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Abstract. The paper addresses the design of trading strategy for futures markets. The problem
is formulated as dynamic decision making task and as such is solved. Iterations-spread-in-
time and Monte Carlo methods are employed to the solution. The results of off-line real-data
experiments are presented.

Abstrakt. Text popisuje návrh obchodní strategie určené pro trhy s futures kontrakty. Návrh
se sestává z definice úlohy jako problému dynamického rozhodování. Následně je úloha řešena
pomocí iterací rozložených v čase a metody Monte Carlo. Text obsahuje výsledky experimentů
prováděných na reálných datech.

1 Introduction

The paper describes a part of research aiming to design automatic trading system for
futures markets. The trading on exchanges is based on knowledge and prediction of the
price of given commodity, which represents a very complex task.

The futures trading problem is formulated as a particular decision making (DM) task.
DM reformulates the task as mathematical problem, which leads to integral equations.
We need to solve the equations, but to find the analytical solution is almost impossible
and the numerical calculation leads to bad conditioned or long calculated solutions. DM
task is necessary to solve in given time, e.g. when the trader on exchange needs the solu-
tion each day, the calculation cannot take 3 days and is restricted by 24 hours. Although
the reformulation like a DM task is good, we need feasible solution, which calls for an
approximation. This paper considers by task redefinition and introduces the approxima-
tions.

The paper’s outline is as follows. Section 2 introduces terminology of futures exchange,
recalls main terms of DM theory and reformulates futures trading problem as dynamic
DM task. Section 3 contains approximation of DM. Section 4 presents the experimental
results obtained on real data. Section 5 addresses open questions as well as possible
directions to approach’s improvement.
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2 Preliminaries

2.1 Trading futures

The following definition by of the futures exchange is proposed by [2]. A futures exchange
is a central financial exchange where people can trade standardized futures contracts; that
is, a contract to buy specific quantities of a commodity (basic resources and agricultural
products such as iron ore, coal, sugar, coffee beans, wheat, gold, etc) or financial in-
strument (cash, evidence of an ownership interest in an entity) at a specified price with
delivery set at a specified time in the future. A futures contract gives the holder the
obligation to buy or sell.

The term position means a commitment to buy or sell a given amount of commodities.
The basic types of position are distinguished: short, long and flat.

A long position yields a trader’s benefit when the price increases, and trader’s loss
otherwise. This position refers to the situation when

• a trader buys an option contract that he has not already written (i.e. sold), he is
said to be opening a long position.

• a trader sells an option contract that he already owns, he is said to be closing a
long position.

A short position yields a trader’s profit when the price decreases, and trader’s loss oth-
erwise. This position refers to the situation when

• a trader sells an option contract that he does not already own, he is said to be
opening a short position.

• a trader buys an option contract that he has written (i.e. sold), he is said to be
closing a short position.

A flat position denotes the state when no other type of position is active. Flat position
means neither trader’s profit nor trader’s lose with any price change.

The aim of trader is design such a strategy of positions selecting, which ensures trader’s
profit with minimal risk. The strategy design is based on prediction of price behavior
and is very sensitive i.e. the small impreciseness in strategy make big change of profit.

2.2 Decision making under uncertainty

Decision maker is either human being or device aiming to influence a part of the World
he is interested in (so called System) The influence desired is expressed by DM aim. To
reach this DM aim a decision maker designs and applies a DM strategy, Rt. This strategy
maps observations of the system’s behavior y1, . . . , yt available to decision maker and past
decisions x1, . . . xt−1 to decisions xt:

Rt : [y1, . . . , yt, x1, . . . xt−1] → xt.

The available knowledge grows with time, because it is extended each time step by new
system output yt and also by new decision xt. The decision typically influences the system,
therefore decision maker works with respect to closed loop ’decision maker - system’.
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All knowledge about system available to decision maker to design decision xt is called
experience Pt = (y1, x1, . . . , yt−1, xt−1, yt). Ignorance Ft is knowledge about system un-
available to decision maker. System behavior consists of experience, decision and igno-
rance Q = (Pt, xt,Ft).

Gain is mapping of system behavior to real non-negative number G : Q → [0,∞].
Gain express the success of reaching the decision maker aims with given decision making
strategy. The gain is not causal and it is necessary to measure the potential strategy
success. Therefore the expected value is defined. Conditioned expected value E(.|.) is
functional which returns the value of the gain independent on ignorance for the given
strategy and conditioned by experience.

The expected gain conditioned by experience is chosen as following integral:

E
[
G(Pt, xt,Ft)

∣∣Pt, xt

]
=

∫
Ft

G(Pt, xt,Ft)f(Ft|Pt, xt)dFt, (1)

where f(Ft|Pt, xt) is probability density function of the ignorance conditioned by expe-
rience, this terms stands for the decision makers imagination of the ignorance based on
experience. See [3] for general derivation of this equation.

The decision maker chose the decision xt ∈ X to maximize of expected value in each
time t:

xt = arg max
xt∈X

E
[
G(Q)

∣∣Pt, xt

]
, (2)

which is the idea based on principle of optimality - see [1].

2.3 Futures trades as DM task

This subsection reformulates futures trading task as a decision making problem.
The system is exchange with one kind of futures contract. The system output yt is a

price of the contract. We design the strategy for discrete time starting from 1, finishing
by horizon T . The strategy starts and finishes with the flat position.

The decision maker designs in each time t an integer number xt ∈ Z as decision. The
decision xt characterizes traders position, i.e. |xT | characterizes count of contracts and
sign(xT ) characterizes the type of position 1 long, -1 short and 0 flat. The flat position
at the beginning and at the horizon is expresses as: x0 = xT = 0.

The profit influenced only by the decision xt is expressed via:

g(xt, xt−1, yt+1, yt) = (yt+1 − yt)xt − C|xt−1 − xt|, (3)

where (yt+1−yt)xt is profit caused by the change of price and C is normalized transaction
costs for position change and |xt−1 − xt| is change of position. The gain from the whole
trading can be expressed as a sum of partial gain (3) over time t ∈ {1, 2, . . . , T}. The
gain function Gt(.) expresses the profit caused by decisions xt, . . . , xT :

Gt(xt−1, . . . , xT , yt, . . . , yT ) = −C|xT−1 − xT |+
T−1∑
k=t

(yk+1 − yk)xk − C|xk−1 − xk|, (4)

Easy to see, that the function Gt(.) is additive and backward recursive

Gt(xt−1, . . . , xT , yt, . . . , yT ) = g(xt, xt−1, yt+1, yt) + Gt+1(xt, . . . , xT , yt+1, . . . , yT ) (5)
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with initial condition
GT (xT−1, xT , yT ) = −C|xT−1 − xT |. (6)

2.4 Solution of dynamic DM problem

To maximize the profit, the gain over the decisions x1, . . . , xT should be maximized:

max
{x1,...,xT }

G1(x0, . . . , xT , y1, . . . , yT ). (7)

Using the optimality principle (see [1] for details) and additivity of the gain function the
optimal gain in time t can be expressed:

Bt(xt−1, . . . , xT , yt, . . . , yT ) = max
xt

[
g(xt−1, xt, yt, yt+1)+ max

{xt+1,...,xt}
Gt+1(xt, . . . , xT , yt, . . . , yT )

]
.

Function Bt(.) is called Bellman’s function and hold the following recursive shape:

Bt(xt−1, . . . , xT , yt, . . . , yT ) = max
xt

[
g(xt−1, xt, yt, yt+1) + Bt+1(xt, . . . , xT , yt, . . . , yT )

]
,

where the maximal argument is the optimal decision at time t. But to find this argument,
the knowledge of future decisions and prices is needed, i.e. xt+1, . . . , xT , yt, . . . , yT . These
variables are the part of ignorance, therefore the expected value must be used:

Vt(xt−1, yt) = max
xt

E
[
g(xt−1, xt, yt, yt+1) + Vt+1(xt, yt+1)

∣∣∣x0, . . . , xt, y1, . . . , yt

]
, (8)

where Vt(.) is called admissible Bellman’s function.

3 Approximation of decision making
The substitution (3) into the equation (8) results in more suitable form:

Vt(xt−1, yt) = max
xk

[
− ytxt − C|xt−1 − xt|+ xt E(yt+1|x0, . . . , xt, y1, . . . , yt)︸ ︷︷ ︸

(∗)

+ E
(
Vt+1(xt, yt+1)

∣∣∣x0, . . . , xt, y1, . . . , yt

)
︸ ︷︷ ︸

(∗∗)

]
. (9)

This paragraph concerns expressing the term (∗), which characterizes expected value of
future price yk+1 conditioned by the experience.

The probability density function f(yk+1|x0, . . . , xt, y1, . . . , yt) is required to express the
expected value (∗). The probability density function can be written in the parameterized
form:

f(yt+1|x0, . . . , xt, y1, . . . , yt) =

∫
θ

f(yt+1|θ, x0, . . . , xt, y1, . . . , yt)f(θ|x0, . . . , xt, y1, . . . , yt)dθ

(10)
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The last expression consists of two density functions: f(θ|x0, . . . , xt, y1, . . . , yt) is the den-
sity of model parameters conditioned by experience, where θ is vector of the parameters.
f(yt+1|θ, x0, . . . , xt, y1, . . . , yt) is density of price yt+1 conditioned by model parameters
and experience.

The assumed model is autoregressive and has following shape:

yt = a1yt−1 + a2yt−2 + . . . + aNyt−N + b + et, (11)

where θ = (a1, . . . , aN , b) are model parameters, N denotes model’s order and et is white
noise with distribution N(0, σ2), therefore the model prediction is normally distributed:

f(yt+1|θ, x0, . . . , xt, y1, . . . , yt) = N(a1yt + a2yt−1 + . . . + aNyt−N+1 + b, σ2). (12)

The density function of model parameters f(θ|x0, . . . , xt, y1, . . . , yt) is estimated using
software MIXTOOLS [4], which works with the distribution f(θ|x0, . . . , xt, y1, . . . , yt) and
generates samples of model parameters.

This scheme corresponds with principles of Monte Carlo method and the expected
value of the future price can be calculated using the following formula:

ŷk+1 =
∑
i∈S

(a1,iyk + a2,iyk−1 + . . . + aN,iyk−N+1 + bi)pi, (13)

where S is a set of samples, i is an index of sample, (a1,i, . . . , aN,i, bi) is a sample vector
and pi is probability of the sample i.

Let approximate the term (∗∗) of the equation (9). The main problem of calculat-
ing the term is backward character of equation (8), where the future value of Bellman’s
function Vt+1(.) is needed to calculation the Vt(.). This problem is solvable two ways: ex-
pressing the generalized shape of Bellman’s function or approximation by suitable shape.

We need to find formal solution of equation (9) to express the generalized shape
of Bellman’s function. The desired solution must be valid for all sequences y1, . . . , yT .
However this task is very complex and it seems impossible to find the formal solution.

The approximation of Bellman’s function is more promising way. The approximation
must be suitable for further computing, but at the same time contains the parameters of
Bellman’s function, therefore the following shape has been chosen:

Vt(xt−1, yt) ≈ Vt(xt−1, yt) ≡ p(xt−1)yt + q(xt−1), (14)

where p(.) and q(.) are real functions. The approximation does not depend on ignorance,
therefore the expected value in term (∗∗) is expressed as follows:

E
(
Vk+1(xk, yk+1)

∣∣∣x0, . . . , xt, y1, . . . , yt

)
≈ Vk+1(xk, yk+1). (15)

The tasks is to design algorithm how to find functions p(.) and q(.) in definition (14).
The approximation generates a non-preciseness in equation (8):

Vk(xk−1, yk) + ek = max
xk

E
[
g(xk, xk−1, yk+1, yk) + Vk+1(xk, yk+1)

∣∣∣x0, . . . , xt, y1, . . . , ytBig],

(16)
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where ek is introduced non-preciseness, which is restricted by constant.
All terms in equation (16) are known or calculable. The design assumes, that Bell-

man’s function shape does not vary. Therefore if the tth approximation of Bellman’s
function is V̂t(xt−1, yt), the non-preciseness of approximation in time t can be expressed
via:

et = max
xt

E
[
g(xt, xt−1, yt+1, yt) + V̂t+1(xt−1, yt)

∣∣∣x0, . . . , xt, y1, . . . , yt

]
− V̂t(t−1, yt). (17)

Then we minimize the sum of squares minV̂t

∑t
k=1 e2

k and arguments of minimum are
the best approximation of the function V̂t(.) . The minimization leads to least squares
method.

4 Experimental part

This section describes the experimental setup, data and results obtained. The designed
trading strategy is defined at discrete time t ∈ {1, 2, . . . , T}. The time step corresponds
with interval of 24 hours. The trading period is given by available data.

The data used for design of the strategy are so-called close prices, which are collected
once a day. It is the last price, when the exchange closes trading. The economic specialists
grant that close price is the most stable price. The close price yt is assumed to be known
in time t, i.e. yt is available to design the decision xt.

The part of data sets is transaction costs ct. Moreover the price changes during
the day and the close price represent the best approximation, but the risk constant is
demanded. Therefore the slippage constant cs, which characterizes typically change of
the price in delay between decision and real trading is employed. This constant is used
as penalization for each action in design. And the whole transaction costs C (firstly used
in the equation (3)) is defined as C = ct + cs.

The general equations used in this paper do not specify the restriction to decision
xt. The restrictions depend on the trader’s account, because traders must own money to
buy or sell contract at an exchange and the range of contracts to position is limited by
owned money. We use following values of decision xt ∈ {−1, 0, 1}. This three values are
enough for experiments, because the wider range of actions leads only to use the extremal
values of decision. This phenomenon is caused by the shape of gain function (3), which
is partially linear function of decision xt. The strategy starts and ends with flat position,
therefore x0 = xT = 0.

The order of model (see equation (11)) is set to N = 2, because this value gives the
best profit of strategies in the previous research. Predictions are generated by Monte
Carlo method. The count of Monte Carlo samples is chosen dynamically: The decision
is final, when it is not influenced by new Monte Carlo samples.

4.1 Used data

There are 35 available price sequences for the experiments. The sequences contain prices
for more than 15 year, i.e. about 3900 trading days in each sequence. The experiment
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set is too wide to present all results here, therefore the following five futures contracts
were chosen as reference markets.

Ticker Description
CC Cocoa - CSCE
CL Petroleum-Crude Oil Light
FV2 5-Year U.S. Treasury Note
JY Japanese Yen - FOREX
W Wheat - CBT

The reference markets were chosen by economic specialist to include all typical kind of
markets - i.e. cocoa and wheat are typical agriculture product, petroleum-crude oil is
mined material, Japanese Yen is typical foreign currency and treasury note stands for
bond markets.

4.2 Results

There are many ways, how evaluate the quality of designed strategy. The net profit
calculated by (4) is the main criterion, secondary criteria are gross loss (sum of loss
trades profit), gross profit (sum of win trades profit), count of winning and losing trades.
By using these criteria it is possible to calculate sum of the transaction cost and sum of
slippages.

The main non-quantitative pointer is the plot of cumulative gain depending on time.
It is difficult to analyze it but it gives important information about the strategy. In ideal
case, the plot increases.

CC CL FV2 JY W
Net profit -40530.00 29390.00 -26368.75 -76992.50 -13210.00
Gross profit 23020.00 120360.00 52692.50 180000.00 54707.50
Gross loss -63550.00 -90970.00 -79061.25 -256992.50 -67917.50
Transaction cost -1780.00 -1580.00 -1900.00 -3080.00 -2060.00
Slippages -8900.00 -6320.00 -17812.50 -38500.00 -15450.00
Trades 89 79 95 154 103
Wining trades 24 42 31 50 39
Losing trades 65 37 64 104 64

Table 1: Result overview

The results overview is in Table 1. The system designed good strategy for exchange
with oil futures (CL), where the net profit is positive and the profit grows almost all the
time (see Figure 1). Worst results were at cocoa future market, where the profit decreases
in time. Other markets finished with negative profit, but the curve of cumulative gain
shows only local decreasing, e.g. the FV2 curve decreases only at interval [1000,2500] and
the other parts stagnate (see Figure 2).

The practical approach of presented design is good, because the algorithm works at
one of reference markets. And three reference markets seems that the better settings or
small algorithm changes can improve them to positive results.
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Although the results do not suffice the requirements to usage at real trading, the
theoretical results brought improvements. The methods of Monte Carlo and iterations-
spread-in-time were applied and tested to new task, where the properties of both methods
can be explored.

5 Future work
The main directions of the further research are:

Bellman’s function - the used approximation is oversimplified. A more complex ap-
proximation is typically used to reach better results. The analytical properties of
Bellman function should be explored to find the better approximation, which should
lead to higher profit.

High dimensional model - present model uses only the close price to prediction, but
other data channels are available too. The usage of the high dimensional model
is traditional way, how obtain better results. Additional channels contain new
prices, information about traders positions etc., which brings the new important
information for decision maker.

Prediction quality influenced indirectly the trading system quality. Testing of predic-
tion quality is related with model and settings of Monte Carlo method, which can
be innovated by knowledge about prediction behavior.

The listed open problems should lead to improve the results and better knowledge about
the approximate dynamic programming. The further approach should support the usage
of this design to trading in markets as fully automatic system.
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