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Abstract: The paper deals with a factorized version of Kalman filter. Via factorization of a state-space
model such the filter provides the state estimates of individual state vector entries in the factorized

form and allows to update them entry-wise.

The paper continues a series of research in the field of

the factorized filtering and proposes the novel modified algorithm, including the simultaneous entry-wise
organized fulfillment of data and time updating steps. A motivation of the research is a preparation of the
universal algorithm for the joint filtering of variables of a mixed (continuous and discrete-valued) type.
The illustrative example and comparison of computational complexity with other versions of Kalman

filtering are presented.
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1 Introduction

The paper deals with Kalman filter [1], organized
in an entry-wise way. The entry-wise updating of
the posterior state estimates is reached with the
help of a special factorization of covariance matri-
ces. To enable the proposed entry-wise updating,
a modified algorithm of the factorized Kalman
filtering has been evolved. This modification as-
sumes the simultaneous fulfillment of the data and
time updating steps for a system, whose state and
output are described by the joint probability den-
sity function (pdf). The proposed filter provides
the estimates of the state vector entries in the
factorized form and allows to update them entry-
wise.

A general motivation of the research in the
field of the entry-wise filtering is a preparation of
a technique of the joint estimation of the mixed-
type (continuous and discrete-valued) data. The
target application of the research is the traffic con-
trol systems, using state-space models. The state-
space models with a car queue length as the main
state variable have made a good showing. How-
ever, some of the state variables are of discrete-
valued nature (signal lights, level of service, visi-
bility, road surface, etc). Their involvement calls
for the algorithm, which enables the joint filtering
of the mixed-type data. The entry-wise Kalman
filtering is a potential solution of this task. Due
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to the entry-wise updating the involvement of the
discrete-valued variables is seen optimistically.

The state of the art of the problem is as
follows. Most works [2, 3] found in the field
are devoted to the factorized implementations of
Kalman filtering. The factorization of covariance
matrices is also used in problems of systems classi-
fication, dealing with multivariate Gaussian ran-
dom field [4]. However, the global aim of the
mentioned works is, primarily, reduction of the
computational complexity via a lesser rank of the
covariance matrix. Exploitation of matrix factor-
ization to approach the entry-wise filtering under
Bayesian methodology [5] was proposed in [6] with
a reduced form of the state-space model. The pa-
per [7] removed this restriction and proposed the
solution of factorized Bayesian prediction and fil-
tering, based on applying the chain rule to the sin-
gle output state-space model. The work [8] offered
the version of factorized Kalman filtering with
Gaussian models, which was based on the L'DL
decomposition of the covariance matrices. The
paper [9] expanded the line with L' D L-factorized
covariance matrices and demonstrated the appli-
cation of the solution to the traffic-control area.
However, the mentioned works had problems with
preserving of the distribution form of state entries
and consequently with the entry-wise updating.
The present paper proposes the novel algorithm
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with LDL'-factorized covariance matrices and si-
multaneous data and time updating of the poste-
rior state entry estimates. The entry-wise algo-
rithm is verified and implemented without high
computational complexity.

The layout of the paper is as follows. Sec-
tion 2 is devoted to basic facts about Bayesian
and Kalman filtering and used models. Section
3 provides a general derivation of Kalman filter
with simultaneous data and time updating and
presents the algorithm of its factorized version.
The algorithm verification, examples and compar-
ison of a level of computational complexity of dif-
ferent implementations of Kalman filter are shown
in Section 4. Remarks and plans of future work
in Section 5 close the paper.

2 Preliminaries

2.1 Models

The system is described by the joint probability
density function (pdf)

(1)

where x; is the unobservable system state at dis-
crete time moments ¢t € t* = {0,...,t}, where t
is the cardinality of the set t*, = means equiva-
lence, and y; and u; are the system output and
input respectively. In the case of Gaussian state-
space model, the pdf (1) includes the state evolu-
tion model (2) and observation model (3)

f(xtvyt|xtflaut)7

Az + Bug + wy,
Cxi_1+ Hup + vy,

(2)
(3)

where [A, C] and [B, H] are known joint matrices
of appropriate dimensions; w; is a process (Gaus-
sian) noise with zero mean and known covariance
matrix R,; v; is a measurement (Gaussian) noise
with zero mean and known covariance matrix R,.

Ty =

Yy =

2.2 Factorization by the chain rule

The joint pdf (1) can be decomposed, according
to the chain rule [10], into the following factorized
form.

x
H f(xi;t\xiﬂza":;t, Ut, Tt—1, yt)a (4)

i=1
X Hf(yj;t‘yj+1:y°;taUtawt—1>a
j=1

where & and g are numbers of entries of respective
(column) vectors, i = {1,...,2}, j = {1,...,9},

ISSN: 1790-2769

247

flad?)

and such a notation as x;;1.;,; denotes a sequence

{$i+1;t, L2ty ++« s ﬂCa%;t}-

2.3 Bayesian filtering

Bayesian filtering [10] includes two coupled for-

mulae.
/f l’t|ut,9€t 1

:rt 1|dt 1)d.%'t 1
fye|ue, ze) f ($t|utadt71)v (6)

fladue,d ™) =

()

X

flad ")

where o« means proportionality, and data are de-
fined as d ' = (do,...,d;), di = (y,us). Relation
(5) represents the time updating of the state esti-
mate, while (6) — the data updating. The applica-
tion of (5) and (6) to Gaussian state-space model
with Gaussian prior distribution and Gaussian ob-
servations provides Kalman filter.

3 Factorized Kalman Filtering
with Simultaneous Data and
Time Updating

3.1 Simultaneous Data and Time Up-
dating

In general, the data updating (6) is obtained
from Bayes rule [10]. Let the pdfs on the
right side of (6) be written as a single joint
pdf f(y, x¢|us,d ©=1).  Using the operation of
marginalization and the model (1), one obtains
the expression of filtering with relations (5) and
(6) to be fulfilled simultaneously (proof is avail-
able in [11]).

fladd?) o / £ (@, e, 2e1) f (20— ]d V) dey.

(7)
Substitution of (4) in (7) and decomposition of the
initial state according to the chain rule provide
the following factorized form of (7).

Z
/H wz;t‘xiJrl:i;t;utaxt—layt)v(g)

Y
X H yjt|y]+1yt7ut7xt 1)
Jj=1

1)d$t_1.

X

x
H f(@it—1|Tir1g—1,d T
=1
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A presence of vector z;_; in all pdfs in (8) means
involvement of all entries of the respective vector
in integration. Such a notation is used only for
shortening of the equation.

3.2 Algorithm of Factorized Kalman
Filtering

The entry-wise updating assumed in (8) and pre-
serving of the factorized form (4) of the posterior
state estimate f(x¢|d ') = [T, f(zit|wit1a4,d *)
can be reached via LDL' decomposition [5] of the
precision (i.e. inverse covariance) matrices. Such
the decomposition supposes L to be a lower tri-
angular matrix with unit diagonal and D to be a
diagonal one. This kind of matrix decomposition
is used throughout the paper.

The key moments of the entry-wise organized
Kalman filter (8), applied to Gaussian models (2-
3) are as follows.

3.2.1 Factorization of State Evolution
Model

Gaussian state evolution model (2) is factorized in
the following way. The process noise covariance
matrix Ry, is inverted into a precision matrix and
decomposed so that

R,} = LuDyL, . (9)

The factorized form of the model (2) becomes now

[Lw/ﬁt_zt_Ext—l]/Dw[Lw/SUt —Zt—EIt_l], (10)
where

2t = Lw'But, (11)

= Ly A. (12)

Gaussian distribution of an individual state entry
has the following form.

Z Lw kiLk;t + Z—‘zlwlt 1, —)

k—it1 w i

(13)
where Ly.1;, 24 and D,,; are the elements of ma-
trices Ly, = and D,, respectively.

Zzt

3.2.2 Factorization of Observation Model

Factorization of Gaussian observation model (3)
is fulfilled similarly. The measurement noise co-
variance matrix R, is inverted into the precision
matrix and decomposed so that

R,' = L,D,L/, (14)
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The factorized form of the model (3) is as follows.

[Lv/yt_ —A$t—1]/Dv[Lv/yt— _-Al't—l]a (15)
where
Pt = Ly Huy, (16)
A L, C. (17)

Gaussian distribution of an individual output en-
try takes the form

Z Luk]ykt-i-zflﬂxlt LD =)

(18)
where L., Ay and D,.;; are the elements of
matrices L, A and D, respectively.

y]t

3.2.3 Initial State Factorization

The initial state Gaussian  distribution
f@e—ald 1)~ N(p—1,Pi—1), where pe_y
is a known vector of mean values and P;_1 is a
known covariance matrix, is also factorized in
the similar way. Decomposition of the precision
matrix is done so that

Pt_—ll = Lpltlepltfleltfll' (19)
The factorized form of the initial state looks like
[Lplt—llxt—l - M{—l]/Dp|t—l[Lp|t—1/xt—1 - ,u,{_l],
(20)
with
,U«w{—l = Lp|t—1/,ut—1- (21)

Via (19) the initial state entries have the following
factorized form of Gaussian distribution.

1
Z Lpjt—1kihst-1, [—)-
k—it1 plt—1;ii
(22)

where L,;_1.,; and Dpj;_y,; are the elements of
matrices Ly;_1 and D,;_; respectively.

Nxzt 1 /”L’Lt 1

3.2.4 Factorized Simultaneous Data &
Time Updating

The simultaneous data and time updating in the
factorized form is proposed as follows. After inte-
gration in (8) and completion of squares the fol-
lowing quadratic form for the factorized state is
obtained.

[Lw/wt - M:]/Dt [Lw/xt

- ,U/;‘,k] ) (23)
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where
wy = zt—i—D*l, (24)
X (DWwEATYA' Dy (L, y: — py),
+ Lp|t—1Dp|t—1M{—1))7
Q = diag[Dy, Dy, Dyy_1], (25)
/Nlt =[5 A Lp|t—1/]/Qt[E§ A; Lplt—ll]’(%)
Dy = Dy— DyEA, 'E'D,. (27)

The matrix Dy, obtained in (27) is decomposed so
that

Dt = Lu|tDu\tLu\t/' (28)

After decomposition and factorization of the
quadratic form (23), the updated factorized form
is obtained.

/

/ / / /
Lu|t Ly x — Lu\t o Du\t |:Lp|t Ly — :u{:| :
S—— =~
L)' p{ Dyye

(29)
It means, that the updating of the decomposed
matrices and the factorized mean value is as fol-
lows.

Dp|t Du|t7 (30)
Lp|t = Lu|tha (31)
N{ = Lu|t/:u>tk7 (32)

which allows to preserve the form (20) of the prior
state

/
Lp'we = uf ]| Dy [Lpwe = | (33)

Hence, Gaussian distribution of the i-th state en-
try also keeps its factorized form (22), i.e. finally
one obtains

Z Lp|t Eilkits 5

k=i+1

) (34)

1
xzt Mzt D \t
%

The obtained results are proved by direct calcu-
lation of the integral (8).

Remark 1 Ezploitation of the joint pdf (1) as a
system model and, therefore, presence of the state
Ti—1 in both state evolution and observation mod-
els (2-3) enables a full factorization of the obser-
vation model (3). It means, that in practice the
proposed algorithm is not restricted by a single-
output model, as its previous versions [7].
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Remark 2 The proposed algorithm can be sensi-
tive to preserving of positive-definiteness of ma-
triz Dy, used in calculation of final variances of
the state entries. For more stability a QR fac-
torization, where Q) is an orthogonal matriz and
R is an upper triangular one, can be used. How-
ever, the present paper is focused on the proposed
LDL' factorization due to a lower computational
complexity.

4 Verification and Examples

Correct performance of the proposed entry-wise
updating is verified by return of the obtained re-
sults (33-34) into non-factorized form and their
comparison with solution of the non-factorized in-
tegral (7), which gives the following mean value
of the state x;

pe = Bus+ K%, (35)
X (Ry'AS, (C'Ry (yr — Huy),
© B b)), where
K, R — RYASTTA'R,, (36)
Sy = ARJA+C'RIC+P7L, (37
and the following covariance matrix
P, = (R, —R'AS;TA'RYH)7L (38)

It should be noted, that the non-factorized filter-
ing (7) operates primarily with the precision ma-
trices. Such a number of inversions in (35-38) are
shown only for transparency of the results.

The transformation of the results (33) into
non-factorized form N(u, P;) is fulfilled as fol-
lows.

(Lp|t/)_1:u{)
(Lt Dy L) "

Mt
P =

Moreover, the correct performance can be dou-
ble verified by the LDL’ factorization of the state
estimate (35-38) as

P! = LDL, (41)
wlo= L (42)

4.1 Experiments

A simple example of realizations of both versions
of the algorithm demonstrates the verification of
the proposed factorization. A number of entries
of the state £ and of the output y respectively
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is equal to 2, the system input u; = 0.5. The
following simulated data are used in the models

(2-3).
a8 ) e[ 0]
¢ = [_()(.]il —(1).5]’H:[—11]'(44)

The noise covariances R,, and R, are computed as
a mean of squares of differences between the state
(or output respectively) value and its conditional
mean. The mean is substituted by the samples of
a periodic course of the state (or output), which is
constructed as a spline approximation of several
last periodic courses. The resulted covariance ma-
trices are as follows.

—0.1060
R = 0.4011

Ro= | E

The chosen initial state mean vector and covari-
ance matrix are

oo [S)e|

The data have been used in MATLAB® [12]
implementation both of the filtering versions (7)
and (8), or more precisely, proposed in Subsec-
tion 3.2.4 and in (35-38) respectively. The results
have been transformed to the same form, i.e. the
non-factorized state estimate has been factorized,
and vice versa. Table 1 shows an example of the
identical factorized results of both implementa-
tions for the first three steps. To save the place
and due to the considered dimension of the state,
only the element Lo, is shown in the Table 1

(i.e. Lp\t;ll = Lp‘t;QQ = 17 Lp|t;12 - O)'

0.3974
—0.1060

0.4844 0.3598
0.3598 0.9887

|

(46)

2.029
—2.784

—2.784

5.432 ] (47)

Table 1. Factorized state estimates

b Lpen Dy _ ul _
ki
o [ 0 T
R S I A

The identical results have been also obtained for
the rest of the filtering steps ¢ = 200. Table 2
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demonstrates the non-factorized results of both
implementations for the first three steps. The rest
of the steps also give the results, identical for both
implementations. The obtained identical results

Table 2: Non-factorized state estimates

t P I
) 0.5811 —0.0209 —2.4549

| —0.0209 0.8772 | | —1.3068 |

5 0.5492  —0.0965 | 1.6521 |
—0.0965 0.8663 —2.3459
3 [ 0.5492 —0.0841 | [ 1.4320 ]
| —0.0841 0.8272 | | 1.1411 |

prove correctness of the proposed factorized algo-
rithm. Fig. 1 shows the estimation of the state
entries. Good correspondence between simulated
and estimated values verifies the adequate perfor-
mance of the proposed version of Kalman filter.

The proposed algorithm is expected to have
an increased level of the computational complex-
ity. Denoting a number of computational op-
erations during implementation by n™*™. one
can compare a level of complexity of different
implementations of Kalman filter. For “clas-
sic” Kalman filter, implemented according to [1],
n™ = 5; for Kalman filter with simultaneous
data and time updating, realized according to (35-
38) n™™ = 4; and, finally, a number of opera-
tions n™*"™ =7 for the factorized algorithm, pro-
posed in Subsection 3.2.4. It can be seen, that the
number of computational operations is increased
rather insignificantly. Moreover, the proposed al-
gorithm does not contain numerically dangerous
operations.

5 Conclusion

The paper presents a modified algorithm of the
entry-wise Kalman filtering. The modification
proposes the simultaneous data and time updat-
ing of the posterior state entry estimates. To sum-
marize the paper, one can note, that the obtained
results look optimistically. Advantages, provided
by the entry-wise updating, are planned to be
used for construction of technique of the joint fil-
tering with data of a mixed (both continuous and
discrete-valued) type. The future work includes
involvement of discrete-valued states and exper-
iments with the data from a traffic-control area,
which is the main target application.
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