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Abstract: The paper deals with a factorized version of Kalman filter. Via factorization of a state-space
model such the filter provides the state estimates of individual state vector entries in the factorized
form and allows to update them entry-wise. The paper continues a series of research in the field of
the factorized filtering and proposes the novel modified algorithm, including the simultaneous entry-wise
organized fulfillment of data and time updating steps. A motivation of the research is a preparation of the
universal algorithm for the joint filtering of variables of a mixed (continuous and discrete-valued) type.
The illustrative example and comparison of computational complexity with other versions of Kalman
filtering are presented.
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1 Introduction

The paper deals with Kalman filter [1], organized
in an entry-wise way. The entry-wise updating of
the posterior state estimates is reached with the
help of a special factorization of covariance matri-
ces. To enable the proposed entry-wise updating,
a modified algorithm of the factorized Kalman
filtering has been evolved. This modification as-
sumes the simultaneous fulfillment of the data and
time updating steps for a system, whose state and
output are described by the joint probability den-
sity function (pdf). The proposed filter provides
the estimates of the state vector entries in the
factorized form and allows to update them entry-
wise.

A general motivation of the research in the
field of the entry-wise filtering is a preparation of
a technique of the joint estimation of the mixed-
type (continuous and discrete-valued) data. The
target application of the research is the traffic con-
trol systems, using state-space models. The state-
space models with a car queue length as the main
state variable have made a good showing. How-
ever, some of the state variables are of discrete-
valued nature (signal lights, level of service, visi-
bility, road surface, etc). Their involvement calls
for the algorithm, which enables the joint filtering
of the mixed-type data. The entry-wise Kalman
filtering is a potential solution of this task. Due

to the entry-wise updating the involvement of the
discrete-valued variables is seen optimistically.

The state of the art of the problem is as
follows. Most works [2, 3] found in the field
are devoted to the factorized implementations of
Kalman filtering. The factorization of covariance
matrices is also used in problems of systems classi-
fication, dealing with multivariate Gaussian ran-
dom field [4]. However, the global aim of the
mentioned works is, primarily, reduction of the
computational complexity via a lesser rank of the
covariance matrix. Exploitation of matrix factor-
ization to approach the entry-wise filtering under
Bayesian methodology [5] was proposed in [6] with
a reduced form of the state-space model. The pa-
per [7] removed this restriction and proposed the
solution of factorized Bayesian prediction and fil-
tering, based on applying the chain rule to the sin-
gle output state-space model. The work [8] offered
the version of factorized Kalman filtering with
Gaussian models, which was based on the L′DL
decomposition of the covariance matrices. The
paper [9] expanded the line with L′DL-factorized
covariance matrices and demonstrated the appli-
cation of the solution to the traffic-control area.
However, the mentioned works had problems with
preserving of the distribution form of state entries
and consequently with the entry-wise updating.
The present paper proposes the novel algorithm
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with LDL′-factorized covariance matrices and si-
multaneous data and time updating of the poste-
rior state entry estimates. The entry-wise algo-
rithm is verified and implemented without high
computational complexity.

The layout of the paper is as follows. Sec-
tion 2 is devoted to basic facts about Bayesian
and Kalman filtering and used models. Section
3 provides a general derivation of Kalman filter
with simultaneous data and time updating and
presents the algorithm of its factorized version.
The algorithm verification, examples and compar-
ison of a level of computational complexity of dif-
ferent implementations of Kalman filter are shown
in Section 4. Remarks and plans of future work
in Section 5 close the paper.

2 Preliminaries

2.1 Models
The system is described by the joint probability
density function (pdf)

f (xt, yt|xt−1, ut) , (1)

where xt is the unobservable system state at dis-
crete time moments t ∈ t∗ ≡ {0, . . . , t̊}, where t̊
is the cardinality of the set t∗, ≡ means equiva-
lence, and yt and ut are the system output and
input respectively. In the case of Gaussian state-
space model, the pdf (1) includes the state evolu-
tion model (2) and observation model (3)

xt = Axt−1 + But + ωt, (2)
yt = Cxt−1 + Hut + vt, (3)

where [A,C] and [B,H] are known joint matrices
of appropriate dimensions; ωt is a process (Gaus-
sian) noise with zero mean and known covariance
matrix Rw; vt is a measurement (Gaussian) noise
with zero mean and known covariance matrix Rv.

2.2 Factorization by the chain rule
The joint pdf (1) can be decomposed, according
to the chain rule [10], into the following factorized
form.

x̊∏

i=1

f(xi;t|xi+1:̊x;t, ut, xt−1, yt), (4)

×
ẙ∏

j=1

f(yj;t|yj+1:̊y;t, ut, xt−1),

where x̊ and ẙ are numbers of entries of respective
(column) vectors, i = {1, . . . , x̊}, j = {1, . . . , ẙ},

and such a notation as xi+1:̊x;t denotes a sequence
{xi+1;t, xi+2;t, . . . , xx̊;t}.

2.3 Bayesian filtering

Bayesian filtering [10] includes two coupled for-
mulae.

f(xt|ut, d
t−1) =

∫
f(xt|ut, xt−1), (5)

× f(xt−1|d t−1)dxt−1,

f(xt|d t) ∝ f(yt|ut, xt)f(xt|ut, d
t−1), (6)

where ∝ means proportionality, and data are de-
fined as d t = (d0, . . . , d̊t), dt ≡ (yt, ut). Relation
(5) represents the time updating of the state esti-
mate, while (6) – the data updating. The applica-
tion of (5) and (6) to Gaussian state-space model
with Gaussian prior distribution and Gaussian ob-
servations provides Kalman filter.

3 Factorized Kalman Filtering
with Simultaneous Data and
Time Updating

3.1 Simultaneous Data and Time Up-
dating

In general, the data updating (6) is obtained
from Bayes rule [10]. Let the pdfs on the
right side of (6) be written as a single joint
pdf f(yt, xt|ut, d t−1). Using the operation of
marginalization and the model (1), one obtains
the expression of filtering with relations (5) and
(6) to be fulfilled simultaneously (proof is avail-
able in [11]).

f(xt|d t) ∝
∫

f(xt, yt|ut, xt−1)f(xt−1|d t−1)dxt−1.

(7)
Substitution of (4) in (7) and decomposition of the
initial state according to the chain rule provide
the following factorized form of (7).

f(xt|d t) ∝
∫ x̊∏

i=1

f(xi;t|xi+1:̊x;t, ut, xt−1, yt),(8)

×
ẙ∏

j=1

f(yj;t|yj+1:̊y;t, ut, xt−1),

×
x̊∏

i=1

f(xi;t−1|xi+1:̊x;t−1, d
t−1)dxt−1.
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A presence of vector xt−1 in all pdfs in (8) means
involvement of all entries of the respective vector
in integration. Such a notation is used only for
shortening of the equation.

3.2 Algorithm of Factorized Kalman
Filtering

The entry-wise updating assumed in (8) and pre-
serving of the factorized form (4) of the posterior
state estimate f(xt|d t) =

∏x̊
i=1 f(xi;t|xi+1:̊x;t, d t)

can be reached via LDL′ decomposition [5] of the
precision (i.e. inverse covariance) matrices. Such
the decomposition supposes L to be a lower tri-
angular matrix with unit diagonal and D to be a
diagonal one. This kind of matrix decomposition
is used throughout the paper.

The key moments of the entry-wise organized
Kalman filter (8), applied to Gaussian models (2-
3) are as follows.

3.2.1 Factorization of State Evolution
Model

Gaussian state evolution model (2) is factorized in
the following way. The process noise covariance
matrix Rw is inverted into a precision matrix and
decomposed so that

R−1
w = LwDwLw

′. (9)

The factorized form of the model (2) becomes now

[Lw
′xt−zt−Ξxt−1]′Dw[Lw

′xt−zt−Ξxt−1], (10)

where

zt = Lw
′But, (11)

Ξ = Lw
′A. (12)

Gaussian distribution of an individual state entry
has the following form.

Nxi;t(zi −
x̊∑

k=i+1

Lw;kixk;t +
x̊∑

l=1

Ξilxl;t−1,
1

Dw;ii
).

(13)
where Lw;ki, Ξil and Dw;ii are the elements of ma-
trices Lw, Ξ and Dw respectively.

3.2.2 Factorization of Observation Model

Factorization of Gaussian observation model (3)
is fulfilled similarly. The measurement noise co-
variance matrix Rv is inverted into the precision
matrix and decomposed so that

R−1
v = LvDvLv

′, (14)

The factorized form of the model (3) is as follows.

[Lv
′yt−ρt−Axt−1]′Dv[Lv

′yt−ρt−Axt−1], (15)

where

ρt = Lv
′Hut, (16)

A = Lv
′C. (17)

Gaussian distribution of an individual output en-
try takes the form

Nyj;t(ρj −
ẙ∑

k=j+1

Lv;kjyk;t +
x̊∑

l=1

Ajlxl;t−1,
1

Dv;jj
).

(18)
where Lv;kj , Ajl and Dv;jj are the elements of
matrices Lv, A and Dv respectively.

3.2.3 Initial State Factorization

The initial state Gaussian distribution
f(xt−1|d t−1) ∼ N (µt−1, Pt−1), where µt−1

is a known vector of mean values and Pt−1 is a
known covariance matrix, is also factorized in
the similar way. Decomposition of the precision
matrix is done so that

P−1
t−1 = Lp|t−1Dp|t−1Lp|t−1

′. (19)

The factorized form of the initial state looks like

[Lp|t−1
′xt−1 − µf

t−1]
′Dp|t−1[Lp|t−1

′xt−1 − µf
t−1],

(20)
with

µf
t−1 = Lp|t−1

′µt−1. (21)

Via (19) the initial state entries have the following
factorized form of Gaussian distribution.

Nxi;t−1(µ
f
i;t−1 −

x̊∑

k=i+1

Lp|t−1;kixk;t−1,
1

Dp|t−1;ii
).

(22)
where Lp|t−1;ki and Dp|t−1;ii are the elements of
matrices Lp|t−1 and Dp|t−1 respectively.

3.2.4 Factorized Simultaneous Data &
Time Updating

The simultaneous data and time updating in the
factorized form is proposed as follows. After inte-
gration in (8) and completion of squares the fol-
lowing quadratic form for the factorized state is
obtained.

[
Lw

′xt − µ∗
t

]′
D̃t

[
Lw

′xt − µ∗
t

]
, (23)
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where

µ∗
t = zt + D̃−1, (24)
× (DwΞÃ−1

t (A′Dv(Lv
′yt − ρt),

+ Lp|t−1Dp|t−1µ
f
t−1)),

Ωt = diag
[
Dw, Dv, Dp|t−1

]
, (25)

Ãt = [Ξ; A; Lp|t−1
′]′Ωt[Ξ; A; Lp|t−1

′],(26)

D̃t = Dw −DwΞÃt
−1Ξ′Dw. (27)

The matrix D̃t, obtained in (27) is decomposed so
that

D̃t = Lu|tDu|tLu|t
′. (28)

After decomposition and factorization of the
quadratic form (23), the updated factorized form
is obtained.



Lu|t
′Lw

′
︸ ︷︷ ︸

Lp|t
′

xt − Lu|t
′µ∗

t︸ ︷︷ ︸
µf

t





′

Du|t︸︷︷︸
Dp|t

[
Lp|t

′xt − µf
t

]
.

(29)
It means, that the updating of the decomposed
matrices and the factorized mean value is as fol-
lows.

Dp|t = Du|t, (30)
Lp|t = Lu|tLw, (31)

µf
t = Lu|t

′µ∗
t , (32)

which allows to preserve the form (20) of the prior
state

[
Lp|t

′xt − µf
t

]′
Dp|t

[
Lp|t

′xt − µf
t

]
. (33)

Hence, Gaussian distribution of the i-th state en-
try also keeps its factorized form (22), i.e. finally
one obtains

Nxi;t(µ
f
i;t −

x̊∑

k=i+1

Lp|t;kixk;t,
1

Dp|t;ii
). (34)

The obtained results are proved by direct calcu-
lation of the integral (8).

Remark 1 Exploitation of the joint pdf (1) as a
system model and, therefore, presence of the state
xt−1 in both state evolution and observation mod-
els (2-3) enables a full factorization of the obser-
vation model (3). It means, that in practice the
proposed algorithm is not restricted by a single-
output model, as its previous versions [7].

Remark 2 The proposed algorithm can be sensi-
tive to preserving of positive-definiteness of ma-
trix D̃t, used in calculation of final variances of
the state entries. For more stability a QR fac-
torization, where Q is an orthogonal matrix and
R is an upper triangular one, can be used. How-
ever, the present paper is focused on the proposed
LDL′ factorization due to a lower computational
complexity.

4 Verification and Examples

Correct performance of the proposed entry-wise
updating is verified by return of the obtained re-
sults (33-34) into non-factorized form and their
comparison with solution of the non-factorized in-
tegral (7), which gives the following mean value
of the state xt

µt = But + K̃−1
t , (35)

× (R−1
w AS̃t

−1(C ′R−1
v (yt −Hut),

+ P−1
t−1µt−1)), where

K̃t = R−1
w −R−1

w AS̃−1
t A′R−1

w , (36)
S̃t = A′R−1

w A + C ′R−1
v C + P−1

t−1, (37)

and the following covariance matrix

Pt = (R−1
w −R−1

w AS̃−1
t A′R−1

w )−1. (38)

It should be noted, that the non-factorized filter-
ing (7) operates primarily with the precision ma-
trices. Such a number of inversions in (35-38) are
shown only for transparency of the results.

The transformation of the results (33) into
non-factorized form N (µt, Pt) is fulfilled as fol-
lows.

µt = (Lp|t
′)−1µf

t , (39)

Pt = (Lp|tDp|tLp|t
′)−1, (40)

Moreover, the correct performance can be dou-
ble verified by the LDL′ factorization of the state
estimate (35-38) as

P−1
t = LDL′, (41)

µf
t = L′µt. (42)

4.1 Experiments

A simple example of realizations of both versions
of the algorithm demonstrates the verification of
the proposed factorization. A number of entries
of the state x̊ and of the output ẙ respectively
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is equal to 2, the system input ut = 0.5. The
following simulated data are used in the models
(2-3).

A =
[

0.1 −0.9
0.9 0.01

]
, B =

[
−0.4
−0.4

]
, (43)

C =
[
−0.1 1
0.1 −0.5

]
, H =

[
1
−1

]
. (44)

The noise covariances Rw and Rv are computed as
a mean of squares of differences between the state
(or output respectively) value and its conditional
mean. The mean is substituted by the samples of
a periodic course of the state (or output), which is
constructed as a spline approximation of several
last periodic courses. The resulted covariance ma-
trices are as follows.

Rw =
[

0.3974 −0.1060
−0.1060 0.4011

]
, (45)

Rv =
[

0.4844 0.3598
0.3598 0.9887

]
. (46)

The chosen initial state mean vector and covari-
ance matrix are

µt =
[

0
0

]
, Pt =

[
2.029 −2.784
−2.784 5.432

]
. (47)

The data have been used in MATLAB R© [12]
implementation both of the filtering versions (7)
and (8), or more precisely, proposed in Subsec-
tion 3.2.4 and in (35-38) respectively. The results
have been transformed to the same form, i.e. the
non-factorized state estimate has been factorized,
and vice versa. Table 1 shows an example of the
identical factorized results of both implementa-
tions for the first three steps. To save the place
and due to the considered dimension of the state,
only the element Lp|t;21 is shown in the Table 1
(i.e. Lp|t;11 = Lp|t;22 = 1, Lp|t;12 = 0).

Table 1: Factorized state estimates
t Lp|t;21 Dp|t µf

t

1 0.0238
[

1.7222 0
0 1.1401

] [
−2.4860
−1.3068

]

2 0.1114
[

1.8573 0
0 1.1543

] [
1.3908
−2.3459

]

3 0.1016
[

1.8496 0
0 1.2089

] [
1.5480
1.1411

]

The identical results have been also obtained for
the rest of the filtering steps t = 200. Table 2

demonstrates the non-factorized results of both
implementations for the first three steps. The rest
of the steps also give the results, identical for both
implementations. The obtained identical results

Table 2: Non-factorized state estimates
t Pt µt

1
[

0.5811 −0.0209
−0.0209 0.8772

] [
−2.4549
−1.3068

]

2
[

0.5492 −0.0965
−0.0965 0.8663

] [
1.6521
−2.3459

]

3
[

0.5492 −0.0841
−0.0841 0.8272

] [
1.4320
1.1411

]

prove correctness of the proposed factorized algo-
rithm. Fig. 1 shows the estimation of the state
entries. Good correspondence between simulated
and estimated values verifies the adequate perfor-
mance of the proposed version of Kalman filter.

The proposed algorithm is expected to have
an increased level of the computational complex-
ity. Denoting a number of computational op-
erations during implementation by nnum, one
can compare a level of complexity of different
implementations of Kalman filter. For “clas-
sic” Kalman filter, implemented according to [1],
nnum = 5; for Kalman filter with simultaneous
data and time updating, realized according to (35-
38) nnum = 4; and, finally, a number of opera-
tions nnum = 7 for the factorized algorithm, pro-
posed in Subsection 3.2.4. It can be seen, that the
number of computational operations is increased
rather insignificantly. Moreover, the proposed al-
gorithm does not contain numerically dangerous
operations.

5 Conclusion

The paper presents a modified algorithm of the
entry-wise Kalman filtering. The modification
proposes the simultaneous data and time updat-
ing of the posterior state entry estimates. To sum-
marize the paper, one can note, that the obtained
results look optimistically. Advantages, provided
by the entry-wise updating, are planned to be
used for construction of technique of the joint fil-
tering with data of a mixed (both continuous and
discrete-valued) type. The future work includes
involvement of discrete-valued states and exper-
iments with the data from a traffic-control area,
which is the main target application.
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