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Abstract

A family of copulas, called semilinear, is constructed starting with some assumptions about the linearity of the copulas along
some segments of the unit square. This family contains some other known families of copulas (e.g., Cuadras–Augé, Fréchet) and has
a nice statistical interpretation. Several construction methods are provided, especially concerning aggregation of semilinear copulas,
and a special form of ordinal sum construction is introduced. Some results about related families of quasi-copulas and semicopulas
are hence given.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A two-dimensional copula (a copula, for short) is a function C from [0, 1]2 into [0, 1] which satisfies the following
properties:

(C1) C(x, 0) = C(0, x) = 0 for all x ∈ [0, 1];
(C2) C(x, 1) = C(1, x) = x for all x ∈ [0, 1] and
(C3) for all x, x′, y, y′ in [0, 1] with x�x′ and y�y′,

VC([x, x′] × [y, y′]) := C(x′, y′) − C(x, y′) − C(x′, y) + C(x, y)�0.

Conditions (C1) and (C2) express the boundary properties of a copula C, (C3) is the 2-increasing property of C, also
called moderate growth, and VC([x, x′] × [y, y′]) is called the C-volume of the rectangle [x, x′] × [y, y′] (see [22] for
a thorough exposition).
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Copulas were introduced in a statistical context in order to join bivariate distribution functions (=d.f.’s) to their
univariate marginal d.f.’s. In fact, according to Sklar’s theorem [24], for each random pair (X, Y ) there is a copula
C = CX,Y (uniquely defined whenever X and Y are continuous) such that the joint distribution function FX,Y of (X, Y )

may be represented, for all x, y ∈ R, under the form

FX,Y (x, y) = C(FX(x), FY (y)), (1.1)

where FX and FY are the d.f.’s of the random variables X and Y , respectively. Conversely, given a copula C
and two univariate d.f.’s FX and FY , the function FX,Y given by (1.1) is a bivariate d.f. with marginal d.f.’s FX

and FY .
Recently, the theory of copulas (and related operators) has received a growing interest from researchers interested

in fuzzy set theory, especially in view of possible applications in preference modelling and similarities. For exam-
ple, when the intersection of two fuzzy sets A and B on a finite universe X is defined pointwise, i.e., (A ∩ B)(x) =
I (A(x), B(x)), by means of an appropriate function I that generalizes the boolean conjunction, the function I may
not to be associative, and, sometimes, it should satisfy some additional requirements like lipschitzianity and mod-
erate growth [6,3,5,9,15]. To this end, having a great variety of copulas is of great importance in the choice of a
suitable I .

Several methods for constructing copulas have been described in the literature (see, for instance, [16,22]); in particular,
some of these make use of information of a geometric nature on the copula, such as a description of the graphs of
horizontal, vertical and diagonal sections [10,17,18,22]. In the framework of triangular norms (t-norms, for short),
constructions of this type have been considered several times: see [19,1]. In particular, the construction of a continuous
Archimedean t-norm with given diagonal section is related to the Schröder functional equation. A construction closely
connected with the idea of semilinear copulas was proposed by Mayor and Torrens [21], who characterized all continuous
t-norms T that can be expressed in the form T (x, y) = max{0, �T (max{x, y}) − |x − y|}. As a matter of fact, these
t-norms are Bertino copulas (see [11] for more details).

The aim of this paper is to construct a class of copulas whose sections are linear on some specific segments of the
unit square, and, therefore, they are called semilinear.

In Section 2, the class of semilinear copulas is introduced; this is, then, characterized in Section 3. Some remarks
about the statistical interpretations of semilinear copulas are provided in Section 4. Some interesting examples, and,
among them, a new construction of “ordinal sum” type, are given in Section 5. The study of the aggregation of several
semilinear copulas is the object of Section 6. Finally, the related classes of semilinear semicopulas and quasi-copulas
are considered (Section 7).

2. Definitions

First of all, recall that it follows from the definition that each copula C is a non-decreasing function of each of its
arguments, and that it is 1-Lipschitz, i.e., for all x1, x2, y1 and y2 in [0, 1],

|C(x1, y1) − C(x2, y2)|� |x1 − x2| + |y1 − y2|. (2.1)

Moreover, for each copula C and for each (x, y) in [0, 1]2

W(x, y)�C(x, y)�M(x, y),

whereW and M are the lower and upper Fréchet–Hoeffding bounds, respectively, given by W(x, y) = max{x+y−1, 0},
and M(x, y) = min{x, y} for all (x, y) ∈ [0, 1]2. Another important copula is �(x, y) = xy. Notice that W , �, M are
also triangular norms [19].

The diagonal section of a copula C is the function �C : [0, 1] → [0, 1] given by �C(t) = C(t, t), which verifies the
following properties:

(D1) �C(0) = 0, �C(1) = 1;
(D2) �C(u)�u for all u ∈ [0, 1];
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(D3) �C is non-decreasing and
(D4) �C is 2-Lipschitz, i.e., |�C(v) − �C(u)|�2|v − u| for all u, v ∈ [0, 1].

The set of all functions � : [0, 1] → [0, 1] satisfying (D1)–(D4) will be denoted by D. The elements of D will be called
diagonals.

Definition 1. A copula C is called lower semilinear if, for all x ∈]0, 1], the mappings

hx : [0, x] → [0, 1], hx(t) := C(t, x),

vx : [0, x] → [0, 1], vx(t) := C(x, t),

are linear.
A copula C is called upper semilinear if, for all x ∈ [0, 1[, the mappings

hx : [x, 1] → [0, 1], hx(t) := C(t, x),

vx : [x, 1] → [0, 1], vx(t) := C(x, t),

are linear.

Roughly speaking, a copula is lower semilinear if its sections are linear on the segments joining any point of the
diagonal of the unit square to the lower side and to the left side of the unit square, respectively. Analogously, a copula
is upper semilinear if its sections are linear on the segments joining any point of the diagonal of the unit square to the
upper side and to the right side of the unit square, respectively.

0 1

1

Lower semilinear copula

0 1

1

Upper semilinear copula

Thanks to the diagonal section, it is possible to give the explicit expressions for lower and upper semilinear copulas.

Lemma 2. Let C: [0, 1]2 → [0, 1] be a copula. Then the following statements are equivalent:

(a) C is lower semilinear and
(b) C is given by

C(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

y
�C(x)

x
, y�x,

x
�C(y)

y
otherwise,

(2.2)

where the convention 0
0 := 0 is adopted.

Proof. If C is lower semilinear, then Eq. (2.2) can be derived by the linear interpolation of the known values of the
copula C. On the one hand, by interpolating between the values 0 at the point (x, 0) and �C(x) at (x, x), and on
the other hand, by interpolating between the values 0 at the point (0, x) and �C(x) at (x, x). The rest of the proof is
trivial. �
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By analogous considerations, one also has the following result.

Lemma 3. Let C: [0, 1]2 → [0, 1] be a copula. Then the following statements are equivalent:

(a) C is upper semilinear and
(b) C is given by

C(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

(y − 1)
x − �C(x)

1 − x
+ x, x�y,

(x − 1)
y − �C(y)

1 − y
+ y otherwise,

(2.3)

where the convention 0
0 := 1 is adopted.

Notice that every upper semilinear copula C�
U with diagonal section � is given by

C�
U(x, y) = x + y − 1 + C �̂

L(1 − x, 1 − y),

where C �̂
L is the lower semilinear copula determined by the diagonal section �̂(t) = 2t − 1 + �(1 − t). Therefore, in

the following, only “lower semilinear” copulas will be discussed, and they will be simply called “semilinear”, if no
confusion arises. Usually, the function C defined by (2.2) will be denoted by S�.

Observe that each semilinear copula S� is symmetric and its expression depends on the values of its diagonal section.
It must be stressed that a diagonal � ∈ D need not be the diagonal section of a semilinear copula. For instance, let the
function �: [0, 1] → [0, 1] be given by �(x) := max{2x − 1, 0}. Obviously, � = �W is in D. Now, the function S�
constructed from � according to (2.2) is given by

S�(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if (x, y) ∈
[

0,
1

2

]2

,

y
2x − 1

x
if y�x, x >

1

2
,

x
2y − 1

y
otherwise,

which is not a copula. It is easy to see that S� is a non-decreasing function from [0, 1]2 into [0, 1] with neutral element
equal to 1. Since S� is not 1-Lipschitz, it is not a copula (in fact, S� is a 2-Lipschitz semicopula [13]).

3. Characterization

Here, some necessary and sufficient conditions on the diagonal � are given in order to ensure that the function S�
defined by (2.2) is a semilinear copula.

Theorem 4. For a diagonal � ∈ D, let the function S�: [0, 1]2 → [0, 1] be defined by

S�(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

y
�(x)

x
if y�x,

x
�(y)

y
otherwise,

(3.1)

where the convention 0
0 := 0 is adopted. Then S� is a semilinear copula if , and only if , the functions ��, ��: ]0, 1] →

[0, 1] defined by

��(x) := �(x)

x
, ��(x) := �(x)

x2

are non-decreasing and non-increasing, respectively.
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Proof. Let S� be a semilinear copula. Since S� is non-decreasing in each place, �� is non-decreasing. That �� is
non-increasing is a consequence of the representation (3.1) and of the 2-increasing property of S� applied to the square
[u, v] × [u, v], with 0 < u < v�1. In fact, VS�([u, v] × [u, v])�0 is equivalent to

�(u) + �(v)�2u
�(v)

v
.

This last inequality can be written in the form

�(u)

u2
� �(v)

v2
− �(v)

(
1

u
− 1

v

)2

, (3.2)

which, in its turn, is equivalent to

��(u)���(v) − �(v)
(v − u)2

u2v2
. (3.3)

First, notice that �(u) is strictly positive for all u > 0. In the opposite case, there would exist a > 0 such that �(a) = 0;
this would imply S�(x, y) = 0 for all (x, y) ∈ [0, a]2. Let a be the greatest such element, i.e.,

a := max{x ∈]0, 1[: �(x) = 0}.
Choose b ∈]0, 1[ such that 0.8b < a < b; then the S�-volume of the square [0.8b, b]2 is

VS�([0.8b, b]2) = �(b) − 1.6�(b) < 0,

which is a contradiction.
Suppose, if possible, that the function �� is not non-increasing, i.e., there exist u0 and v0 such that 0 < u0 < v0 �1

and ��(u0) < ��(v0). Put

k := ��(v0) − ��(u0)

v0 − u0
.

Then, for every � ∈]0, v0−u0] there are u�, v� ∈ [u0, v0], u� = v�−�, such that ��(v�)���(u�)+k�. Take � ∈]0, v0−u0]
such that

� < k
u4

0

�(v0)
.

Then, applying (3.3) to u� and v�, yields

��(u�)���(v�) − �(v�)

u2
�v

2
�
�2 ���(u�) + k� − �(v�)

u2
�v

2
�
�2,

which implies

��k
u2

�v
2
�

�(v�)
�k

u4
0

�(v0)
,

a contradiction. This proves that �� is non-increasing.
Conversely, let �� be non-increasing and �� non-decreasing. Then for all u and v such that 0 < u < v�1 one has

�(u)

u2
� �(v)

v2
,

which implies (3.2), i.e., that S� is 2-increasing on the square [u, v]2. To conclude the proof, because of the symmetry
of S�, it suffices to prove that S� is 2-increasing on rectangles [x, x′] × [y, y′] with x < x′, y < y′ and y′ �x. In such
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a case, since �� is non-decreasing, one has

S�(x
′, y′) − S�(x

′, y) − S�(x, y′) + S�(x, y)

=
(

�(x′)
x′ − �(x)

x

)
(y′ − y) = (��(x

′) − ��(x))(y′ − y)�0.

Finally, the semilinearity of S� follows from Lemma 2. �

The set of all diagonals � ∈ D that satisfy the conditions of Theorem 4 will be denoted by DS :

DS = {� ∈ D : �� non-decreasing on]0, 1], �� non-increasing on]0, 1]}.
As each diagonal � ∈ D is 2-Lipschitz, and, therefore, absolutely continuous, the following claim can easily be proved.

Corollary 5. Let � ∈ D. Then the function S� defined by (3.1) is a semilinear copula if , and only if ,

�(x)�x�′(x)�2�(x), (3.4)

at all points x ∈]0, 1[ where the derivative �′(x) exists.

From (3.4) one has, for each � ∈ DS , t ∈]0, 1[ and x ∈ [t, 1],
�′(x)

�(x)
� 2

x
�⇒

∫ 1

t

�′(x)

�(x)
dx�

∫ 1

t

2

x
�⇒ − ln �(t)� − ln t2 �⇒ �(t)� t2.

The function ��: [0, 1] → [0, 1] given by ��(t) = t2 is an element of DS and thus it is the smallest element of DS .
Consequently, S�� = � is the smallest semilinear copula. On the other hand, the greatest element of DS is the diagonal
section of the upper Fréchet–Hoeffding bound M and, hence, the copula M is the greatest semilinear copula.

Example 6. For every � ∈ [0, 1], let ��: [0, 1] → [0, 1] be defined by

��(t) = t2−�.

Then all the functions ��, � ∈ [0, 1], belong to DS . The family of semilinear copulas (S��
)�∈[0,1] describes the

Cuadras–Augé family of copulas [2].

Example 7. For every � ∈ [0, 1], let ��: [0, 1] → [0, 1] be given by

��(t) = �t2 + (1 − �)t.

Then all the functions ��, � ∈ [0, 1], belong to DS . The family of semilinear copulas (S��
)�∈[0,1] describes the Fréchet

family of copulas, which are just convex linear combinations of the copulas � and M [22].

4. Statistical comments about semilinear copulas

In [8], the first author studied the family of bivariate copulas Cf defined by

Cf (x, y) = min{x, y}f (max{x, y})
for a suitable function f : [0, 1] → [0, 1]. It is easy to show that the class of semilinear copulas coincides with the above
class by setting f (t) = �(t)/t . However, Theorem 4 is more general than the analogous characterization in [8,7], where
the assumption of the differentiability for the diagonal is requested. Many statistical properties of semilinear copulas
can be found in [7], and, hence, they will not be examined here. However, notice that the first idea of considering such
copulas can be found in [2, Section 2.3].

It might be of interest to notice that semilinear copulas are, in fact, connected to another family of copulas introduced
by Marshall [20] (see also [22]). Specifically, if f, g: [0, 1] → [0, 1] are continuous and increasing functions such that
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f (0) = g(0) = 0, f (1) = g(1) = 1, and both t 	→ f (t)/t and t 	→ g(t)/t are decreasing, then Marshall showed that
the mappings Cf,g: [0, 1]2 → [0, 1] defined by

Cf,g(x, y) = xy min

{
f (x)

x
,
g(y)

y

}
(4.1)

are copulas (but the converse implication is not considered). By a simple change of notations, it is easily proved that
the class of semilinear copulas coincides with the class of symmetric Marshall’s copulas (which corresponds to the
case f = g). But, more significantly, the family of Marshall’s copulas is generated by semilinear copulas as shown in
the following result.

Proposition 8. The following statements are equivalent:

(a) C is a Marshall’s copula, viz. it has the representation (4.1) and
(b) two semilinear copulas S1 and S2 exist such that, for all (x, y) ∈]0, 1]2,

C(x, y) = min

{
S1(xy, y)

y
,
S2(x, xy)

x

}
.

Proof. Marshall’s copulas may be written in the form

C(x, y) = min{yf (x), xg(y)}.
Now, it is enough to take

f (t) = �S1(t)

t
and g(t) = �S2(t)

t

in order to conclude the proof. �

The preceding result together with the results of [20] allows to give the following statistical characterization of
semilinear copulas.

Proposition 9. If S� is a semilinear copula and, for a univariate d.f. F, H(x, y) = S�(F (x), F (y)) is a bivariate d.f.,
then there exist three independent random variables Z1, Z2 and Z3 such that H is the joint distribution function of the
random pair (X, Y ), where

X = max{Z1, Z3} and Y = max{Z2, Z3}.

In particular, it is not difficult to show that, given the functions �� and �� defined in Theorem 4, ��(F ) is the
distribution function of Z1 and Z2, and 1/��(F ) is the distribution function of Z3. Analogous statistical characterization
of semilinear copulas can be given in terms of survival d.f.’s, also following [20].

Thus every semilinear copula S� describes the dependence structure of continuous r.v.’s X and Y that derive from a
latent triple (Z1, Z2, Z3), where Z1 and Z2 have a common distribution function.

For example, if one considers Z1 and Z2 uniformly distributed on (0, 1) and Z3 such that FZ3(x) = x(1−�)/� for
all x ∈ [0, 1], then the joint d.f. of the random pair (max{Z1, Z3}, max{Z2, Z3}) is a member of the Cuadras–Augé
family.

On the other hand, if Z1 and Z2 have uniform distribution on [0, 1] and Z3 on [0, 2], then the corresponding
semilinear copula S is the ordinal sum of the copulas (A, M), where A(x, y) = √

xy min{x, y}, with respect to the
partition ([0, 1

2 ], [ 1
2 , 1]) (see [22] for more details on ordinal sums).

5. Examples

In this section, some examples of semilinear copulas are provided by imposing simple conditions on their diagonal
sections.
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Proposition 10. Let S� be a semilinear copula.

(a) If there is an element x0 ∈]0, 1[ such that �(x0) = x0, then �(x) = x for all x ∈ [x0, 1], and S�(x, y) = min{x, y}
whenever max{x, y}�x0.

(b) If there is an element x0 ∈]0, 1[ such that �(x0) = x2
0 , then �(x) = x2 for all x ∈ [x0, 1], and S�(x, y) = xy

whenever max{x, y}�x0.

Proof. (a) Let x0 ∈]0, 1[ be such that �(x0) = x0. Since the function �� is non-decreasing, one can conclude that, on
[x0, 1],

1 = �(x0)

x0
� �(x)

x
� �(1)

1
= 1,

namely, �(x) = x for each x ∈ [x0, 1]. From the representation (3.1) of semilinear copulas it follows that S�(x, y) =
min{x, y} if either x or y are in [x0, 1].

(b) Assume now that there exists x0 ∈]0, 1[ such that �(x0) = x2
0 ; since the function �� is non-increasing, one has,

for every x ∈ [x0, 1],

1 = �(x0)

x2
0

� �(x)

x2
� �(1)

12
= 1,

namely �(x) = x2 for every x ∈ [x0, 1]. Therefore S�(x, y) = xy whenever either x or y exceeds x0. �

Example 11. For ��1, define a function ��: [0, 1] → [0, 1] via

��(t) := t min{�t, 1}.
Then all the functions �� belong to DS . Notice that S�� is the ordinal sum (〈0, 1/�, �〉).

Now, some distinguished non-trivial examples of diagonal sections of semilinear copulas are introduced. All neces-
sary calculations may be carried out by applying Corollary 5.

Proposition 12. (a) A piecewise linear diagonal � ∈ D is an element of DS if , and only if , one has, for every
i = 1, . . . , n − 1,

bi

ai

� bi+1 − bi

ai+1 − ai

�2
bi

ai

,

where (a0, b0), . . . , (an, bn) are the end-points of the n segments forming the graph of � such that

0 = a0 < a1 < · · · < an = 1 and 0 = b0 < b1 < · · · < bn = 1.

(b) An absolutely monotone diagonal � ∈ D, i.e., a function given by

�(x) =
∞∑
i=1

aix
i with ai �0 and

∞∑
i=1

ai = 1

is the diagonal section of a semilinear copula if , and only if ,

∞∑
i=3

(i − 1)ai �a1.

For example, for n = 2, part (a) of the previous proposition means that, when the graph of � consists of two segments,
the only “free” point (a1, b1) fulfils the condition

a1

2 − a1
�b1 �a1.
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The linearity of the semilinear copulas S1 and S2 on relevant segments leads to the equality

�S2(a)S1(x, y) = �S1(a)S2(x, y),

for all x, y, and a in [0, 1] such that max{x, y} = a. This observation allows to introduce a notion of linear ordinal sum
of semilinear copulas.

Proposition 13. Let {ai}ni=1 be a strictly decreasing finite sequence in ]0, 1] with a1 = 1. Let {Si}ni=1 be a system of
semilinear copulas and {�i}ni=1 the corresponding system of diagonal sections. Then the function S: [0, 1]2 → [0, 1]
defined by

S(x, y) := �i−1(ai)

�i (ai)
Si(x, y) (x, y) ∈ [0, ai]2\]0, ai+1[2,

where, by convention, �0(1) := 1 and an+1 := 0, is a semilinear copula. This copula will be called the linear ordinal
sum of the copulas {Si}ni=1 and will be denoted by

S = (〈ai, Si〉 | i = 1, . . . , n)L.

Observe that, for every semilinear copula S and for every strictly decreasing finite sequence {ai}ni=1 in ]0, 1] with
a1 = 1, one has

S = (〈ai, S〉 | i = 1, . . . , n)L.

Formally, one can define a linear ordinal sum only starting from a non-increasing sequence {ai}ni=1. However, if ai+1 =
ai for some i, then the (i + 1)th summand may be omitted. Moreover, an infinite linear ordinal sum of semilinear
copulas can also be introduced. Linear ordinal sums of semilinear copulas may be used in finding best possible bounds
in the class of semilinear copulas with a fixed value at a point of the diagonal.

Proposition 14. Let x0 ∈]0, 1[ and a ∈ [x2
0 , x0]. Then, for every semilinear copula S with �S(x0) = a, one has

(〈1, �〉, 〈a/x0, M〉, 〈x0, �〉)L �S�(〈1, M〉, 〈x2
0/a, �〉, 〈x0, M〉)L.

Proof. For a diagonal � ∈ DS with �(x0) = a, one has ��(x0) = a/x0, ��(x0) = a/x2
0 , and necessarily, ��(x)�a/x0

on ]0, x0[, namely, for all x ∈ [0, x0],
�(x)�x

a

x0
.

Similarly, ��(x)�a/x2
0 on ]0, x0[, i.e., for all x ∈ [0, x0],

�(x)�x2 a

x2
0

.

Next, for all x ∈ [x0, 1] one has

a

x0
���(x)�1 and 1���(x)� a

x2
0

,

namely

a

x0
x��(x)�x and x2 ��(x)� a

x2
0

x2.

Therefore, one has, for every x ∈ [x0, 1],

max

{
a

x0
x, x2

}
��(x)� min

{
x,

a

x2
0

x2

}
,
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and, summarizing, �a,x0
����a,x0 , where

�a,x0
(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a

x2
0

x2 if x ∈ [0, x0],
a

x0
x if x ∈

]
x0,

a

x0

]
,

x2 otherwise,

and

�a,x0(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a

x0
x if x ∈ [0, x0],

a

x2
0

x2 if x ∈
]

x0,
x2

0

a

]
,

x otherwise.

As both functions �a,x0
and �a,x0 are in DS , and since the semilinear copulas corresponding to them are linear ordinal

sums of the form

(〈1, �〉, 〈a/x0, M〉, 〈x0, �〉)L and (〈1, M〉, 〈x2
0/a, �〉, 〈x0, M〉)L,

the result follows. �

Notice that the above result improves the bounds given in [22, Theorem 3.2.3] for copulas with a given value at a
point of the unit square (see also [10]).

6. Aggregation of semilinear copulas

If n diagonals �1, �2, . . . , �n in DS are given, then it may be asked what is, if any, the relationship between, on
the one hand, the semilinear copula S� constructed from a function � = A(�1, �2, . . . , �n), obtained by a pointwise
aggregation of diagonals �i through an appropriate aggregation function A that ensures that � belongs to DS and, on
the other one, the function obtained by the A-aggregation of the semilinear copulas S�1 , . . . , S�n

.
Recall that, for n�2, an n-ary aggregation function A on the interval [0, ∞[ is a function A: [0, ∞[n→ [0, ∞[ that

is non-decreasing in each variable, and such that A(0, . . . , 0) = 0 and

sup{A(x1, . . . , xn) | (x1, . . . , xn) ∈ [0, ∞[n} = ∞.

An aggregation function A is said to be homogeneous, if one has, for all x1, . . . , xn and for every c in [0, ∞[,
A(cx1, . . . , cxn) = cA(x1, . . . , xn),

and A is said to be idempotent, if for all x ∈ [0, ∞[, A(x, . . . , x) = x.

Proposition 15. Let A: [0, ∞[n→ [0, ∞[ be an idempotent homogeneous aggregation function. If �1, �2, . . . , �n

belong to DS , then the function � = A(�1, . . . , �n) defined, for all x ∈ [0, 1], by

�(x) := A(�1(x), �2(x), . . . , �n(x)),

is also in DS . Furthermore, the semilinear copula S� defined by (3.1) is represented, for all (x, y) ∈ [0, 1]2, by

S�(x, y) = A(S�1(x, y), . . . , S�n
(x, y)).

Proof. Let �1, �2, . . . , �n belong to DS . It is easy to see that the mapping � = A(�1, . . . , �n) satisfies properties
(D1)–(D3). Now, we prove that the functions �� and �� are non-decreasing and non-increasing on ]0, 1], respectively,
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and then that � is 2-Lipschitz, i.e., that condition (D4) is fulfilled. For every x ∈]0, 1],

��(x) = �(x)

x
= A(�1(x), . . . , �n(x))

x
= A

(
�1(x)

x
, . . . ,

�n(x)

x

)

= A(��1
(x), . . . ,��n

(x)),

and similarly,

��(x) = A(��1
(x), . . . , ��n

(x)).

That �� is non-decreasing and that �� is non-increasing on ]0, 1] follow from the analogous properties of the ��i
’s and

of the ��i
’s, and from the fact that A is non-decreasing in each variable.

Next, because of the monotonicity of ��, for every u ∈]0, 1] and for every � ∈]0, u[, one has

�(u)

u2
� �(u − �)

(u − �)2
.

Put �(u) − �(u − �) = �. Then

�(u)(u − �)2 �u2(�(u) − �),

which is equivalent to

��2�
�(u)

u
− �2�(u)

u2
.

Finally, on account of the monotonicity of ��, one obtains

0���2�
�(u)

u
�2�

�(1)

1
= 2�,

namely,

0��(u) − �(u − �)�2�,

which proves the 2-Lipschitz property of � on ]0, 1]. Since 0��� id[0,1], the 2-Lipschitz property of � on [0, 1] follows.
Further, for each y�x and x �= 0, one has

S�(x, y) = y
�(x)

x
= y

x
A(�1(x), . . . , �n(x))

= A(
y

x
�1(x), . . . ,

y

x
�n(x)) = A(S�1(x, y), . . . , S�n

(x, y)).

The rest of the proof follows from the symmetry of semilinear copulas. �

Notice that the convex sums (weighted arithmetic means), the log-convex sums (weighted geometric means), the
maximum and the minimum are aggregation functions on [0, ∞[ satisfying the assumptions of Proposition 15, and
therefore the following result can be formulated.

Corollary 16. The class S of all semilinear copulas is a convex and log-convex subclass of the class of all copulas C.
Moreover, S is also closed under suprema and infima and compact with respect to the topology of uniform convergence,
i.e., it is a complete lattice.

The result stated in Corollary 16 ought to be compared with those valid in general: while the set of all copulas is not
closed under suprema and infima (see [23]), the class S of semilinear copulas is.
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7. Semilinear quasi-copulas and semicopulas

The construction of semilinear copulas with prescribed diagonal section can also be applied to semicopulas and quasi-
copulas, which are two generalizations of the notion of copula. Recall that a semicopula is a function S: [0, 1]2 → [0, 1]
that is non-decreasing in each variable and satisfies the boundary conditions (C1) and (C2) (see [13]). A quasi-copula
S: [0, 1]2 → [0, 1] is a semicopula satisfying the 1-Lipschitz condition (2.1) (see [14]).

The following characterization can be derived from [7].

Theorem 17. For a diagonal � ∈ D, let the function S�: [0, 1]2 → [0, 1] be defined by

S�(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

y
�(x)

x
if y�x,

x
�(y)

y
otherwise,

(7.1)

where the convention 0
0 := 0 is adopted. Then S� is a semilinear quasi-copula if , and only if , the function ��: ]0, 1] →

[0, 1] defined by

��(x) := �(x)

x

is non-decreasing and satisfies

x1 · ��(x2) − ��(x1)

x2 − x1
�1

for every x1, x2 in [0, 1] with x1 < x2.

Since each diagonal � ∈ D is 2-Lipschitz, and, therefore, absolutely continuous, the following claim can easily be
proved.

Corollary 18. Let � ∈ D. Then the function S� defined by (7.1) is a semilinear quasi-copula if , and only if ,

�(x)�x�′(x)�x + �(x),

at all points x ∈]0, 1] where the derivative �′(x) exists.

There are several semilinear quasi-copulas that are not copulas. For example, for every x0 ∈]0, 1[, define the function
�x0 : [0, 1] → [0, 1] by

�x0(x) =
{

x0x if x�x0,

x − x0 + xx0 otherwise.

Then S�x0
is a proper semilinear quasi-copula.

Analogously, if one wishes to construct semilinear semi-copulas from diagonal sections, then one may start from
the set D′ containing all functions �: [0, 1] → [0, 1] satisfying (D1)–(D3), but not necessarily (D4). Evidently, D is a
proper subset of D′. The following result can be easily showed.

Theorem 19. For a diagonal � ∈ D′, let the function S�: [0, 1]2 → [0, 1] be defined by

S�(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

y
�(x)

x
if y�x,

x
�(y)

y
otherwise,

(7.2)
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where the convention 0
0 := 0 is adopted. Then S� is a semilinear semicopula if , and only if , the function ��: ]0, 1] →

[0, 1] defined by

��(x) := �(x)

x

is non-decreasing.

For example, for each r ∈ [1, ∞[, the function �r : [0, 1] → [0, 1], defined by �r (x) = xr , is an element of D′ and
the corresponding semilinear semi-copula is given by

S�r
(x, y) = min{x, y}(max{x, y})r−1.

In [1, pp. 126–127], it was stressed that semicopulas of this type could be used in the study of generalizations of the
classical symmetric difference of sets.

8. Conclusions

A family of copulas, called semilinear, has been constructed starting with some assumptions about the linearity of
the copulas along some segments of the unit square. This family contains some other known families of copulas (e.g.,
Cuadras–Augé, Fréchet) and has a nice statistical interpretation. Several construction methods have been provided,
especially concerning aggregation of semilinear copulas, and a special form of ordinal sum construction is introduced.
Due to its great flexibility, this family may be used in many recent applications on fuzzy preference modelling and
similarities. To this end, related families of quasi-copulas and semicopulas have been considered.

Finally, remark that a previous version of this manuscript has already originated some other investigations. Specifi-
cally, in [4], the idea of semilinearity is used in order to introduce a class of non-symmetric semilinear copulas. In [12],
instead, the authors considered an extension of this family to the n-dimensional case (n�3).
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