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Abstract 
In this paper, we apply neural networks as nonparametric and nonlinear methods to Cen-
tral European (Czech, Polish, Hungarian, and German) stock market returns modeling. 
In the first part, we present the intuition of neural networks and we also discuss statisti-
cal methods for comparing predictive accuracy, as well as economic significance mea-
sures. In the empirical tests, we use data on the daily and weekly returns of the PX-50, 
BUX, WIG, and DAX stock exchange indices for the 2000–2006 period. We find neu- 
ral networks to have a significantly lower prediction error than the classical models for 
the daily DAX series and the weekly PX-50 and BUX series. We also achieve economic 
significance of the predictions for both the daily and weekly PX-50, BUX, and DAX, with 
a 60% prediction accuracy. 

1. Introduction 
Life must be understood looking backwards, but must be lived looking for-

ward. The past is helpful for predicting the future, but we have to know which ap-
proximating models to use, in combination with past data, to predict future events. 
On the basis of the universal approximation theorem, we use neural networks in 
the hope that they will improve the prediction task, as they are able to approximate 
any function, as Hornik, Stinchcombe, and White (1989) show. Thus, we will aim to 
compare the results of econometric modeling and neural network modeling to see 
whether neural networks bring us a closer insight into the patterns of stock returns or 
not. The reader will see that the neural network is a very useful nonparametric eco-
nometric technique. On the other hand, criticisms arise mainly from the fact that neu-
ral networks were inspired by biological phenomena – the physiology of nerve cells – 
and have become part of a separate literature (see (Hertz, Krogh, Palmer, 1991), (Hut-
chinson, Lo, Poggio, 1994), (Poggio, Girosi, 1990), and (White, 1988), for an over-
view). Neural network learning methods provide a robust approach to approximating 
real-valued, vector-valued, and discrete-valued functions. The study of artificial neu-
ral networks (ANNs) was inspired by the observation that biological learning systems 
are built of very complex webs of interconnected neurons. ANNs are analogously 
built webs of interconnected sets of simple units, or inputs, which may be outputs of 
other units and which produce simple outputs which may become inputs in other 
units (Mitchell, 1997). By referring to “neural networks” we will mainly consider re-
search targeting the development of systems capable of approximating complex func-
tions efficiently and robustly. 
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As classical econometric models provide us with some insights into the beha-
vior of stock returns, we believe that neural networks will do better. We believe that 
the neural network learning process will help approximate the learning process of 
agents or investors more efficiently, resulting in a better understanding of stock pri-
ces. Contrary to the Efficient Market Hypothesis, several researchers, such as Hsieh 
(1991), Barkoulas and Travlos (1998), and Peters (1994), claim that stock markets 
exhibit chaos. Chaos is a nonlinear deterministic process which appears random, but 
cannot be easily expressed. With the neural network’s ability to learn nonlinear, chao-
tic systems, it may be possible to outperform traditional analysis. McNelis (2005) 
shows very good results in predicting artificial data and chaos processes by neural 
networks and shows how artificial intelligence could shed more light on the time- 
-series processes. He tests the predictive power of the models also on industry data 
and inflation, but a test on stock markets is missing. In this paper, we will follow his 
and other work with empirical research on Central European markets. Žikeš (2004) 
finds that Central European markets also do not follow a random walk. Filáček et al. 
(1998) find that the daily returns of the main Prague Stock Exchange (PSE) index, 
the PX-50, are significantly positively autocorrelated. We believe that emerging mar-
kets in particular, or markets with a high level of innovation and structural change, 
represent a great opportunity for the use of neural networks in the prediction task. 
The reasons are intuitive, as explained below.  

The data are often very noisy, either because of thinness of the markets or due 
to information or discontinuous trading1 gaps. Thus we have to deal with lots of 
asymmetries and nonlinearities which cannot be assumed. The other reason is that 
agents in these markets are themselves in a process of learning, mainly by trial and 
error. Often they cannot predict the impact of policy news or legal changes to the mar-
ket simply because they have not seen any real examples in their past. Thus, the in-
formation set for the prediction task is very limited. As we will show, parameter 
estimates of neural networks are themselves a result of “learning by mistake” and 
the search process and can be compared to the parameters used by agents to forecast 
and make decisions. In this part, we will present the theoretical framework of neural 
networks used subsequently in the empirical modeling work.  

The paper is organized as follows. In the first part, we introduce the reader to 
neural networks. We first discuss methodological problems to avoid confusion, and 
we then present the basic forms of networks and transformation functions which will 
be tested later on in the paper. We also pay attention to the evaluation of the esti-
mated models and to statistical methods of predictive accuracy and economic signi-
ficance. In this paper, we apply neural networks to Central European stock market 
returns – the PX-50, BUX, DAX, and WIG daily and weekly returns. On the in- 
-sample and more important out-of-sample criteria, we test classical autoregressive 
models – ARIMA (p,I,q) and GARCH – with neural networks. For the comparison, 
we use the statistical tests described in the theoretical part, and also tests of the eco-
nomic relevance of the prediction model. The paper concludes with a summary of 
the empirical results we achieve and suggestions for further research. 

1 Often there are many stocks with no or very low volume trades on these markets. 
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2. Neural Networks 
2.1 Methodological Problems 

Much of the early development and work on neural network analysis was 
within psychology and neuroscience, related to pattern recognition problems. The ge-
netic algorithms used for the empirical implementation of neural networks have fol-
lowed a similar pattern of development in applied mathematics in the optimization of 
dynamic nonlinear and discrete systems, moving into data engineering. Thus, these 
systems have been developed in different surroundings than econometrical and statis-
tical models, resulting in confusion in the literature, mainly as regards the simple 
technical and naming conventions. A model is known as an architecture, and we 
train rather than estimate the network architecture. A researcher uses a training set 
and test set of data instead of in-sample and out-of-sample data, and the confusion 
should disappear whenever the reader expects coefficients instead of weights. If we 
consider the application of neural networks, or artificial intelligence itself, the gap 
widens. The broad literature on neural networks is simply not relevant to financial 
professionals or academics. Also, publications and empirical work using neural net-
works in finance are not linked to the preceding theoretical financial literature, which 
is probably why most of this literature is not taken seriously by the broader financial 
and economic academic community. As McNelis remarks: “The appeal of the neural 
network approach lies in the assumption of bounded rationality: when we forecast in 
financial markets, we are forecasting the forecasts of others, or approximating the ex-
pectations of others.” (McNelis, 2005) Thus, market participants are continuously 
learning and adapting their beliefs from past mistakes. 

2.2 What is a Neural Network? 
Like linear or nonlinear methods, a neural network relates a set of input va-

riables, say, { }, 1,...,ix i k= , to a set of one or more output variables, say, { },jy j =  

1,..., *k= . The only difference between network and other approximation methods is 
that the approximating function uses one or more so-called hidden layers, in which 
the input variables are squashed or transformed by a special function. This is known 
as logistic or logsigmoid transformation. While this approach may seem “esoteric” or 
maybe even “mystical” at first glance, the reader will soon see that it may be used as 
a very efficient way to model nonlinear processes. The reason we turn to neural net-
works is straightforward. It is the goal of the prediction problem to find an approach 
or method that best forecasts the data, generated by unknown, nonlinear processes, 
with as few parameters as possible, which are as simple to achieve and as easy to 
estimate as can be. Moreover, it has been shown that “neural networks can appro-
ximate any function with finitely many discontinuities to arbitrary precision”. This is 
known as the universal approximation theorem (Hornik, Stinchcombe, White, 1989). 

2.2.1 Feedforward Networks 
The most basic and commonly used neural network in finance – with one 

hidden layer (Hornik, Stinchcombe, White, 1989) containing two neurons, three in-
put variables, and one output – is the feedforward neural network. The general feed-
forward or multilayered perception (MLP) network can be described by the fol-
lowing equations: 
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where ( ),k tnΛ  is the logsigmoid activation function. There are *i  input variables 

{ }x  and *k  neurons. ,k iω  represents a coefficient vector or input weights vector. 
Variable ,t kn  is squashed by the logsigmoid function, and becomes a neuron ,t kN  at 
time t. Then the set of *k  neurons are combined linearly with the vector of coef-
ficients { } , 1,..., *k k kγ =  to form the final output, which is the forecast $ ty . This mo-
del is the workhorse of the neural network forecasting approach, as almost all 
researchers start with this network as the first alternative to linear models. 

In contrast to classical linear models, there are two additional neurons which 
process the inputs to improve the predictions. It should be mentioned here that the con-
nections between the input variables and the neurons, also called input neurons, and 
the connections between the neurons and the output, the output neurons, are called 
synapses. The reader might note that the simple linear regression model is just a spe-
cial case of the feedforward neural network, namely a network with one neuron 
which contains a linear approximation function.  

2.2.2 Transformation Functions – Logsigmoid, Tansig, and Gaussian 
Maybe the most confusion about neural networks comes from the presence of 

a hidden layer and the function of neurons. They process inputs by forming linear 
combinations of them and then squashing these combinations using the transfor-
mation function. The previous example of a feedforward network contains a logsig-
moid activation function (equation 2.2.). This function reflects the learning behavior 
of the networks, or, more precisely, “learning by doing”. The function is increasingly 
steep until the inflection point, from which it becomes increasingly flat and its slope 
moves exponentially to zero. The nonlinear sigmoid function captures the learning 
process in the formation of expectations characterized by bounded rationality. Kuan 
and White (1994) describe it as the “tendency of certain types of neurons to be 
quiescent of modest levels of input activity, and to become active only after the in-
put activity passes a certain threshold, while beyond this, increases in input activity 
have little further effect”.  

An alternative to the logsigmoid activation function is the tansig, or tanh, 
hyperbolic tangent function. Its behavior is very similar to the logsigmoid function, 
but it squashes the linear combinations within a wider interval of 1,1−  rather than 

0,1 . Instead of equation 2.2., we would use a tansig squasher function in the net-
work architecture: 
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where ( ),k tT n  is the tansig activation function. Another activation function is the cu-
mulative Gaussian function, commonly referred to as the normal function. The ad-
vantage of using the Gaussian function is that it has thinner tails, so it does not 
respond to some extreme values. In a network architecture with a Gaussian activa-
tion function, we would use ( ), ,k t k tN nΦ= , where ( ),k tnΦ  is the standard cumulative 
Gaussian function, instead of equation 2.2. 

We have just described the basic functional forms of neural networks with 
the most commonly used transformation functions. The reader is now probably ask-
ing the questions: “OK but, what transformation function should I use?” or “Are 
there any other transformation functions?” There are many other possible transfor-
mation functions, in fact. The reason we describe these few is that they performed 
best in our tests and are also used in each of the references used in this paper. 
The answer to the first question is not as simple as the answer to the second. Each 
transformation function transforms inputs in a different manner. Some respond to 
extreme values, some do not, thus they do not serve equally well in approximating 
the unknown function. Hence, choosing the form of squasher function is often up to 
the researcher and the data used. The best way is to perform tests with different trans-
formation functions used in the neurons and use the one which performs best. This is 
one of the main drawbacks of neural networks.  

2.3 Learning Algorithms 
In order to be able to approximate the target function – in our case stock 

returns, the neural network has to be able to “learn”. The process of learning is de-
fined as the adjustment of weights using a learning algorithm. The backpropagation 
algorithm and two more specific algorithms – the conjugate gradient algorithm and 
the Levenberg-Marquardt algorithm – are considered in our empirical tests as the most 
common methods. The latter two are presented mainly because they provided the most 
impressive results in comparison to other common methods. The most common way 
to train a neural network is by learning an algorithm called “backpropagation” or 
“error-backpropagation.” The main goal of the learning process is to minimize 
the sum of the prediction errors for all training examples. The training phase is thus 
an unconstrained nonlinear optimization problem where the goal is to find the opti-
mal set of weights of the parameters by solving the minimization problem:  

( ){ }min : nΨ ω ω∈ℜ                                                   (5) 

where : nΨ ℜ →ℜ  is a continuously differentiable error function. There are seve- 
ral ways of minimizing ( )Ψ ϖ , but basically we are searching for the gradient 

( )G Ψ ϖ= ∇  of function Ψ  which is the vector of the first partial derivatives of 

the error function ( )Ψ ϖ with respect to the weight vector ϖ . Furthermore, the gra-
dient specifies the direction that produces the steepest increase in Ψ . The negative of  
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this vector thus gives us the direction of steepest decrease. The stochastic gradient 
descent backpropagation learning algorithm, as well as other methods, will not be 
discussed in any further detail, in order to keep the length of the paper under control.  

Besides the popular steepest descent algorithm, the conjugate gradient algo-
rithm is another search method that can be used to minimize the network error 
function ( )Ψ ϖ  in conjugate directions. This method puts into use the orthogonal 
and linearly independent non-zero vectors and in some cases brings better con-
vergence results than the previous method. While these methods are too simplistic for 
more complex models, the technique invented by Levenberg (1944) involves 
blending between the introduced steepest gradient and quadratic approximation. It 
uses the steepest gradient to approach the minimum, and then switches to quadratic 
approximation. Marquardt (1963) improved this method with a clever incorporation 
of estimated local curvature information. Its only drawback is that it requires a matrix 
inversion step, which makes it much slower than backpropagation or the conjugate 
gradient in more complex models. On the other hand, it has much better results. 

Finding the coefficient values of nonlinear models is not that easy a job, as 
a neural network is a highly complex nonlinear system. We can hit several locally 
optimal solutions, but none of these may be the best solution in terms of minimizing 
the error between our model prediction ŷ  and the actual value y . Maybe the reader 
is asking the question: “But what can we do to avoid this problem?” There are se-
veral techniques for minimizing the chance of converting to the “wrong” optimum. 
A very intuitive way is to re-estimate the whole model. Another way is stochastic 
evolutionary search. A genetic algorithm reduces the likelihood of landing in a local 
minimum. We do not need to approximate the Hessian; we start with a “population” 
of p  initial guesses, { }0,1 0, 2 0,, ,..., pω ω ω and update them by genetic selection, breed-
ing, and mutation, for many generations, until the best coefficient vector is found. 
One of the main drawbacks of genetic algorithms is their extreme slowness. 

2.4 Evaluation of the Estimated Models 
So far we have presented the complex procedure of estimation with neural 

networks. Before we proceed to the empirical analysis, we will briefly present a few 
criteria that will help us interpret the results. We will work with in-sample criteria, or 
training period results interpretation, which is in fact the evaluation of information on 
how well the estimated data fits our modeled data. We will see that the model that 
explains most of the variation of the training data may turn out to be inapplicable for 
forecasting purposes, or, put better, for out-of-sample data that the model “has not 
seen before”. These are also called testing data, or out-of-sample criteria. They will 
be the most important for us in the testing part. 

The framework of the empirical testing is the following. After preprocessing 
the data, we divide it into three samples – training, cross-validation, and testing sets. 
The neural network will be estimated using the training data, and the optimal weights 
will be found at this stage. Then the weights are put to the cross-validation data and 
might be slightly adapted to changes if we find that the in-sample criteria have dete-
riorated. Just after that, the last set of data is put to the test. The coefficients obtained 
from the training will be used with new data which had no impact on the calculation 



 

Finance a úvěr-Czech Journal of Economics and Finance, 58, 2008, no. 7-8                                          365 

of the coefficients. This is the most important part. The reader should also be aware 
of the ratio of the training to the testing data set. In most of the studies, a 20–25% cut 
is made for testing purposes, but it can be crucial for our results to do this with pa-
tience. Imagine that we want to model AAA stock returns and that on January 15, 
2002 there were huge reforms in the company leading to consistently higher-than- 
-expected profits. This would also have an impact on the returns of our AAA com-
pany, and if we train the network on the data until January 15, 2002 and try to test 
them further on, we may be extremely disappointed. Our model will only “know” 
the pattern from the pre-reform period. Hence, according to the changes, the pattern 
of returns also changed after the date and our model will not be capable of dealing 
with it. 

2.4.1 Statistical Comparison of Predictive Accuracy 
Another key question in forecasting is measurement of the accuracy of dif-

ferent forecasts, as we are interested in the model that produces the most accurate 
forecasts. As we are going to compare the performance of various econometric mo-
dels and neural network models, we have to consider statistical methods for com-
paring the results so we are able to identify if neural network models help us to 
produce more accurate results or not. This needs to be done on an out-of-sample 
model evaluation. 

Let us consider two h-step forecasts, { }
1

ˆ
T

i
t h t t

p + =
 and { }

1
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T
j

t h t t
p + =

, of the time 

series { } 1
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t h t

p + =
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i
t h t t
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j

t h t t
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. To choose a mo-

del with a significantly lower prediction error, and thus better accuracy, we wish to 
compare the expected loss associated with both forecasts. Of course, this will depend 
on the chosen loss function. We will restrict on the general loss function dependent 

on the forecast error here, ( )t h hL ε + , and we will try to find the optimal h-step pre-

diction: ( )*ˆ arg min tt h t t h tP E L ε+ +
⎡ ⎤≡ ⎢ ⎥⎣ ⎦

F .  

Thus, we will test the null hypothesis of equal forecast accuracy for two fore-
casts against the alternative hypothesis of unequal forecast accuracy 

( ) ( )0 : 0ji
t h t t h tH E L Lε ε+ +

⎡ ⎤− =⎢ ⎥⎣ ⎦
, where ( )t h tL ε +  is a positive loss function and 

( ) ( )ji
t h t t h tL Lε ε+ +−  is the loss differential; a quadratic loss function will be con-

sidered. 
The most important question is how we can determine if the out-of-sample fit 

of one model is significantly better than the out-of-sample fit of another model. Die-
bold and Mariano (1995) have proposed a test for the null hypothesis of equal pre-
dictive ability, against the alternative of non-equal predictive ability, which we will 
use in our testing as a core test. If we find a significant predictive edge in the data, 
we will analyze how the results of the neural network lend themselves to inter-
pretations that make economic sense and give us better information for decision 
making. The simple asset allocation strategy test we use for assessing this question 
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was created by Henriksson and Merton (1981) and Lo and MacKinlay (1997). Hen-
riksson and Merton (1981) proposed a non-parametric measure to evaluate the per-
formance of the trading strategy. In financial time series, one is often interested more 
in the sign of the stock return predictions than in the exact value. If we have a good 
sign predicting model, we are able to profit on the market “inefficiency”. The statistic 
we use was formalized by Pesaran and Timmerman (1992) and is based on the null 
hypothesis that a given model has no economic value in forecasting the direction. 

3. Application to Central European Stock Market Return Modeling 
Finally, we will use the presented theory for modeling the Central European 

stock markets. We believe that the emerging markets represent the best ground for 
the use of neural network models. The data is very often much noisier because the mar-
kets are very thin and also due to the speed with which news spreads among market 
agents. Thus, our assumption is that neural networks should be able to help un- 
cover the process. As motivation for good modeling results for emerging markets, 
the reader may be interested in the following recent research. Almost all the results 
are very impressive. Nygren (2004) examines the predictability of the Swedish Stock 
Exchange, Mohan, Jha, Laha, and Dutta (2005) examine the predictive power of neu-
ral networks on the Bombay Stock Exchange, and Cambazoglu (2003) finds im-
pressive patterns on the Turkish Stock Exchange. Finally, Yao, Tan, and Poh (1999) 
study the Kuala Lumpur Stock Exchange with some impressive results. Encouraged 
by previous research, we intend to test the power of neural networks in Central Euro-
pean markets against linear methods. We will model the returns on Central European 
stock indices daily and weekly. Specifically, we look at the Prague, Warsaw, and Bu-
dapest stock exchanges, which we believe describe the corresponding stock markets 
well. For comparison and more complex forecasting model development, we will 
also analyze the Deutsche Börse index, which is believed to be the most liquid in 
continental Europe. 

3.1 European Stock Markets 
3.1.1 Data Description 

In the prediction task, we focus on a sample of 1,566 daily returns (to achieve 
stationarity all the data are first differences of the log series 1ln lnt t tr P P −= − ) from 
January 2000 until April 2006, and 382 weekly returns from January 1999 until April 
2006 of the value-weighted PX-50, WIG, BUX, and DAX2 indices. All the data were 
downloaded and regularly uploaded from Bloomberg during the research. Monthly 
returns were omitted because the sample size is very small even for a neural network. 
The descriptive statistics of the series are summarized in Table 1. 

The Jarque-Bera test statistics tell us that all the indices for daily and weekly 
returns deviate from the normal distribution. The distributions of the Central Euro-
pean stock markets are in line with the developed stock market distributions. They 
are leptokurtic as expected, which means that they are said to have heavy tails. This 
may be attributed to conditional heteroskedasticity, so it is important to notice this 
before estimation. 

2 PX-50 – Prague Stock Exchange, WIG – Warsaw Stock Exchange, BUX – Budapest Stock Exchange, 
DAX – Deutsche Börse. 
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3.1.2 Empirical Results – Daily Returns 

We start by modeling the daily returns of each index by ARIMA estimation. 
The augmented Dickey-Fuller statistics exceed the critical values at the 1% signi-
ficance level, so we can reject the null of the presence of a unit root and state that all 
the tested series are stationary. The PX-50 seems to follow ARIMA(1,0,1) best. 
The BUX returns seem to be explained well by ARIMA(2,0,2). The WIG and DAX 
do not contain AR and MA errors, so the random walk hypothesis cannot be rejected 
for them. The Ljung-Box Q statistics show us the presence of conditional heteroske-
dasticity in the residuals from the ARIMA models. So, we will try to model them 
using the GARCH(1,1) model, as it turns out that this model rules not only with its 
parsimony, but also with its performance with these series. We find the ARIMA- 
-GARCH models to be the most appropriately specified – ARIMA(1,0,1)-GARCH(1,1) 
for the PX-50, ARIMA(2,0,2)-GARCH(1,1) for the BUX, and GARCH(1,1) for 
the DAX and WIG returns. According to the results in Table 2, we can see that 
the null hypothesis of no serial correlation can be clearly rejected with the PX-50 
model and also with the BUX model. Thus, these models do not explain all of 
the variance and should be used with caution for the forecasting task. We will use 
them only as representatives of linear modeling against the neural networks, because 
we did not find any better specified models for the data. This might be explained 
by the use of daily stock returns, which are autocorrelated due to the effect of nonsyn- 

TABLE 1  The Descriptive Statistics 

 Daily (1564 observations) Weekly (381 observations) 
 BUX DAX PX-50 WIG BUX DAX PX-50 WIG 

Mean 0.00067 -0.00005 0.00075 0.00056 0.00293 0.00337 0.00028 0.00329 
Median 0.00049 0.00045 0.00081 0.00047 0.00240 0.00525 0.00332 0.00507 
Maxi-
mum 0.06004 0.07553 0.04179 0.05593 0.09569 0.08719 0.12887 0.11501 

Mini-
mum -0.07433 -0.08875 -0.06000 -0.08468 -0.13579 -0.09876 -0.13919 -0.18100 

Std, 
Dev. 0.01410 0.01690 0.01248 0.01281 0.02967 0.02748 0.03383 0.03402 

Skew-
ness -0.14797 -0.01262 -0.27616 -0.12427 -0.20928 -0.23586 -0.17928 -0.40852 

Kurtosis 4.88697 5.61569 4.38258 5.54571 4.61303 3.69753 4.27986 5.35253 
Jarque-
Bera 237.74* 445.90* 144.45* 426.35* 44.09* 11.26* 28.05* 98.46* 

Note: * significance on the 1% level 
 
TABLE 2  In-Sample Performance on Daily Returns 

PX50 BUX WIG DAX 
 

linear neural linear neural linear neural linear neural 
 Adj R-squared 0.01 0.19 0.02 0.11 0.01 0.09 0.02 0.16 
 Schwarz criterion -6.02 -9.283 -5.73 -8.58 -6.01 -8.61 -5.71 -6.5 
 Ljung-box Q(4) 8.96*  3.8**  7.70  3.31  
 Ljung-box Q(8) 13.31**  5.98  10.48  7.18  
 Ljung-box Q(12) 16.42**  9.78  13.82  13.48  

Note: *,**,*** significance on 1%, 5% and 10% levels 
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chronous trading.3 Consequently, in the following sections the use of weekly data 
should improve the performance of these models. 

In contrast to modern econometric tools, we will model stock returns using 
the presented neural network methodology. A simple feedforward time-delayed struc-
ture of the network will be used in the testing, with one hidden layer and the Le-
venberg-Marquardt algorithm. The inputs used were three lagged variables mapped 
into three neurons, as we found this provided the best results. From the results ob-
tained (Table 2), we can see that there is a very poor pattern to be learned from our 
data. It seems that although the index returns are predictable to some extent, the pre-
dictability is very small. Neural networks perform a little better as regards explaining 
the in-sample data. R2 increases from 0.4 % achieved by the linear model to 19% 
achieved by the neural net with the PX-50 index, and the results with the other in-
dices are similar, as shown in Table 2. The Schwarz criterion also favors neural net-
works.  

But the real test of out-of-samples (Table 3) does not show a very big diffe-
rence between the linear and neural network models. We withheld 20 % of the data 
as a rule of thumb for out-of-sample testing. As for the Diebold Mariano test, we can-
not reject the null hypothesis of equal predictive accuracy of the linear and neural 
network models for all the series tested except the DAX. Thus, the neural network 
model does not seem to have significantly different errors for the tested daily returns. 
On the other hand, the economic significance of the predictions differs. For all the li-
near models, we cannot reject the null hypothesis of no predictability with the Hen-
riksson-Merton statistic4 or with the Pesaran-Timmerman. Thus, the linear models 
have no economic value and should not be used for real predictions. Even the implied 
transaction costs are at a very low level. The situation is a little different with the neu-
ral network models. From the Table 3 we can also see that with the PX-50 and BUX 
data, we can reject the null of no predictability, while H-M is significant at the 1% 
level for both data sets. P-T is significant at the 10% level for the PX-50 and 

TABLE 3  Out-of Sample Performance On Daily Returns 

PX50 BUX WIG DAX 
 

linear neural Linear neural linear neural linear neural 
 RMSE 0,02 0,01 0.02 0.15 0.01 0.01 0.09 0.08 
 NMSE 1,00 0,97 0.99 0.98 1.01 0.99 1.01 1.01 
 D-M(0)  -1.1  -0.59  -0.98  -1.72 ** 
 D-M(1)  -0.91  -0.82  -1.09  -1.78 ** 
 D-M(2)  -0.83  -0.79  -1.2  -2.02 ** 
 D-M(3)  -0.71  -0.78  -1.16  -1.72 ** 
 H-M 1* 1.08 * 1.01 ** 1.02 * 1 * 1 1 * 1.03 
 P-T 51 % 56%*** 53 % 54 % *** 54 % 54 % 62 % 47 % 
 TC 0.00  % 1.2 % 0.31 % 1.1 % 0.00 % 0.2 % 0.03 % 0.3 % 

Note: D-M: Diebold-Mariano statistic (p-values), H-M: Henriksson – Merton statistic, P-T: Pessaran-Timmer-
man (SR with p-value), TC – total costs. 
*,**,*** significance on 1%, 5% and 10% levels. 

3 For more details on this issue, see (Campbell, Lo, MacKinlay, 1997). 
4 We use the PRIBOR as the risk-free rate, and it will also be used in the following tests. 
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the BUX, which means that the null hypothesis of independence of actual signs and 
forecasted signs can be rejected at the 10% significance level. The implied trans-
action costs are higher than the real world transaction costs. Thus, even if the neural 
networks could not beat the linear models with statistically significant lower errors, 
they seem to have economic value at least for two of the tested series. Although we 
can gain some predictive edge with the daily European stock returns, the time series 
do not seem to explain themselves very well. This may have been caused by autocor-
relation which we could not remove, but as to the power of the approximation ability 
of neural networks, we think the tested daily returns may simply be unpredictable, or 
producing insignificant predictions. We will see if the weekly data bring us better 
results, allowing us to gain some more predictive edge using neural network models. 

3.1.3 Empirical Results – Weekly Returns 
Again, we start with a very similar approach with the weekly returns. The ADF 

test confirms the stationarity of the data, so we can proceed to the Box-Jenkins me-
thodology. The PX-50 follows ARIMA (1,0,0). This result is interesting, because 
the weekly data no longer contains MA errors. The other weekly returns are best ex-
plained with the same models as the daily ones. After observation of the Q statistics, 
we add GARCH(1,1) to model heteroskedasticity in the residuals and we end up with 
ARIMA(1,0,0)-GARCH(1,1) for the PX-50, ARIMA(2,0,2)-GARCH(1,1) for the BUX, 
and GARCH(1,1) for the DAX and the WIG returns. Interestingly, the null hypo-
thesis of no serial correlation cannot be rejected at the 1%, 5%, or even 10% sig-
nificance levels. Thus, the models seem to explain most of the variance in the data 
and thus can be used for predicting. A feedforward time-delayed neural network 
architecture with one hidden layer, three inputs (lagged variables), a logsigmoid 
squasher function and the Levenberg-Marquardt algorithm is again put to test. From 
the results obtained, we can see that the in-sample improvement with the neural net-
work seems to be really significant as regards explanatory power and the Schwarz 
criteria. (Table 4) 

Let us turn to the more interesting out-of-sample forecasts (result in Table 5). 
Diebold-Mariano tells us that the neural networks have a significantly lower error 
compared to the linear models with the PX-50 and BUX, as the null hypothesis of 
equal predictive accuracy can be rejected at the 5% significance level for all lags. For 
the other two tested series, the WIG and the DAX, the null of equal predictive ac-
curacy cannot be rejected, so for this data the models perform statistically similarly. 
As to the economic significance of the forecasts, we reject the null hypothesis of no 
predictability using H-M for the PX-50 and WIG series at the 1% significance level, 
and for DAX at the 10% significance level. According to P-T, the neural networks 
also have significant sign predictions, as the null hypothesis of independence of signs 
between the predicted series and the actual ones can be rejected at the 10% signi-
ficance level. The implied transaction costs are quite low, but slightly higher than 
those of the real world.5 The models did not perform well with the BUX series only, 
where we cannot reject either the null hypothesis of no predictability, or the null of 
sign independence. 

5  We found the real-world transaction costs for a €10,000 investment in the Czech Republic to be around 
0.05 % on average. 
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From the preceding tests, we can conclude that there is a predictive edge in 

the European stock markets. Neural networks seem to explain the time series a little 
better than the classical approach. When facing the prediction task, the results are 
also improved. We can say that with a significant chance of 3:2, next week’s return 
can be predicted with the use of raw price data with a neural network. We use these 
results as the starting point for the development of a more robust model in the next 
part. While it is clear that one can gain abnormal returns using the presented me-
thods, we will try to propose a different model which will use not only the lagged 
variables of the time series itself, but also other variables to gain more explanatory 
power and robust results even on daily returns. 

3.2 PX-50: Gaining a Predictive Edge 
We found that the European Stock markets contain predictable components, 

but the use of models with lagged data does not seem to provide us with strong 
results6 on the daily data. On the weekly data, the models performed significantly 
better in two cases, and we managed to gain economic significance almost for all 
the series tested. We will continue with a different approach and try to find an em-

TABLE 4  In-Sample Performance on Weekly Returns 
PX50 BUX WIG DAX 

 
linear neural linear neural linear neural linear neural 

Adj R-squared 0.02 0.48 0.01 0.15 -0.00 0.28 -0.00 0.34 
Schwarz criterion -4.38 -9.46 -3.95 -11.17 -4.25 -7.29 -4.12 6.87 
Ljung-box Q(4) 0.10  1.45  7.07  3.24  
Ljung-box Q(8) 5.94  2.25  16.33***  6.28  
Ljung-box Q(12) 8.09  7.61  19.15***  10.81  

Note: *,**,*** significance on 1%, 5% and 10% levels 
 
TABLE 5  Out-of Sample Performance on Weekly Returns 

PX50 BUX WIG DAX 
 

linear neural linear neural linear neural linear neural 
RMSE 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02 
NMSE 0.99 0.98 0.99 0.99 1.03 0.97 1.03 0.99 
D-M(0)  -2.01**  -1.78**  -0.65  -0.67 
D-M(1)  -2.03**  -1.89**  -0.62  -0.54 
D-M(2)  -1.85**  -1.98**  -0.68  -0.48 
D-M(3)  -1.94**  -1.8**  -0.8  -0.51 
H-M 1.07 ** 1.09* 0.9**   1 1.1 * 1* 1.2 *** 
P-T 58 % 60 %*** 58 % 60% 0.55 % 58 %*** 55 % 58 % *** 
TC 0.4 % 0.8 % -0.6 % 0.1 % 0.01 % 1 % 0.03 % 0.7 % 

Note: D-M: Diebold-Mariano statistic (p-values), H-M: Henriksson – Merton statistic, P-T: Pessaran-Timmer-
man (SR with p-value), TC – total costs. 
*,**,*** significance on 1%, 5% and 10% levels. 

6 The results are not that bad, though. The reader should bear in mind that if we can predict future returns
with 55%–60% accuracy, we have a “3/2 : 1” ratio of winning to losing trades. If we manage to predict
returns with 70% accuracy, this is actually an excellent result, as we have a “7/3 : 1” ratio of winning to 
losing trades and we can consistently earn abnormal returns from the market. 
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pirical relationship between the European stock markets, and if we manage to find 
one, we will use it to build a model that will give us a deeper understanding of 
the PX-50 stock market returns. In this part, we will use the same daily data as 
described in the previous section. We just remind the reader that for all of the tests 
we divide the tested sample into 70 % in-sample, 10 % cross-section, and 20 % out- 
-of-sample for the neural nets, and 80 % : 20 % for the regressions. 

3.2.1 Cointegration of the BUX, WIG, DAX, and PX-50 Markets 
Our first hypothesis is that the PX-50, DAX, BUX, and WIG are co-moving 

and thus the returns of these markets can be used to shed more light on their patterns 
and to predict each other. Žikeš (2004) provided us with the results of a Johansen 
multivariate cointegration analysis and found that all markets are influenced by at 
least one lagged variable of neighboring markets. Instead of conducting the same 
research and getting the same results, we will try to use his results in our modeling. 
The Czech, Hungarian, and Polish markets are moving together. The German mar-
ket was falling much faster during 2002–2003, and in the middle of 2003 it join- 
ed the other markets but underperformed them. From this period, we can see that 
the markets are co-moving. With the rigorous empirical background of Žikeš’s ana-
lysis, we can use this information for the prediction of the PX-50 stock market re-
turns. 

First of all, we conduct a Principal Component Analysis (PCA) to find which 
vectors influence market returns the most. We will conduct a classical regression 
PCA analysis and also a nonlinear neural network PCA (the reader is advised  
to consult (McNelis, 2005) for the methodology) for all four indices. A logsigmoid 
squasher function and the Levenberg-Marquardt optimization mechanism will be 
used. The results are in Table 6. 

Thus, we can see that all the markets really do influence each other and move 
within a narrow range. Consequently, we can try to use the lags of the PX-50, BUX, 
and WIG to explain their variance and follow the previous analysis. The reader has 

TABLE 6  Results of PCA 

PX50 BUX WIG DAX 
 

classical neural classical neural classical neural classical neural 

Adj R-squared 0.28a 0.31 0.35b 0.4 0.32c 0.34 0.18d 0.24 

Schwarz criterion -6.36 -9.13 -6.2 -9.13 -6.47 -9.25 -5.42 -8.2 

Ljung-box Q(4) 10.98**  20.2*  8.58***  17.23*  

Ljung-box Q(8) 13.24  30.01*  9.91  55.03*  

Ljung-box Q(12) 15.23  33.97*  14.69  59.95*  

Notes: a PX50 returns are being explained by BUX, WIG and DAX with coefficients 0.276*, 0.243* and 0.076* 
resp. 

b BUX returns are being explained by PX50, WIG and DAX with coefficients 0.322*, 0.376* and 0.117* 
resp. 

c WIG returns are being explained by PX50, BUX, and DAX with coefficients 0.2189*, 0.290* and 
0.1075* resp. 

d DAX returns are being explained by PX50, BUX and WIG with coefficients 0.191*, 0.258* and 0.30* 
resp. 

*,**,*** significance levels of 1%, 5% and 10% resp. 
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no doubt noticed that the DAX coefficients are the smallest, so the DAX surprisingly 
does not have such a big influence on the three market indices. They explain them-
selves best, and this information can also be used for predicting them in the follow-
ing text. Not so surprisingly, the DAX is not explained well with the PX-50, BUX,  
and WIG returns. This is caused mainly by the fact that for half of the tested period 
the DAX was moving faster against the remaining markets. If we divided the sets 
into two subsets – pre-2003 and post-2003 –, we would find much better results in 
the second period. So, we will leave this part as an exercise for interested readers, as 
we will provide a division into the sub-periods in the next out-of-sample forecasting 
tests. Thus for now the results are clear and we will move on and use them for real 
forecasting of the market returns. 

3.2.2 Cross-Market Predictions 
We found that the PX-50, BUX, WIG, and DAX returns are co-moving, so 

now we are interested if this information can be used for forecasting. The me-
thodology here will be quite different. We will try to forecast the one-day return of 
the market using the lags of the three remaining markets. For this purpose, we will 
apply correlation analysis7 to find which lags influence the returns the most. Then  
we will use linear OLS estimation and the feedforward neural network again with 
the best performing logsigmoid transformation function and the Levenberg-Mar-
quardt search algorithm. The following models were developed.8 (Table 7) 

      1 0 1 1 2 5 3 1 4 3 550 50 50t t t t t t tPX PX PX BUX BUX DAX uβ β β β β β+ − − − −= + + + + + +       (0.6) 

                 1 0 1 3 2 5 3 4 2t t t t t tBUX BUX BUX DAX DAX uβ β β β β+ − − −= + + + + +                 (0.7) 

   1 0 1 2 5 3 4 3 5 6 250 50t t t t t t t tWIG WIG WIG PX PX DAX DAX uβ β β β β β β+ − − −= + + + + + + +  (0.8) 

       1 0 1 3 2 4 3 5 4 4 5 150t t t t t t tDAX DAX DAX PX WIG BUX uβ β β β β β+ − − − − −= + + + + + +       (0.9) 

As we can see, the PX-50, BUX, WIG, and DAX returns seem to be explain-
ed to some extent by their mutual lags. As for the comparison of the autoregressive 
model with the neural network, the neural network leaves the autoregressive models 
far behind. As regards explanatory power, the neural network explains 12 %–20 % of 
the variance of the returns in the individual model, while autoregression explains 
only 1.5 %–2.34 %. The Schwartz criterion also strongly prefers the networks. So, 
the implication for modeling is very intuitive – use the linear regression model to 
identify the significance of the variables and then improve the estimates with neural 
networks. The reader can observe a very interesting fact – there is no autocorrelation 
present in the models. The Ljung-box Q statistics were not significant at any level for 
any Q(k). So the results suggest to us that we could gain some predictive edge from 
these models. Again, we will be concerned with out-of-sample testing more than in-
sample. In Table 8 we show the results for whole testing period.  

7 We use a sample correlation coefficient – the Pearson product moment correlation coefficient, which is 
the best estimate of the correlation between the two series – to determine the potential explanatory vari-
ables. We pick all variables with a correlation coefficient statistically significant at the 1%, 5%, and 10% 
levels. 
8 Estimates can be found in Appendix A (Tables 9–12). 
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In our final tests, Diebold-Mariano tells us that for almost all the series 

the errors of the linear models and the neural ones are almost identical, while we 
cannot reject the null hypothesis of equal predictive accuracy for the PX-50, BUX, 
and WIG. But we can reject the null hypothesis of no predictability for the PX-50, 
BUX, and DAX at the 1%, 5%, and 1% significance levels, respectively. We also 
reject the null hypothesis of independence of the directional change of the actual and 
predicted series for the PX-50 and BUX at the 10% significance level. The implied 
transaction costs are also in line with the H-M and P-T statistics, while they confirm 
the economic significance. Again, we were not able to gain consistently and signifi-
cantly better predictive power for all the series tested, even with the use of neural 
network models. This may imply that the daily European stock market returns are 
simply unpredictable, as the lags of the surrounding markets helped to explain the va-
riance very little. 

4. Conclusion 
In this paper, we present a neural network approach and apply it to European 

stock market return modeling. We show that there is no black box behind the net-
works, but rather a robust mathematical model, and we view the analysis as a non-
parametric econometric method. Thus, we use it for empirical testing on the Czech, 
Hungarian, and Polish returns from the 1999–2006 period to see if networks will help 

TABLE 7  In-Sample Performance of the Daily Models for Whole Tested Period 

PX50 BUX WIG DAX 
in-sample 

classical neural classical neural classical neural classical Neural 
Adj R-squared 0.02 0.12 0.02 0.20 0.023 0.17 0.019 0.11 
Schwarz criterion -6.04 -8.99 -5.78 -8.85 -6.08 -9.41 -5.23 -7.98 
Ljung-box Q(4) 1.31  5.53  0.96  2.8  
Ljung-box Q(8) 2.99  5.94  1.30  24.69  
Ljung-box Q(12) 3.02  6.53  4.05  30.51*  

Note: *,**,*** significance levels of 1%, 5% and 10% resp. 

 
TABLE 8  Out-of-Sample Performance of the Daily Models for Whole Tested Period 

PX50 BUX WIG DAX 
 

linear neural linear neural linear neural linear neural 
RMSE 0.09 0,01 0,02 0.01 0.01 0.01 0.01 0.01 
NMSE 0,985 0.98 0.99 0.96 1.01 0.99 1.01 0.99 
D-M(0)  -0.71  -0.26  -0.06  -1.9** 
D-M(1)  -0.71  -0.23  -0.08  -1.99** 
D-M(2)  -0.68  -0.23  -0.08  -1.91** 
D-M(3)  -0.65  -0.24  -0.077  -1.8** 
H-M 1.03*** 1.07* 1.04 1.06** 0.98* 1** 1.02 1.07* 
P-T 56 %** 59 %** 52 % 57 %** 52 % 56 % 53 % 57 % 
TC 0.6 % 1.2 % 1 % 1.7 % -0.62 % -0.46 % -0.45 % 0.2 % 

Note: D-M: Diebold-Mariano statistic (p-values), H-M: Henriksson – Merton statistic, P-T: Pessaran-Timmer-
man (SR with p-value), TC – total costs.  
*,**,*** significance on 1%, 5% and 10% levels. 
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us to uncover the possible return-generating process. We also present statistical and 
economic tests for comparing the models. After the theoretical background is set, we 
conduct the tests on the daily returns and we find that with the use of neural networks 
we did not manage to get significantly lower prediction errors according to the Die-
bold-Mariano test, but we gained some economic significance on the PX-50 and 
BUX markets, where the direction predictions were significant at the 5% and 10% 
levels, respectively, and we were able to predict the next day direction with a 56% 
and 54% probability of correct prediction, respectively. 

We left the daily series to conduct the same tests on the weekly ones. The in- 
-sample adjusted R2 of the neural network was impressive, as it explained 48 % of 
the PX-50, 15 % of the BUX, 28 % of the WIG, and 34 % of the DAX variance us- 
ing only lagged explanatory variables. When faced with out-of-sample forecasting, we 
were able to reject the null hypothesis of equal prediction errors between the linear and 
neural models with the PX-50 and BUX series at the 5% significance level. Thus, 
the neural networks had significantly a better forecasting error when we tested the PX- 
-50 and BUX series. We also achieved better economic significance of the models, and 
we were able to forecast the PX-50, WIG, and DAX with a directional accuracy of 
60 %, 58 %, and 58 %, respectively, significant at the 10% level. Also, the implied 
transaction costs were higher than the real-world transaction costs, which tells us that 
the predictions are economically significant. In the next part, we used the fact that 
the tested markets are co-moving. We used Principal Component Analysis to find out 
whether or not the lagged returns of the surrounding markets have a significant in-
fluence on the tested market, i.e., we tested whether the lagged returns of the BUX, 
WIG, and DAX can be used to explain the PX-50 return. We found that there are 
significant lags of the surrounding markets for each of the tested markets. We then used 
these results to model the stock market return using the cross-country lags on the dai- 
ly data. We got similar results, as we could not reject the hypothesis of equal errors of 
the linear and neural models for all series except the DAX. Interestingly, neural 
networks perform significantly better only on the daily DAX returns. We again obtain 
economic significance on the PX-50, BUX, and DAX daily returns with neural net-
works. The WIG daily return predictions are again not economically significant. 

To sum up the results of the application of neural networks to Central Euro-
pean stock market returns, we would say that the daily returns do not contain signi-
ficant patterns, as the neural network could not approximate them. It did significantly 
better in the case of the German DAX, which was basically picked as a benchmark 
large liquid European stock market. On the other hand, the WIG seems to be com-
pletely unpredictable using just the lagged historical returns. On the PX-50, BUX, 
and DAX markets, the neural network predictions were economically significant. We 
managed to gain more predictive edge from the weekly returns, while the neural net-
work performed significantly better than linear modeling for PX-50 and BUX pre-
diction, and it provided us with economically significant predictions and an ability  
to predict the direction with 60% probability. Of course, our findings have strong im-
plications for the markets and traders, but they are still of quite speculative use. More-
over, there are many problems with using these models in real trading. The main 
drawback is that most of the models tend to predict movements with a lag. This is 
fine if the markets are steady and the model captures the short-term trends well. But 
if there are unexpected exogenous moves or crashes of the stock market, the models 
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very often fail to warn us. In this research, we presented the models using only 
lagged historical data, and even if we could gain some predictive edge using neural 
network models, it is clear that further analysis needs to be done. In particular, 
the use of other variables affecting the price of stocks should be considered, as we 
see that the data do not explain them well. 
 
APPENDIX 
OLS Estimation Results For PX50, BUX, WIG and DAX Models 
 

TABLE 9  PX50 Model 
Variable Coefficient Std. Error t-Statistic Prob. 

0β  0.000834 0.000331 2.518340 0.0119 

1β  -0.066742 0.031630 -2.110083 0.0350 

2β  0.063869 0.027743 2.302173 0.0215 

3β  0.064417 0.027921 2.307141 0.0212 

4β  0.077691 0.024692 3.146457 0.0017 

5β  0.058844 0.018724 3.142688 0.0017 

 
TABLE 10  BUX Model 

Variable Coefficient Std. Error t-Statistic Prob. 

0β  0.000766 0.000376 2.037470 0.0418 

1β  0.047583 0.028101 1.693296 0.0906 

2β  0.068265 0.027978 2.439997 0.0148 

3β  0.060791 0.021326 2.850566 0.0044 

4β  0.033276 0.021337 1.559500 0.1191 

5β      

 
TABLE 11  WIG Model 

Variable Coefficient Std. Error t-Statistic Prob. 

0β  0.000554 0.000324 1.710250 0.0875 

1β  0.075760 0.032033 2.365101 0.0182 

2β   
0.061295 0.027892 2.197569 0.0282 

3β  -0.063423 0.030753 -2.062354 0.0394 

4β  0.053653 0.027227 1.970563 0.0490 

5β  0.044133 0.019863 2.221846 0.0265 

6β  0.044053 0.018288 2.408821 0.0161 

 
TABLE 12  DAX Model 

Variable Coefficient Std. Error t-Statistic Prob. 

0β  0.052203 0.028030 1.862370 0.0628 

1β  -0.110060 0.029929 -3.677415 0.0002 

2β  0.067533 0.041382 1.631945 0.1029 

3β  0.085239 0.045611 1.868815 0.0619 

4β  0.077619 0.036835 2.107219 0.0353 
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