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Abstract

In this note, we compare two approaches for handling risk-variability features arising in
discrete-time Markov decision processes: models with exponential utility functions and mean
variance optimality models. Computational approaches for finding optimal decision with re-
spect to the optimality criteria mentioned above are presented and analytical results showing
connections between the above optimality criteria are discussed.
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1 Introduction

The usual optimization criteria examined in the literature on optimization of Markov reward
processes, e.g. total discounted or mean reward, may be quite insufficient to characterize the
problem from the point of the decision maker. To this end it is necessary to select more sophis-
ticated criteria that reflect also the variability-risk features of the problem.

Perhaps the best known approach how to handle such problems stems from the classical work
of Markowitz [19] on mean variance selection rules for the portfolio selection problem. Following
the mean variance selection rule, the investor selects from among a given set of investment
alternatives only investments with a higher mean and lower variance than a member of the
given set.

The mean variance selection rule can also be employed in Markovian decision models. Fol-
lowing this approach along with the total reward or long run average expected return (i.e. the
mean reward per transition) we consider total or average variance of the (long run) cumulative
rewards. For details see [11, 12, 14, 15, 16, 18, 29, 30], the review paper by White [32], and
also recent results of the present authors [22, 24, 25, 26, 27]. It is important to notice that in
many of the above papers the long run average “variance” is considered only with respect to
one-stage reward variance and not to variance of cumulative rewards; hence it is more appro-
priate to speak about “average variability” instead of “average variance.” As it was shown on
a number of numerical examples in [22], optimal solutions based on “average variability” are
mostly different of optimal solutions based on precisely calculated “average variance.”

Another possible approach how to attack the variability-risk features arising in Markovian
decision problems is to consider, instead of linear objective functions, exponential utility func-
tions. Recall that exponential utility functions are the most widely used non-linear utility



functions, cf. [6], and only linear and exponential functions are separable and hence appropriate
for sequential decisions. Furthermore, Kirkwood [17] shows that in most cases an appropriately
chosen exponential utility function is a very good approximation for general utility function. In
[10] Howard demonstrates importance of exponential functions for treatment of a wide range
of individual and risk preferences. The research of Markov decision processes with exponential
objective functions, called risk-sensitive Markov decision processes, was initiated in the seminal
paper by Howard and Matheson [9] and followed by many other researchers in recent years (see
e.g. [3, 4, 5, 13, 23, 28]).

In this note we focus attention on risk-sensitive optimality criteria (i.e. the case when expecta-
tion of the stream of rewards generated by the Markov processes is evaluated by an exponential
utility function) and their connections with mean-variance optimality (i.e. the case when a suit-
able combination of the expected total reward and its variance, usually considered per transition,
is selected as a reasonable optimality criterion).

It is well known from the literature (see e.g. [31]) that for an exponential utility function,
say uγ(·), i.e. utility function with constant risk sensitivity γ ∈ R, the utility assigned to the
(random) reward ξ is given by

uγ(ξ) :=

{
sign (γ) exp(γξ) if γ 6= 0

ξ for γ = 0.
(1.1)

Obviously uγ(·) is continuous and strictly increasing. Moreover, if γ > 0 then uγ(ξ) = exp(γξ) is
convex and the decision maker is risk seeking. On the other hand if γ < 0 then uγ(ξ) = − exp(γξ)
is concave and the decision maker is risk averse.

The following facts are useful in the sequel:

1. For U (γ)(ξ) := E exp(γξ) the Taylor expansion around γ = 0 reads (in what follows E is
reserved for expectation)

U (γ)(ξ) = 1 + E

∞∑

k=1

(γξ)k

k!
= 1 +

∞∑

k=1

γk

k!
· E ξk. (1.2)

Observe that in (1.2) the first (resp. second) term of the Taylor expansion is equal to γE ξ

(resp. 1
2(γ2)E ξ2). In particular, if for random variables ξ, ζ with E ξ = E ζ it holds E ξ2 < E ζ2

(or equivalently var ξ < var ζ) then there exists γ0 > 0 such that U (γ)(ξ) < U (γ)(ζ) for any
γ ∈ (−γ0, γ0).

2. For Z(ξ), the certainty equivalent of the (random) variable ξ, given by the condition
uγ(Z(ξ)) = E[uγ(ξ)]), we immediately get

Z(ξ) =

{
1
γ

ln{E [exp(γξ)]} if γ 6= 0

E [ξ] for γ = 0.
(1.3)

Observe that if ξ is constant then Z(ξ) = ξ, if ξ is nonconstant then by Jensen’s inequality

Z(ξ) > E ξ (if γ > 0, the risk seeking case)

Z(ξ) < E ξ (if γ < 0, the risk averse case)

Z(ξ) = E ξ (if γ = 0, the risk neutral case)

3. Finally, recall that exponential utility function considered in (1.1) is separable what is very
important for sequential decision problems, i.e. uγ(ξ(1) + ξ(2)) = sign(γ)uγ(ξ(1)) · uγ(ξ(2)).

4. In economic models (see e.g. [1], [31]) we usually assume that the utility function u(·)
is increasing (i.e. u′(·) > 0), concave (i.e. u′′(·) < 0, what is fulfilled in (1.1) for γ < 0) with
u(0) = 0 and u′(0) < ∞ (so called the Inada condition).
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Since a linear transformation of the utility function uγ(ξ) preserves the original preferences
(cf. [1],[31]) we shall also consider the utility functions

ūγ(x) = 1 − exp(γx), where γ < 0 (the risk averse case) (1.4)

ũγ(x) = exp(γx) − 1, where γ > 0 (the risk seeking case) (1.5)

and the function ūγ(x) satisfies all above conditions imposed on a utility function in economy
theory. Observe that the Taylor expansions of ūγ(x) and of ũγ(x) read

ūγ(x) =
∞∑

k=1

(−1)k+1 |γ|
k

k!
· xk, where γ < 0, ũγ(x) =

∞∑

k=1

γk

k!
· xk, where γ > 0 (1.6)

and if x = ξ is a random variable for the expected utilities we have

Ūγ(ξ) := E ūγ(ξ) =
∞∑

k=1

(−1)k+1 |γ|
k

k!
· E ξk, Ũγ(ξ) := E ũγ(ξ) =

∞∑

k=1

γk

k!
· E ξk. (1.7)

In this note we focus attention on properties of the expected utility and the corresponding cer-
tainty equivalents if the stream of obtained rewards is evaluated by exponential utility functions
and their connections with more classical mean-variance optimality criteria.

2 Notation and Preliminaries

Consider a Markov decision chain X = {Xn, n = 0, 1, . . .} with finite state space I = {1, . . . , N},
finite set Ai = {1, 2, . . . , Ki} of possible decisions (actions) in state i ∈ I and the following
transition and reward structure (we assume that in state i action a ∈ Ai is selected):

pa
ij : transition probability from i → j (i, j ∈ I),

rij : one-stage reward for a transition from i → j,

ra
i : expected value of the one-stage rewards incurred in state i,

r
(2),a
i : second moment of the one-stage rewards incurred in state i.

Obviously, ra
i =

∑
j∈I pa

ij · rij , r
(2),a
i =

∑
j∈I pa

ij · [rij ]
2 and hence the corresponding one-stage

reward variance σ
2,a
i = r

(2),a
i − [ra

i ]
2.

Policy controlling the chain is a rule how to select actions in each state. In this note, we
restrict on stationary policies, i.e. the rules selecting actions only with respect to the current
state of the Markov chain X. Then a policy, say π, is determined by some decision vector f

whose ith element fi ∈ Ai identifies the action taken if the chain X is in state Xn = i; hence
also the transition probability matrix P (f) of the Markov decision chain. Observe that the ith

row of P (f) has elements p
fi

i1, . . . , p
fi

iN and that P ∗(f) = limn→∞ n−1
∑n−1

k=0 [P (f)]k exists. In
what follows, R = [rij ] is the transition reward matrix, i.e. R is an N × N matrix of one-stage
rewards. Similarly, r(f) is the (column) vector of one-stage expected rewards with elements

r
f1

1 , . . . , r
fN

N .

Let elements of the vectors Rπ(n), Sπ(n) and V π(n) denote the first moment, the second

moment and the variance of the (random) total reward ξ
(n)
i (π) respectively received in the n next

transitions of the considered Markov chain X if policy π ∼ (f) is followed, given the initial state

X0 = i. In what follows we sometimes abbreviate ξ
(n)
i (π) by ξ

(n)
i or by ξ(n) if the dependence on

policy π ∼ (f) or initial state X0 = i is obvious.

More precisely, for the elements of Rπ(n), Sπ(n) and V π(n) we have

Rπ
i (n) = E

π
i [ξ(n)], Sπ

i (n) = E
π
i [ξ(n)]2, V π

i (n) = σ
2,π
i [ξ(n)]
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where ξ(n) =
∑n−1

k=0 rXk,Xk+1
and E

π
i , σ

2,π
i are standard symbols for expectation and variance

if policy π is selected and X0 = i. Moreover, if m < n we can write ξ
(n)
X0

= ξ
(m)
X0

+ ξ
(m,n)
Xm

, where

ξ
(m,n)
Xm

=
∑n−1

k=m rXk,Xk+1
is reserved for the (random) reward obtained from the mth up to the

nth transition.

Recall that Rπ
i (n + 1) = r

fi

i +
∑

j∈I

p
fi

ijR
π
j (n) (2.1)

or in vector notation

Rπ(n + 1) = r(f) + P (f) · Rπ(n). (2.2)

Similarly, if the chain starts in state i and policy π ∼ (f) is followed then from (1.2), (1.3) for
ξ = ξ(n) for the expected utility Uπ

i (γ, n), the certainty equivalent Zπ
i (γ, n) and its mean value

Jπ
i (γ, n) we have

Uπ
i (γ, n) := E

π
i [exp(γξ(n))] = E

π
i exp[γ (ri,X1

+ ξ
(1,n)
X1

)], (2.3)

Zπ
i (γ, n) :=

1

γ
ln{E π

i [exp(γξ(n))]} for γ 6= 0, (2.4)

Jπ
i (γ, n) := lim

n→∞

1

n
Zπ

i (γ, n) (2.5)

and hence for the expectation of the utility functions ūγ(ξ(n)) and ũγ(ξ(n)) we have (cf. (1.7))

Ūπ
i (γ, n) := 1 − Uπ

i (γ, n), Ũπ
i (γ, n) := Uπ

i (γ, n) − 1. (2.6)

In what follows let Uπ(γ, n), resp. Zπ(γ, n), be the vector of expected utilities, resp. certainty
equivalents, with elements Uπ

i (γ, n), resp. Zπ
i (γ, n).

Conditioning in (2.3) on X1, since policy π ∼ (f) is stationary, from (2.3) we immediately get
the recurrence formula

Uπ
i (γ, n + 1) =

∑

j∈I

p
fi

ij · e
γrij · Uπ

j (γ, n) =
∑

j∈I

q
fi

ij · Uπ
j (γ, n) with Uπ

i (γ, 0) = 1 or (2.7)

in vector notation

Uπ(γ, n + 1) = Q(f) · Uπ(γ, n) with Uπ(γ, n) = e, (2.8)

where Q(f) = [qfi

ij ] with q
fi

ij := p
fi

ij · e
γrij .

Observe that Q(f) is a nonnegative matrix, and by the Perron–Frobenius theorem (cf. [7]) the
spectral radius ρ(f) of Q(f) is equal to the maximum positive eigenvalue of Q(f). Moreover, if
Q(f) is irreducible (i.e. if and only if P (f) is irreducible) the corresponding (right) eigenvector
v(f) can be selected strictly positive, i.e.

ρ(f)v(f) = Q(f) · v(f) with v(f) > 0. (2.9)

Moreover, under the above irreducibility condition it can be shown (cf. e.g. [9], [28]) that there
exists decision vector f∗ ∈ A such that

Q(f) · v(f∗) ≤ ρ(f∗)v(f∗) = Q(f∗) · v(f∗), (2.10)

ρ(f) ≤ ρ(f∗) ≡ ρ∗ for all f ∈ A. (2.11)

In words, ρ(f∗) ≡ ρ∗ is the maximum possible eigenvalue of Q(f) over all f ∈ A.

Throughout this note we make the following assumptions.

AS 1. For any stationary policy π ∼ (f), the transition probability matrix P (f) is irreducible
(i.e. all states are communicating) and aperiodic, i.e. P (f) is ergodic (all states are recurrent
and aperiodic).

Observe that under AS 1 the matrix Q(f) is irreducible for any f ∈ A.

AS 2. Transition rewards are nonnegative and nonvanishing, i.e. rij ≥ 0 for all i, j ∈ I and a
strict inequality holds at least for one pair i, j.

Observe that under AS 2 all one-stage expected rewards ri(·) are nonnegative.
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3 Reward Variance and Expected Utility

Since for any integers m < n [ξ(n)]2 = [ξ(m)]2 + 2 · ξ(m) · ξ(m,n) + [ξ(m,n)]2 we get

E
π
i [ξ(n)]2 = E

π
i [ξ(m)]2 + 2 · E π

i [ξ(m) · ξ(m,n)] + E
π
i [ξ(m,n)]2. (3.1)

In particular, for m = 1, n := n + 1 if policy π ∼ (f) is followed we get for the second moment
of the random reward ξ(n):

Sπ
i (n + 1) =

∑

j∈I

p
fi

ij · {[rij ]
2 + 2 · rij · R

π
j (n)} +

∑

j∈I

p
fi

ij · S
π
j (n). (3.2)

Since the variance Vi(·) = Si(·) − [Ri(·)]
2 from (3.2) we arrive at

V π
i (n + 1) =

∑

j∈I

p
fi

ij · {[rij + Rπ
j (n)]2} − [Rπ

i (n + 1)]2 +
∑

j∈I

p
fi

ij · V
π
j (n). (3.3)

From the literature (see e.g. [8, 20, 21] it is well known that under AS 1 there exist vector wπ

(with elements wπ
j ), constant vector gπ and vector ε(n) (where all elements of ε(n) converge to

zero geometrically) such that

Rπ(n) = gπ · n + wπ + ε(n) ⇒ lim
n→∞

n−1Rπ(n) = gπ = P ∗(f) · r(f). (3.4)

The constant vector gπ (with elements gπ) along with vector wπ are uniquely determined by

wπ + gπ = r(f) + P (f) · wπ, P ∗(f) · wπ = 0. (3.5)

By using relations (3.3), (3.4) and (3.5) in a number of steps we arrive at (for details see [24, 26,
25, 27]):

V π(n + 1) = s(π) + P (f) · V π(n) + ε(1)(n) (3.6)

where for elements of the vector s(π) we have

si(π) =
∑

j∈I

p
fi

ij ·{[rij + wπ
j ]2} − [gπ + wπ

i ]2 (3.7)

=
∑

j∈I

p
fi

ij · {[rij − gπ + wπ
j ]2} − [wπ

i ]2 (3.8)

and elements of the vector ε(1)(n) converge to zero geometrically.
In analogy with (3.4), (3.5) we can conclude that there exists vector w(2),π along with a

constant vector g(2),π uniquely determined by

w(2),π + g(2),π = s(π) + P (f) · w(2),π, P ∗(f) · w(2),π = 0 (3.9)

such that

V π(n) = g(2),π · n + w(2),π + ε(n) =⇒ g(2),π = lim
n→∞

V π(n)

n
= P ∗(f) · s(π). (3.10)

Moreover, from (3.5), (3.6), (3.10) we can also conclude after some algebra (observe that P ∗(f) ·
P (f) · w(2),π = P ∗(f) · w(2),π, cf. [24] for details) that

g(2),π = ḡ(2),π+2·P ∗(f)·r̃(f, π) (3.11)

where ([·]sq denotes that elements of the vector are squared)

r(2)(f) is a column vector with elements r
(2),fi

i =
∑

j∈I p
fi

ij · [rij ]
2,
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r̃(f, π) is a column vector with elements
∑

j∈I p
fi

ij · rij · w
π
j ,

[gπ]sq is a constant vector with elements [gπ]2,

g̃(2),π = P ∗(f) · r(2)(f) is a constant vector with elements g̃(2),π, and

ḡ(2),π = g̃(2),π − [gπ]sq is a constant vector with elements ḡ(2),π.

Obviously, g̃(2),π averages expected values of the second moments of one-stage rewards, ḡ(2),π

denotes the average “one-stage reward variance” considered with respect to the mean reward gπ

instead of the one-stage expected reward r
fi

i in state i ∈ I, and the last term in (3.11) expresses
the Markov dependence that occurs if the total variance of cumulative rewards is considered.

On the other hand, on iterating (2.7) we get if (stationary) policy π ∼ (f∗) is followed

Uπ(γ, n) = (Q(f∗))n · e. (3.12)

Since under AS 1 the Perron eigenvector v(f∗) is strictly positive, there exist numbers α1 < α2

such that α1 · v(f∗) ≤ e ≤ α2 · v(f∗) and hence

α1 · (ρ(f∗))n · v(f∗) ≤ Uπ(γ, n) ≤ α2 · (ρ(f∗))n · v(f∗). (3.13)

From (3.13) we can see that the asymptotic behaviour of Uπ(γ, n) heavily depends on ρ(f∗),
and the growth rate of each Uπ

i (γ, n) is the same and equal to ρ(f∗).

On examining Q(f) we can easily conclude that:
If γ < 0 then ρ(f∗) < 1 for all f ∈ A, hence limn→∞[Q(f)]n = 0 and Uπ

i (γ, n) → 0 for all
i ∈ I as n → ∞ and the convergence is geometrical.

For γ = 0 we have Q(f) = P (f), the spectral radius of Q(f) equals one, and the corresponding
right eigenvector v(f∗) is a constant vector. Then Uπ(γ, n) → P ∗(f) · e, a constant vector.

If γ > 0 then ρ(f∗) > 1 for f∗ ∈ A, hence elements of [Q(f∗)]n go to infinity and also
Uπ∗

i (γ, n) → ∞ for all i ∈ I as n → ∞.
Moreover, by (1.2) we can expect that for γ sufficiently close to null the growth of Uπ

i (γ, n)
will be dominated by the first and second moment of ξ(n) occurring in (3.4).

Illustrative Example.

Consider a controlled Markov reward chain with 5 states and only three possible actions in
state 1 (in the remaining states no option is possible). Hence only three transition probability
matrices, say P (f (1)), P (f (2)), P (f (3)), are available that along with the reward matrix R

fully characterize the transition and reward structures of the considered Markov reward chain.
Observe that stationary policies π(2) ∼ (f (2)), π(3) ∼ (f (3)) identify a constant sequence of
one-stage rewards. In particular, we have

P (f (1)) =




0 0.5 0.5 0 0

0.5 0 0.5 0 0

0.5 0.5 0 0 0

0.5 0 0 0.5 0

0.5 0 0 0 0.5


 , R =




0 1 0 0.5 0.48

0 0 1 0 0

1 0 0 0 0

0.5 0 0 0.5 0

0.48 0 0 0 0.48


 ,

P (f (2)) =




0 0 0 1 0

0.5 0 0.5 0 0

0.5 0.5 0 0 0

0.5 0 0 0.5 0

0.5 0 0 0 0.5


 , P (f (3)) =




0 0 0 0 1

0.5 0 0.5 0 0

0.5 0.5 0 0 0

0.5 0 0 0.5 0

0.5 0 0 0 0.5


 .

Obviously, if the chain starts in state 1 and action 2 (resp. 3) is selected then rXk,Xk+1
≡ 0.5

(resp. rXk,Xk+1
≡ 0.48) for all k = 0, 1, . . . and the chain visits only the states 1, 4 (resp.

1, 5). Hence for the expected reward, the second moment and the variance respectively, we have
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R1(k) = 0.5k, S1(k) = (0.5k)2, V1(k) ≡ 0 (resp. R1(k) = 0.48k, S1(k) = (0.48k)2, V1(k) ≡ 0).
On the contrary if the chain starts in state 1 and action 1 is selected on inspecting the chain
we can see that the chain visits only the states 1, 2, 3 and that the sequence of received rewards
obeys a binomial distribution with parameter p = 0.5, and hence again R1(k) = 0.5k, however
V1(k) = k 0.5(1 − 0.5) = 0.25k.

The same results can be obtained by using the general formulas for expected reward and
variance of the Markov reward chains as it is shown in the further text.

Observe that by (3.4), (3.5) for

π(1) ∼ (f (1)), gπ = 0.5, g̃(2),π = 0.5, hence g(2),π = 0.25,

π(2) ∼ (f (2)), gπ = 0.5, g̃(2),π = 0.25, hence g(2),π = 0,

π(3) ∼ (f (3)), gπ = 0.48, g̃(2),π = (0.48)2, hence g(2),π = 0.

Of course, following policy π(2) ∼ (f (2)) we get maximum possible mean reward and null
variance, this policy is the best choice. However, the second best policy can be either π(3) ∼ (f (3))
guaranteeing mean reward slightly less than then maximum one and the null variance or policy
π(1) ∼ (f (1)) giving the maximum mean reward, but the variance comparable with the mean
reward. Considering optimality in accordance the weighted optimality criterion αgπ − (1 −
α)g(2),π (where α ∈ [0, 1]) it depends on the decision maker option how to selected the weighting
coefficient α and prefer either policy π(1) ∼ (f (1)) or policy π(3) ∼ (f (3)). Since for α0 = 25

27 it

holds α0 gπ1 − (1 − α) g(2),π1 = α0 gπ3 , if α ∈ [α0, 1] we prefer policy π(1) above policy π(3); if
α < α0 we consider policy π(3) as the second best.

Employing the risk-sensitive model and supposing that the chain starts in state 1 it is sufficient
to consider the following matrices:

Q̃(f (1)) =




0 1
2 · eγ 1

2
1
2 0 1

2 · eγ

1
2 · eγ 1

2 0


 , Q̃(f (2)) =

[
0 eγ0.5

1
2eγ0.5 1

2eγ0.5

]
, Q̃(f (3)) =

[
0 eγ0.48

1
2eγ0.48 1

2eγ0.48

]

The right Perron eigenvector of each above matrix is a unit vector of appropriate dimension
and for the spectral radii we get ρ̃(f (1)) = 0.5 (eγ + 1), ρ̃(f (2)) = eγ 0.5, ρ̃(f (3)) = eγ 0.48.

Taking into account maximum growth rate of the exponential utility function (1.7), and hence
the maximal growth rate of the expected utility Ūγ(ξ) = 1 − U (γ)(ξ) (since the considered risk
aversion coefficient γ is negative), obtained for the minimum possible Perron eigenvalue of the
matrix Q̃(·), we get that ρ̃(f (2)) < ρ̃(f (3)) for γ < 0 implying that policy π(2) ∼ (f (2)) is “better”
than π(3) ∼ (f (3)) with respect to the considered risk-sensitive criterion. Similarly, on comparing
ρ̃(f (3)) = eγ 0.48 and ρ̃(f (1)) = 0.5 (eγ + 1) we can decide whether π(3) ∼ (f (3)) or π(1) ∼ (f (1))
is the second best policy for the considered the value of the risk aversion coefficient γ.
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