 can be

integrated analytically in (2) and the resulting f (θ1,t|Θ2,t, Dt)
(3) is in the same form as for the previous step. The marginal-
ized particle filter (19–21) can then be evaluated exactly. This
requirement is always fulfilled if the model can be decomposed
into linear and nonlinear parts [25], and may even be possible
for a wider class of models [7]. Under these conditions, the
form of (19) is preserved under an exact Bayesian filtering
update (empirical in Θ2,t, mixture of functionally-invariant
conditional filters in Θ1,t), and is therefore a global approxi-
mation (Section I). (19)–(21) is sometimes referred to as the
Rao-Blackwellized particle filter [9].

C. Accelerating the Marginalized Particle Filter (MPF)

The mixture in (19) requires n parallel conditional Bayesian
filtering updates, i.e. sufficient statistics are required for each
particle trajectory Θ(i)

2,t, as displayed in Fig. 2 (left). This
is computationally inefficient if the particle trajectories are
similar. A Certainty Equivalence (CE) approach to reducing
the computational cost of the MPF was reported in [18].
The idea was to replace the n trajectories by their weighted
arithmetic mean, Θ̂2,t =

∑n
i=1 w

(i)
t Θ(i)

2,t, and perform a single
Bayesian filtering update (see Fig. 2 (right) for the implied
flow-of-control). This corresponds to replacing each of the n
conditional Bayesian filters in the mixture (19) by a single
component, as follows:

f
(

Θ1,t|Θ(i)
2,t, Dt

)
≈ f

(
Θ1,t|Θ̂2,t, Dt

)
, i = 1, . . . , n.

(22)

From (19):

f (Θt|Dt) ≈ f
(

Θ1,t|Θ̂2,t, Dt

) n∑
i=1

w
(i)
t δ

(
Θ2,t −Θ(i)

2,t

)
.

(23)

Note that this has a conditional independence structure, as
in (4). One step of particle filtering, using (23), will again
generate n components in Θ1,t, and so the proposed conflation
into one component is required after each update, as is
characteristic of a local approximation. In [18], this local
approximation was chosen heuristically, i.e. conditioning on
the weighted mean, Θ̂2,t, as explained above. Note that the
empirical form in Θ2,t is preserved during each update (see
Remark 4 to follow). The associated weights, w(i)

t , were
evaluated in [18] using a modified version of (21):

w
(i)
t ∝

f
(
dt|θ(i)1,t, θ

(i)
2,t

)
f
(
θ
(i)
2,t|θ

(i)
2,t−1

)
q
(
θ
(i)
2,t|Θ

(i)
2,t−1, Dt

) w
(i)
t−1. (24)

Here, θ(i)1,t are samples from f (θ1,t|θ2,t, Dt). The idea is
closely related to the mean-field approach [20], as noted in
[30]. A considerable extension is therefore possible using other
mean-field approximations, and, in particular, the Variational
Bayes approximation, introduced in Section II. In the next
Section, we will find that this leads to a principled approach to
the problem of concentrating the n components in the mixture
f (Θ1,t|Dt) (19) into a single component such as that achieved
in (23).

IV. VARIATIONAL BAYESIAN PARTICLE FILTERING

We now develop a local approximation of the posterior
distribution, f (θt|Dt) (3), via the VB approximation. To
achieve this, we once again partition the parameters into
θt =

[
θ′1,t, θ

′
2,t

]′
, such that

f̃ (θt−1|Dt−1) = f̃(θ1,t−1|Dt−1) f̃(θ2,t−1|Dt−1) . (25)

Here we have assumed that the VB approximation (4,6) has
been applied at the previous time step, t−1. In common with
the MPF (Section III), we assume that the following marginal
is available analytically:

f (θ1,t, θ2,t|θ2,t−1, Dt) ∝∫
f (dt|θt) f (θt|θt−1) f̃ (θ1,t−1|Dt−1) dθ1,t−1. (26)

We now apply the VB approximation as a local approximation
at time t, as follows:

f (θ1,t, θ2,t|θ2,t−1, Dt) ≈ f̃ (θ1,t, θ2,t|θ2,t−1, Dt) =

= f̃ (θ1,t|θ2,t−1, Dt) f̃ (θ2,t|θ2,t−1, Dt) . (27)

As before, the necessary VB-moments of both VB-marginals,
f̃ (θ1,t|θ2,t−1, Dt) and f̃ (θ2,t|θ2,t−1, Dt), must be available,
∀t. However, since the VB approximation is a free-form
optimization, as explained in Section II, one or both of
these VB-marginals may not be in standard form. Assuming,
therefore, that the VB-moments of f̃ (θ2,t|θ2,t−1, Dt) are not
available analytically, we now explore the variants of the VB
approximation introduced in Sections II-A and II-B.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. ?, NO. ?, NOVEMBER 2004 5

B

f(dt|θ1,t, θ(n)
2,t )

f(θ1,t|Θ(n)
2,t , Dt−1) f(θ1,t|Θ(n)

2,t , Dt)

B

f(dt|θ1,t, θ(1)2,t )

f(θ1,t|Θ(1)
2,t , Dt−1) f(θ1,t|Θ(1)

2,t , Dt)

B

f(dt|θ2,t)

fδ(θ2,t|Dt−1) fδ(θ2,t|Dt)

...
...

...
...

...
B

f̃(dt|θ1,t)

f(θ1,t|Dt−1)

B

f(dt|θ2,t)

fδ(θ2,t|Dt−1) fδ(θ2,t|Dt)

f̃(θ1,t|Dt)

Fig. 2. Left: operator diagram for the data-update step in marginalized particle filtering, involving n parallel particle-conditioned updates. The conditioning
on particles is represented by dotted arrows. Right: the restricted VB (i.e. RVB) particle filter (Section IV-B), involving a single substitution of VB-moments
(dotted arrows). Under the certainty equivalence (CE) approach (see Section III-C and Remark 5), only first-order moments are substituted.

A. VB Particle Filtering

Using the functionally-constrained VB approximation (Sec-
tion II-A), we project f̃ (θ2,t|θ2,t−1, Dt) into a (weighted)
empirical approximation,

f̂ (θ2,t|θ2,t−1, Dt) ≡

≡ fδ (θ2,t|θ2,t−1, Dt) =
n∑
i=1

ω
(i)
t δ

(
θ2,t − θ(i)2,t

)
, (28)

ω
(i)
t ∝

f̃
(
θ
(i)
2,t|θ2,t−1, Dt

)
q
(
θ
(i)
2,t|θ2,t−1, Dt

) , (29)

where θ(i)2,t ∼ q(·). The necessary VB-moments (8,10) of (28)
are now readily available:

Efδ(θ2,t|θ2,t−1,Dt) [h(θ2,t, θ2,t−1, Dt)] =

=
n∑
i=1

ω
(i)
t h

(
θ
(i)
2,t, θ2,t−1, Dt

)
. (30)

Note that the terms in (29) and (30) are conditioned on θ2,t−1.
The following adaptation of the IVB algorithm (Section 2) is
implied:

Algorithm 4.1 (VB Particle Filtering):

1. Draw samples θ(i)2,t from q
(
θ2,t|θ(i)2,t−1, Dt

)
.

2. Evaluate moments Ef̃(θ1,t|θ2,t−1,Dt)
[g(θ1,t, θ2,t−1, Dt)] ≡

ĝ(θ1,t), and generate

f̃ (θ2,t|θ2,t−1, Dt) ∝ exp
{
ĝ(θ1,t)h(θ2,t, θ2,t−1, Dt)

}
,

using (26)—written in separable form (7)—in (9).
3. Evaluate weights ω(i)

t using (29).
4. Evaluate moments Efδ(θ2,t|θ2,t−1,Dt) [h(θ2,t, θ2,t−1, Dt)] ≡

ĥ(θ2,t), using (30), and generate

f̃ (θ1,t|θ2,t−1, Dt) ∝ exp
{
g(θ1,t, θ2,t−1, Dt)ĥ(θ2,t)

}
,

using (26)—again written in separable form (7)—in (10).
5. If not converged, go to step 2.

6. Generate the empirical marginal, fδ (θ2,t|Dt), using sam-
ples θ

(i)
2,t from Step 1 and the following (marginal)

weights, calculated via Step 3:

w
(i)
t = ω

(i)
t w

(i)
t−1. (31)

7. Generate the following marginal via Steps 4 and 6:

f̃ (θ1,t|Dt) ∝ exp
(
Efδ(θ2,t−1|Dt−1) [g (θ1,t, θ2,t−1, Dt)

Efδ(θ2,t|θ2,t−1,Dt) [h(θ2,t, θ2,t−1, Dt)]
])
. (32)

Remark 2: The marginal (32) (Step 7) is required in
(26). Further computational savings may be achieved using
f̃ (θ1,t|Dt) as a functional constraint in (27); i.e.

f (θ1,t, θ2,t|θ2,t−1, Dt) ≈ f̃ (θ1,t|Dt) f̃ (θ2,t|θ2,t−1, Dt) ,

eliminating the need for Step 7.
Remark 3: VB particle filtering (Algorithm 4.1) imposes

no modelling assumptions beyond those of the marginalized
particle filter (19)–(21), namely the requirement for analytical
marginalization over a subset, θ1,t−1 (26). The approximated
distribution (27) therefore depends in general on the remaining
(non-analytical) parameters, θ2,t−1. In this way, the empirical
approximation (28) involves a complete particle filtering up-
date, with re-sampling, generating particle trajectories, Θ(i)

2,t.
The joint posterior distribution is generated at each time by
moment-swapping (IVB cycles, Algorithm 2.1) between this
particle filter and the VB-marginal in θ1,t (Step 4).

A related algorithm for tracking—known as variational
sequential estimation—was introduced in [32], but there the
model imposed independence assumptions which avoided the
intractable marginalization over θ2,t−1. Sampling was used
only for moment evaluation in these parameters, without any
relation to the previous samples, leaving the advantages of
sequential sampling (such as re-sampling) unused. From a
practical point-of-view, VB particle filtering (Algorithm 4.1) is
applicable to a wider class of models, including models with
non-linear transformations, such as the one in Section IV-C,
to follow.

Remark 4: The VB approximation acts as a local approxi-
mation only in respect of θ1,t, serving to conflate the n com-
ponents of the mixture in (19) into a single component (32) at
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each step. From (27) and (32), we note that neither the particle
trajectories, Θ(i)

2,t (19), nor associated sufficient statistics, need
to be stored. However, an empirical approximation for θ2,t (28)
is generated at each update of the procedure, consistent with
a global approximation (Section I). In this sense, VB particle
filtering is a semi-global approximation.

B. Restricted VB (RVB) Particle Filtering

In cases where the un-normalized analytical marginal,
f (θ2,t|θ2,t−1, Dt), from (26), can be evaluated pointwise, we
can replace f̃

(
θ
(i)
2,t|θ2,t−1, Dt

)
by f

(
θ
(i)
2,t|θ2,t−1, Dt

)
in (29),

giving

ω
(i)
t ∝

f
(
θ
(i)
2,t|θ2,t−1, Dt

)
q
(
θ
(i)
2,t|θ2,t−1, Dt

) . (33)

Hence, IVB iterations are avoided, as is characteristic of
any RVB approximation (Section II-B). The following non-
iterative algorithm is implied.

Algorithm 4.2 (RVB Particle Filtering):

1. Draw samples θ(i)2,t from q
(
θ2,t|θ(i)2,t−1, Dt

)
.

2. Evaluate weights ω(i)
t using (33).

3. Evaluate moments Efδ(θ2,t|θ2,t−1,Dt) [h(θ2,t, θ2,t−1, Dt)]
using (30).

4. Generate f̃ (θ1,t|Dt), using (32), and fδ(θ2,t|Dt), using
(31).

Remark 5: In these VB scenarios, the n particles in (19)
have been concentrated into f̃ (θ1|θ2,t−1, Dt) via (30) and
(10), eliminating the need for n parallel Bayesian filtering
steps, as illustrated in Fig. 2 (right). Note that (23), as proposed
in [18], is a special case of RVB particle filtering above,
assuming that (i) the weights, w(i)

t , are fixed via (24), and
(ii) fδ(θ2,t|·) is further constrained to the CE approximation,
δ(θ2,t − θ̂2,t), where θ̂2,t =

∑n
i=1 w

(i)
t θ

(i)
2,t.

The general case of RVB particle filtering (Algorithm 4.2)
therefore generalizes the CE approach by exploiting higher-
order moments of the empirical approximation (30). The
necessary VB-moments are, once again, those implied by the
free-form nature of the VB approximation [29].

C. Illustrative Example: Gaussian model with nonlinear sub-
state

We consider the following state-space model for multi-
variate observations, dt, conditioned on multivariate hidden
variables, xt. It is similar to the model examined in [18]:

f (dt|xt, Ct) = N (C ′txt, R) ,
f (xt|xt−1) = N (Axt−1, Q) ,

f (ci,j,t|ci,j,t−1) = U (γ(ci,j,t−1), 1 + γ(ci,j,t−1)) ,∀i, j,
(34)

γ(ci,j,t) = 2 + arctan (ci,j,t − 2) .

Here, matrices R, A and Q are assumed to be known, and ci,j,t
denotes the element (i, j) of unknown time-variant matrix,
Ct. Essentially, this is a standard linear-Gaussian model with

unknown time-variant Ct, for which a non-linear evolution
model is defined. The full set of state variables is therefore
θt = {xt, Ct} (18). U(·, ·) denotes the rectangular distribution
on the indicated semi-closed interval.

Integration over xt−1 is possible using standard Kalman Fil-
tering (KF) theory, yielding the following conditional filtering
distribution for xt:

f (xt|Ct, Dt) = N
(
µt,Ω−1

t

)
, (35)

Ωt =
(
Q+AΩ−1

t−1A
′)−1

+ CtR
−1C ′t, (36)

µt = Ω−1
t

[(
Q+AΩ−1

t−1A
′)−1

Aµt−1 + CtR
−1dt

]
.

This is written in terms of precision matrix Ωt for analytical
convenience. Exact integration over Ct−1 is intractable. A
marginalized particle filter (MPF) (Section III-B) is obtained
using (19)–(21).

1) VB Particle Filtering: The required distribution (26),
i.e. f (xt, Ct|Ct−1, Dt), is obtained by multiplying (35) by
(34). Application of the VB theorem (Section II) yields the
following VB-marginals:

f̃ (xt|Ct−1, Dt) = N
(
µ̃t, Ω̃−1

t

)
, (37)

f̃ (Ct|Ct−1, Dt) ∝ N
(
C̃t, I ⊗ Σ̃t

)
|Ωt(Ct)|

1
2 . (38)

The support of (38) is restricted to that of (34). I is the
identity matrix of appropriate dimensions, ⊗ is the Kronecker
product, Ωt(Ct) is defined by (36), with the dependence on Ct
now shown explicitly, and | · | denotes the matrix determinant.
The dependence on the latter causes (38) to be intractable
(for example, its normalizing constant and moments are not
available in closed form). The shaping parameters of the
distributions (37,38) are

Ω̃t =
(
Q+AΩ̃−1

t−1A
′
)−1

+ E
[
CtR

−1C ′t
]
, (39)

µ̃t = Ω̃−1
t

[(
Q+AΩ̃−1

t−1A
′
)−1

Aµ̃t−1 + ĈtR
−1dt

]
,

Σ̃t =
(
R−1x̂tx′t

)−1

,

C̃t = Σ̃t
(
R−1dtx̂t

′) . (40)

Ĉt and E
[
CtR

−1C ′t
]

are the first and second moments, re-
spectively, of the empirical approximation, fδ (Ct|Ct−1, Dt),
evaluated via (28,29), while x̂t and x̂tx′t are the first and
second moments of the tractable VB-marginal (37).

Remark 6: Under RVB particle filtering (Section II-B), the
weights are evaluated via (33) rather than via (29). In order to
study the influence of higher-order moments, we also consider
a certainty equivalent restriction in the RVB scheme (RVB-
CE), such that E

[
CtR

−1C ′t
]

in (39) is replaced by ĈtR−1Ĉt
′
.

This replacement yields the same form of Kalman filter as was
used in [18].

2) Simulation study: The system (34) was simulated with
dt and xt each in R2, Ct ∈ R2×2, and the following



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. ?, NO. ?, NOVEMBER 2004 7

2 4 6 8 10 12 14
2.6

2.8

3

3.2

3.4

3.6

3.8

4
Mean Square Error

Number of Particles

M
S

E

CE
RVB−CE
RVB
MPF

20 40 60 80 100
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
Mean Square Error

Number of Particles

M
S

E

CE
RVB−CE
RVB
MPF

Fig. 3. Comparative MSE performance of the marginalized particle filter (MPF) and Restricted VB variants (RVB, RVB-CE, CE) for state estimation in the
model (34). For each setting (i.e. number of particles), 100 Monte Carlo trials were undertaken.

parameters and initialization:

A =
[

1 −0.5
1 0

]
, Q = 0.5I2, R = 0.5I2,

C0 =
[

1 1
1 1

]
, x0 =

[
1
1

]
,

C
(i)
0 = C0, x

(i)
0 = x0, ∀i = 1, . . . , n.

We use the same proposal density, q (Ct|Ct−1) ≡ f(Ct|Ct−1)
(34), and the residual re-sampling scheme [16] for all tested
methods. The aim is to illustrate the effect of the propagation
of higher moments (30,39) within the VB particle filtering
schemes. The performance was assessed via the following
Mean Square Error (MSE) of the state estimate:

MSE =
1
tu

tu∑
t=1

[
||xt − x̂t||2 + ||Ct − Ĉt||2

]
.

Here, tu is the total number of data, dt, used in the simulation,
xt is the simulated trajectory of the linear sub-state, and
x̂t = µ̃t is the mean of the VB-marginal, f̃ (xt|Ct−1, Dt) (37).
Similarly, Ct is the simulated trajectory of the nonlinear sub-
state, and Ĉt is its posterior mean, evaluated via each of the
following four distributional approximations: MPF: marginal-
ized particle filter (19)–(21); RVB: restricted VB approxima-
tion, evaluating the second-order moments in (39) via (30,33);
RVB-CE: further approximation of the previous method, via
the certainty-equivalent replacement of the second moment
(Remark 6); and CE: the method presented in [18], using
certainty equivalence and sampling from f

(
xt|x(i)

t−1, Ct, Dt

)
(23,24). Results of a Monte Carlo study with tu = 100, using
100 runs per setting, and for a varying number of particles, n,
are displayed in Fig. 3.

All of the RVB (mean-field) methods, i.e. RVB, RVB-CE
and CE, perform comparably to the MPF when the number

of particles is low (Fig. 3, left). However, with an increasing
number of particles, the performance of the MPF improves
significantly, while that of all RVB methods improves far more
slowly (Fig. 3, right). The clear performance improvement of
RVB over the CE variants (RVB-CE and CE) in all cases
is due to the propagation of second-order moments in (39).
The RVB methods are approximately twice as fast as the
MPF with the same number of particles. Hence, RVB particle
filtering (Section IV-B) is recommended in cases where only
a small number of particles can be computed. These cases
arise in computationally constrained environments, such as in
embedded devices.

V. LOCAL VARIATIONAL BAYESIAN FILTERING

The semi-global approach introduced in Section IV is
only possible in cases where analytical integration over some
subset, θ1,t−1, is tractable (26) (i.e. the time update step (2) is
tractable in θ1,t). This is not the case for many models (Sec-
tion I), and so we investigate the rôle of the VB approximation
as a local approximation, replacing the exact marginalization
in the time-update of Bayesian filtering (2) with a VB-marginal
(6). Formally, we impose conditional independence between θt
and θt−1:

f̃ (θt, θt−1|Dt) = f̃(θt|Dt) f̃(θt−1|Dt) . (41)

The joint distribution needed in (6) is

f (dt, θt, θt−1|Dt−1) = f (dt|θt) f (θt|θt−1) f̃ (θt−1|Dt−1) .
(42)

Application of Theorem 1 to (42) yields VB-marginals in the
form of two parallel Bayes’ rule updates:

f̃ (θt|Dt) ∝ f (dt|θt) f̃ (θt|Dt−1) , (43)

f̃ (θt−1|Dt) ∝ f̃ (dt|θt−1) f̃ (θt−1|Dt−1) . (44)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. ?, NO. ?, NOVEMBER 2004 8

The following approximate distributions are involved:

f̃ (θt|Dt−1) ∝ exp
{

Ef̃(θt−1|Dt) [ln f (θt|θt−1)]
}
, (45)

f̃ (dt|θt−1) ∝ exp
{

Ef̃(θt|Dt) [ln f (θt|θt−1)]
}
. (46)

The resulting iterative scheme, involving two VB-moment
substitutions (dotted arrows), and two Bayes’ rule updates,
is illustrated in Fig. 4 (left). From (45), we note that the
functional form of f̃ (θt|Dt−1) is determined by the form
of the time-invariant parameter evolution model f (θt|θt−1).
Therefore, notwithstanding the fact that VB is a free-form
approximation (Section I), the same functional form is recov-
ered at each time, t, via (43). Thus, a constant computational
cost is incurred per time step. This important property of the
approximation scheme is known as VB-conjugacy [29].

A. Restricted Variational Bayes (RVB) Filtering

Once again, the functional forms of the free-form optimiza-
tion (Theorem 1) may be intractable. In particular, f̃ (θt−1|Dt)
in (44), which is the result of two Bayes’ rule updates, may be
intractable. An obvious restriction (Section II-B) is to replace
it by the fixed VB-filtering distribution from the previous step
(43):

f (θt−1|Dt) ≡ f̃ (θt−1|Dt−1) . (47)

The resulting VB-marginal of θt has the same form as (43),
but the expectations in (45) are now taken with respect
to f̃ (θt−1|Dt−1) instead of f̃ (θt−1|Dt). IVB iterations are
therefore avoided, as illustrated in Fig. 4 (right).

B. Illustrative Example: Classification with a Hidden Markov
Model (HMM)

Off-line variational inference methods for the HMM have
been known for a long time [17], [12]. Since the HMM
satisfies the extended exponential family (EEF) assumptions
referred to in Remark 1, its combination with other EEF mem-
bers in a Bayesian network is straightforward [10]. Recently,
off-line variational inference for a mixture of HMMs was
reported [22]. In these off-line contexts, both the hidden field
and the time-invariant transition matrix are inferred by iterative
forward and backward passes through the data.

In the on-line context of this paper, the backward pass is
replaced by the time update step, involving integration over
θt−1 (Fig. 1). In the example which now follows, we extend
the HMM model to allow a time-variant transition matrix
modelled as a Dirichlet random-walk. As we will see, this
induces an analytically intractable VB-marginal, motivating
the use of the functionally-constrained and restricted VB
variants outlined in Section II.

Consider a HMM with the following two constituents:
(i) a first-order Markov chain on the unobserved discrete
variable lt (the class label), with c possible states (classes);
and (ii) a set of c known class-conditional observation models,
as arises in classification. For analytical convenience, we
denote each state of lt by a c-dimensional elementary basis
vector εc (i) = [δ (i− 1) , δ (i− 2) , . . . , δ (i− c)]′; i.e. lt ∈

{εc (1) , . . . , εc (c)}. The probability of transition from the jth
to the ith state, 1 ≤ i, j ≤ c, is

Pr (lt = εc (i) |lt−1 = εc (j)) = ti,j,t,

where 0 < ti,j,t < 1, i, j ∈ [1, . . . , c]. These are aggregated
into the transition probability matrix, Tt, such that the column
sums are unity (stochastic matrix). Tt is modelled as a random
walk process, i.e. the expected value of Tt at time t is set
to Tt−1. The following Bayesian filtering model is consistent
with the assumptions above:

f(Tt|Tt−1) =Di (κTt−1) , (48)
f(lt|lt−1, Tt) =Mu (Ttlt−1) , (49)

f(dt|lt) =f1 (dt)
l1,t × . . .× fc (dt)

lc,t . (50)

Here, Mu (·) denotes the multinomial distribution, and Di (·)
denotes the Dirichlet distribution [29], with T̂t = Tt−1. The
scalar parameter κ is a concentration (precision) parameter
controlling the dependence between Tt−1 and Tt. For high
values of κ, only slow evolution of Tt is possible, while low
values of κ allow faster variations of Tt. fi(dt) denotes the
ith known class-conditional pdf, i = 1, . . . , c.

1) Local VB Filtering: The problem of inferring the state,
{lt, Tt}, can be formalized via Bayesian filtering (1–3), the
exact solution of which is computationally intractable. Instead,
we will apply the local VB filtering scheme (43–46) to this
problem. Furthermore, we will enforce conditional indepen-
dence of the kind f(lt, Tt|Dt) ≈ f̃(lt|Dt)f̃(Tt|Dt).

The log of the parameter evolution model (48,49) is

ln f (lt, Tt|lt−1, Tt−1) ∝ tr (ln(Tt)′(κTt−1 − 1c,c)) +

+ l′t ln(Tt)lt−1 −
c∑
i=1

c∑
j=1

ln Γ (κti,j,t−1) , (51)

where 1 denotes a matrix of ones, of the stated dimensions.
Under the assignment

λt ≡ [ln f1(dt), ln f2(dt), . . . , ln fc(dt)]′, (52)

the observation model (50) can be rewritten as follows:

f (dt|lt) = exp (λ′tlt) . (53)

The approximate distributions, (45) and (46), are obtained by
taking expectations of (51). Substituting the results into (43)
and (44) respectively, together with (53), the resulting VB-
marginals are

f̃ (lt|Dt) =Mu (αt) , f̃ (Tt|Dt) = Di (Qt) , (54)

f̃ (lt−1|Dt) =Mu (βt) , f̃ (Tt−1|Dt) ∝ exp (φ (Tt−1)) ,

involving shaping parameters, αt, Qt and βt, and nonlinear
function, φ (Tt−1), as follows:

αt = exp
(
λt + ̂lnTt l̂t−1

)
, Qt = κT̂t−1 + l̂t l̂t−1, (55)

βt = αt−1 ◦ exp
(̂lnTt′ l̂t) ,

φ(Tt−1) = tr
(
κ̂lnTt′(Tt−1 − 1c,c)

)
−

c∑
i=1

c∑
j=1

ln Γ (κti,j,t−1) .
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Fig. 4. Variational Bayesian filtering as a local approximation for Bayesian filtering. VB-moment substitutions are indicated by dotted arrows. Propagation
of distributions between VB filtering steps is indicated by dashed arrows. Left: the full algorithm. Right: the Restricted VB (RVB) algorithm.

‘◦’ above denotes the Hadamard product. The necessary VB-
moments in (55) are

l̂t ∝ αt, l̂t−1 ∝ βt, (56)
̂ln (ti,j,t) = ψ (qi,j,t)− ψ

(
1′c,1Qt1c,1

)
. (57)

The elements of both moments in (56) are probabilities, and
so their sum in each case is unity, determining the constants of
proportionality. ̂ln (ti,j,t) is the (i, j)th element of matrix ̂lnTt.
ψ (·) is the digamma (psi) function [1], and qi,j,t is the (i, j)th
element of Qt. Since φ (Tt−1) is a nonlinear function of its
argument, no standard form for f̃ (Tt−1|Dt) can be found, and
so the VB-moment, T̂t−1, requires numerical integration. To
avoid this, we make the RVB fixed distributional assignment
(47), which is Dirichlet (54):

f (Tt−1|Dt) ≡ f̃ (Tt−1|Dt−1) = DiTt−1(Qt−1). (58)

Furthermore, evaluation of the digamma function in the
nonlinear moment, ̂lnTt (57), is computationally expensive.
Significant savings are achieved by invoking the following
functional constraint (11):

f̂(Tt|Dt) = δ(Tt − T̂t). (59)

Here, T̂t is the (analytical) mode of the VB-marginal in (54).
In this case, ̂lnTt in (55) is replaced by ln T̂t, which is
computationally cheaper. This is equivalent to application of
the EM algorithm (Section II-A).

2) Simulation study: A comparative Monte Carlo (MC)
study was performed for binary classification (c = 2) of
conditionally beta-distributed scalar observations:

f (dt|lt) = B(l1,t + 1, l2,t + 1). (60)

dt is therefore a probability with d̂t ∈ {1, 0}. Hence, (48), (49)
and (60) model a sequence of soft-bits exhibiting a Markov
chain dependence.

For each setting of the following inference methods, 100
runs were performed: MPF: marginalized particle filtering,
(19)–(21), using the parameter evolution model (51) as the
importance function, q(·), and using residual re-sampling [16];
VB: local VB filtering (54) with numerical evaluation of T̂t−1

on a grid of 50×50 points; EM: functionally-constrained VB-
marginal (59); RVB: restricted VB-marginal (58); Threshold:
lt is inferred heuristically from the soft-bits by thresholding:

l̂t = [l̂1,t, l̂2,t]′, l̂1,t = round (dt) =

{
1 if dt > 0.5,
0 if dt ≤ 0.5.

(61)

This constitutes Maximum Likelihood (ML) estimation of lt,
ignoring the Markov chain model for lt (49). For each method,
performance was measured by the Mean Square Error (MSE)
between the simulated and estimated labels, with tu = 1000
(Section IV-C2).

The MPF has as a ‘tuning knob’ the number of particles,
and the EM and VB approximations have the number of
IVB iterations as a tuning knob. The computational cost of
all the methods increases linearly with these tuning knobs.
The performance of each inference algorithm as a function
of execution time in Matlab (using a 1.7 GHz Intel Centrino
processor) is plotted in Fig. 5. RVB and Thresholding have
no tuning knob and their execution times are small (see left
of each frame in Fig. 5).

The performance of VB and EM does not improve when the
number of iterations is greater than five, but the performance of
MPF steadily improves with an increasing number of particles,
as is typical of these global stochastic approximations. For n >
15 particles, it outperforms all its competitors. This underlines
the superiority of global approximations such as MPF, but it is
achieved at ever-increasing computational cost. For example,
we note that VB out-performs MPF in these simulations if the
execution time is held below 3.5 secs. This emphasizes once
again the fact that VB-based approximations are particularly
attractive in contexts demanding low computational cost.

We note in this example that each additional constraint or
restriction imposed on the VB scheme resulted in loss of
performance. The performance degradation was less when the
higher-order moment (57) was removed via the EM functional
constraint (59), than when the RVB restriction was imposed
(58). Note that the performances of all the methods greatly
improve, and converge, for higher κ (i.e. slower variations in
Tt).

VI. DISCUSSION

An important feature of the VB approximation revealed in
this work is its free-form nature. The optimal approximation
is found by a principled substitution of the necessary VB-
moments into the model (6). Hence, the functional form of
the approximation is deduced rather than imposed. This reveals
possibilities beyond the standard Gaussian approximations that
underlie many of the deterministic approximation methods
for Bayesian filtering. New algorithmic flows of control are
implied. Thus, for example, we have seen that the VB approx-
imation generalizes the EM algorithm by taking into account
higher-order moments. When the free-form optimizers are
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Fig. 5. Comparative Monte Carlo study (100 trials per setting) of MSE performance for the marginalized particle filter (MPF), VB, EM and RVB approximations
for estimation of lt in the HMM model (49). Performance is plotted against execution time in Matlab. ’×’ denotes an increment by one in the number of
particles in the MPF; ’*’ and ’�’ denote an increment by one in the number of iterations of the EM or VB algorithms respectively. Both RVB and the heuristic
thresholding method have a small, invariant execution time (see left of each frame).

intractable, as occurred in all examples in this paper, functional
constraints and/or restrictions to tractable forms have been
shown to be practicable means to proceed.

The underlying principle of the VB approximation is to
force conditional independence between subsets of the model
parameters. Clearly the VB approximation will not perform
well in cases where there exists strong correlation between
these subsets [29], [33], and so great care must be taken by
the designer in choosing where to impose this conditional
independence. The choice should be made in an effort to
achieve tractability. Further unnecessary partitioning of the
parameter set decreases the quality of approximation, as
demonstrated in [11]. Furthermore, it may be possible to re-
parameterize the model so that the conditional independence
assumption is more appropriate in the transformed parameters.
A proposal for future work is to find parameter transformations
(via parameter orthogonalization techniques [6] for instance)
for which approximate conditional independence is exhibited,
and to apply the VB approximation to this natural partition.

Note that the VB approximation is an example of a mean-
field approximation, being known as the naïve mean-field ap-
proximation in statistical physics [20]. Less severe functional
constraints than the conditional independence assumption (4)
underlying VB—such as TAP equations [19])—can be accom-
modated within a fuller mean-field theory. These merit further
research as a basis for developing novel flows of control in
signal processing.

VII. CONCLUSION

Stochastic approximations such as particle filtering are the
golden standard in Bayesian filtering, but variants need to
be considered in some on-line signal processing contexts
in order to reduce the implied computational cost. On the
evidence of this paper, the VB approximation has an important
rôle to play in this area. Indeed, we have shown that the
certainty equivalence approach is a variant of VB filtering.
In this paper, a wider range of choices has been revealed,
allowing a trade-off between accuracy of approximation and

speed. The particular features of VB filtering are (i) utilization
of higher-order moments, and (ii) iterative solution of the
implicit equations to reach the optimal approximation. When
combined with particle filtering (Section IV), we found that
the higher-order moments can improve performance over
certainty equivalence in situations where a small number
of particles is necessitated. When used as a deterministic
local approximation (Section V), the iterative scheme using
certainty equivalence (such as the EM algorithm) improved on
non-iterative certainty equivalence approaches. Furthermore,
iterations involving higher-order moments yielded even better
performance in the HMM example. These properties need to
be investigated for broader classes of models. Clearly there is a
strong motivation for exploring the VB approximation and its
variants in Bayesian filtering, particularly in computationally-
constrained environments.
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[18] F. Mustière, M. Bolić, and M. Bouchard, “A modified Rao-Blackwellised
particle filter,” in Proceedings of the IEEE conference on Acoustics,
Speech, and Signal Processing, Toulouse, France, 2006.

[19] M. Opper and D. Saad, Advanced Mean Field Methods: Theory and
Practice. Cambridge, Massachusetts: The MIT Press, 2001.

[20] M. Opper and O. Winther, “From naive mean field theory to the TAP
equations,” in Advanced Mean Field Methods, M. Opper and D. Saad,
Eds. The MIT Press, 2001.

[21] V. Peterka, “Bayesian approach to system identification,” in Trends and
Progress in System identification, P. Eykhoff, Ed. Oxford: Pergamon
Press, 1981, pp. 239–304.

[22] Y. Qi, J. Paisley, and L. Carin, “Music Analysis Using Hidden Markov
Mixture Models,” IEEE Transactions on Signal Processing, vol. 55,
no. 11, pp. 5209–5224, 2007.

[23] S. J. Roberts and W. D. Penny, “Variational Bayes for generalized au-
toregressive models,” IEEE Transactions on Signal Processing, vol. 50,
no. 9, pp. 2245–2257, 2002.

[24] M. Sato, “Online model selection based on the variational Bayes,”
Neural Computation, vol. 13, pp. 1649–1681, 2001.

[25] T. Schön, F. Gustafsson, and P.-J. Nordlund, “Marginalized particle
filters for mixed linear/nonlinear state-space models,” IEEE Transactions
on Signal Processing, vol. 53, pp. 2279–2289, 2002.

[26] M. Šimandl, J. Královec, and T. Söderström, “Advanced point-mass
method for nonlinear state stimation,” Automatica, vol. 42, pp. 1133–
1145, 2006.

[27] M. Šimandl and O. Straka, “Application of the EM algorithm in
Gausssian sums methods,” University of West Bohemia, Tech. Rep.,
2000.

[28] V. Šmídl and A. Quinn, “Mixture-based extension of the AR model
and its recursive Bayesian identification,” IEEE Transactions on Signal
Processing, vol. 53, no. 9, pp. 3530–3542, 2005. [Online]. Available:
files/publ/tsp05.pdf

[29] ——, The Variational Bayes Method in Sig-
nal Processing. Springer, 2005. [Online]. Avail-
able: http://www.springer.com/east/home/engineering?SGWID=5-175-
22-70903497-0

[30] ——, “The restricted variational Bayes approximation in Bayesian
filtering,” in Proceedings of the IEEE nonlinear statistical signal
processing workshop, Cambridge, UK, 2006. [Online]. Available:
files/publ/camb06.pdf

[31] H. Sorenson, “On development of practical nonlinear filters,” Informa-
tion Sciences, vol. 7, pp. 253–270, 1974.

[32] J. Vermaak, N. Lawrence, and P. Perez, “Variational inference for visual
tracking,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, vol. 1, 2003, pp. 773–780.

[33] B. Wang and D. Titterington, “Lack of consistency of mean field
and variational Bayes approximations for state space models,” Neural
Processing Letters, vol. 20, pp. 151–170, 2004.

[34] J. Winn and C. Bishop, “Variational message passing,” The Journal of
Machine Learning Research, vol. 6, pp. 661–694, 2005.


