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Abstract—Analogously to Graphical Markov models, also
Compositional models serve as an efficient tool for multidi-
mensional models representation. The main idea of the latter
models resembles a jig saw puzzle: Multidimensional models are
assembled (composed) from a large number of small pieces, from
a large number of low-dimensional models. Originally they were
designed to represent multidimensional probability distributions.
In this paper they will be used to represent multidimensional
belief functions (or more precisely, multidimensional basic belief
assignments) with the help of a system of low-dimensional ones.

In addition to a number of basic properties of such models,
in the paper it will be shown that these models can serve as
a real enrichment of probabilistic models. They can relieve a
drawback of probabilistic models that can be, in case that the
initial building blocks of the model are inconsistent, undefined.
As a side result of the paper we propose a new way how to define
the concept of conditional independence for belief functions.

I. INTRODUCTION

The main bottleneck of applications of belief function mod-
els to problems of practice lies in the fact that a belief measure,
in contrast to a probability or possibility measure, cannot be
represented by a density function. It is a set function and for its
representation one needs an exponential number of parameters
(exponential with the size of a finite space on which the
belief function measure is defined). Therefore, one has to
employ some approaches enabling reduction of necessary
parameters. In this contribution we will discuss an approach
utilizing properties of conditional independence relations that
will enable us to assemble (compose) a multidimensional
model from a system of its marginal submodels. This is also
the reason why these models are called compositional models.

II. SET PROJECTIONS AND EXTENSIONS

In the whole paper we shall deal with a finite number of
variables X1, X2, . . . , Xn each of which is specified by a finite
set Xi of its values. So, we will consider multidimensional
space (in the belief function setting it is usually called frame
of discernment)

XN = X1 ×X2 × . . .×Xn,

and its subspaces. For K ⊂ N = {1, 2, . . . , n}, XK denotes
a Cartesian product of those Xi, for which i ∈ K:

XK =×i∈KXi,

and XK = {Xi}i∈K denotes the set of the respective vari-
ables.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK will
be denoted x↓K , i.e. for K = {i1, i2, . . . , i`}

x↓K = (xi1 , xi2 , . . . , xi`
) ∈ XK .

Analogously, for K ⊂ L ⊆ N and A ⊂ XL, A↓K will denote
a projection of A into XK :

A↓K = {y ∈ XK : ∃x ∈ A (y = x↓K)}.

Let us remark that we do not exclude situations when K = ∅.
In this case A↓∅ = ∅.

In addition to the projection, in this text we will need also
an opposite operation which will be called extension. By the
extension of two sets A ⊆ XK1 and B ⊆ XK2 we will
understand a set

A⊗B = {x ∈ XK1∪K2 : x↓K1 ∈ A & x↓K2 ∈ B}.

Notice that if K1 and K2 are disjoint then their extension is
just their Cartesian product

A⊗B = A×B.

If K1 ∩ K2 6= ∅ and A↓K1∩K2 ∩ B↓K1∩K2 = ∅ then also
A⊗B = ∅.

In what follows, an important role will be played by special
sets, which were in [2] called Z-layered rectangles. These are
those sets C ⊆ XK1∪K2 for which

C = C↓K1 ⊗ C↓K2 .

III. COMPOSITION OF BASIC ASSIGNMENTS

A belief function is defined with the help of a basic
(probability or belief ) assignment m on XN , which is a set
function

m : P(XN ) −→ [0, 1]

with ∑
A⊆XN

m(A) = 1.

Therefore, for the sake of simplicity, we will not speak
about belief functions but about basic assignments: We shall
marginalize and compose basic assignments. For each K ⊂ N

1311

SA-F2-2 SCIS & ISIS 2008



marginal basic assignment of m is defined (for each B ⊆
XK):

m↓K(B) =
∑

A⊆XN :A↓K=B

m(A).

Notice that we again do not exclude situation when K is
empty. In this case we get m↓∅(∅) = 1. This is important
with respect to the following notion of projectiveness: We say
that two basic assignments m1 and m2 defined on XK1 and
XK2 , respectively, are projective if

m↓K1∩K2
1 = m↓K1∩K2

2 .

Now, we can define the most important notion of this paper,
which was originally defined in [5].

Definition 1: For arbitrary two basic assignments m1 on
XK1 and m2 on XK2 (K1 6= ∅ 6= K2) a composition m1 .m2

is defined for each C ⊆ XK1∪K2 by one of the following
expressions:

[a] if m↓K1∩K2
2 (C↓K1∩K2) > 0 and C = C↓K1 ⊗ C↓K2

then

(m1 . m2)(C) =
m1(C↓K1) ·m2(C↓K2)

m↓K1∩K2
2 (C↓K1∩K2)

;

[b] if m↓K1∩K2
2 (C↓K1∩K2) = 0 and C = C↓K1 ×XK2\K1

then
(m1 . m2)(C) = m1(C↓K1);

[c] in all other cases (m1 . m2)(C) = 0.

Before we start studying formal properties of this operator
let us illustrate both marginalization and composition on a
simple example.

Example 1: Consider three binary variables X1, X2, X3

with X1 = {a, ā}, X2 = {b, b̄}, X3 = {c, c̄}, and two
2-dimensional basic assignments m1 and m2 as specified in
Table I.

Notice that these two assignments are not projective; for
this see their one-dimensional marginals in Table II. There-
fore, because of property (3) of Lemma 1 presented below,
m1 . m2 6= m2 . m1.

How difficult is to compute such a composition? To deter-
mine general 3-dimensional assignment (of binary variables)
one has to specify 255 numbers, because X{1,2,3} has 28−1 =
255 nonempty subsets. However, when computing m1 . m2,
most of these 255 values equal 0 because most of these subsets
do not meet the condition C = C↓{1,2}⊗C↓{2,3} and therefore
the corresponding value of the assignment m1 .m2 is defined
by the point [c] of the definition.

What are the subsets for which C 6= C↓{1,2}⊗C↓{2,3}? For
example, it is easy to show that all the sets of cardinality 7
belong to this category (hint: show that for any C ⊆ X{1,2,3},
for which |C| = 7, C↓{1,2} = X{1,2} and C↓{2,3} = X{2,3}).

Since all singletons (one-point-sets) meet the considered
equality C = C↓{1,2} ⊗ C↓{2,3}, all sets C, for which
C 6= C↓{1,2} ⊗ C↓{2,3} must have at least two elements: an

TABLE I
BASIC ASSIGNMENTS m1(x{1,2}) AND m2(x{2,3}).

C ⊆ X{1,2} m1(C)

{ab} 0.1

{ab̄} 0.5

{āb} 0.2

{āb̄} 0

{ab, ab̄} 0

{ab, āb} 0

{ab, āb̄} 0

{ab̄, āb} 0

{ab̄, āb̄} 0

{āb, āb̄} 0

{ab, ab̄, āb} 0

{ab, ab̄, āb̄} 0

{ab, āb, āb̄} 0

{ab̄, āb, āb̄} 0

{ab, ab̄, āb, āb̄} 0.2

C ⊆ X{2,3} m2(C)

{bc} 0

{bc̄} 0

{b̄c} 0.3

{b̄c̄} 0.1

{bc, bc̄} 0

{bc, b̄c} 0

{bc, b̄c̄} 0.1

{bc̄, b̄c} 0

{bc̄, b̄c̄} 0

{b̄c, b̄c̄} 0.1

{bc, bc̄, b̄c} 0

{bc, bc̄, b̄c̄} 0

{bc, b̄c, b̄c̄} 0.3

{bc̄, b̄c, b̄c̄} 0

{bc, bc̄, b̄c, b̄c̄} 0.1

TABLE II
ONE-DIMENSIONAL MARGINAL ASSIGNMENTS m

↓{2}
1 AND m

↓{2}
2 .

A ⊆ X2 m
↓{2}
1 (A)

{b} 0.3

{b̄} 0.5

{b, b̄} 0.2

A ⊆ X2 m
↓{2}
2 (A)

{b} 0

{b̄} 0.5

{b, b̄} 0.5

example is {abc, ābc̄}. As further examples may serve sets
{abc̄, ābc, ābc̄, ab̄c̄} and {ābc, ab̄c, abc̄}. A common charac-
teristics of all these sets is that assigning a positive belief to
them one introduces a type of conditional relationship between
X1 and X3 given (at least one) value of X2.

Let us turn our attention back to the computation of m1.m2

for the assignments of our example. Since m
↓{2}
2 (b) = 0, one

immediately notices that point [b] of the definition is used
whenever C ⊆ X{1,2,3} is considered for which C↓{2} = b.
Considering all what has been said we get only 8 subsets,
for which assignment m1 . m2 is positive - see Table III,
where the first column bears the information, which point of
the definition is used to compute the respective value.

TABLE III
BASIC ASSIGNMENT m1 . m2 FOR EXAMPLE 1.

C ⊆ X{1,2,3} C↓{1,2} ⊗ C↓{2,3} (m1 . m2)(C)

[a] {ab̄c} {ab̄} ⊗ {b̄c} 0.3

[a] {ab̄c̄} {ab̄} ⊗ {b̄c̄} 0.1

[a] {ab̄c, ab̄c̄} {ab̄} ⊗ {b̄c, b̄c̄} 0.1

[b] {abc, abc̄} {ab} ⊗X1 0.1

[b] {ābc, ābc̄} {āb} ⊗X1 0.2

[a] {abc, ābc, ab̄c̄, āb̄c̄} X{1,2} ⊗ {bc, b̄c̄} 0.04

[a]
{
abc, ābc, ab̄c
āb̄c, ab̄c̄, āb̄c̄

}
X{1,2} ⊗ {bc, b̄c, b̄c̄} 0.12

[a]
{

abc, ābc, ab̄c, āb̄c
abc̄, ābc̄, ab̄c̄, āb̄c̄

}
X{1,2} ⊗X{2,3} 0.04
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IV. BASIC PROPERTIES OF THE OPERATOR OF
COMPOSITION

Let us stress, for the reader familiar with the Dempster’s rule
of combination [7], that the introduced operator is something
quite different.

First, Dempster’s rule of combination was defined for two
basic assignments defined on the same frame of discernment.
In contrast to this, there is no restriction regarding frames
of discernments of arguments connected with the introduced
operator of composition. Nevertheless, composition of basic
assignments defined on the same frame of discernment is
uninteresting, because in this case the result is always the first
argument - see property (2) of Lemma 1.

Moreover, Dempster’s rule of combination (for C 6= ∅)

(m1 ⊕m2)(C) =

∑
A∩B=C

m1(A) ·m2(B)

1−
∑

A∩B=∅
m1(A) ·m2(B)

equals (m2 ⊕m1)(C); the respective operator ⊕ is commu-
tative, which is not the case for the operator . - see also
property (3) of Lemma 1.

The reader should keep in mind that the operator of com-
position was designed for the situations when one has two
basic assignments defined on different frames of discernment
and wants to get a new basic assignments defined on a larger
frame of discernment incorporating (as much as possible of)
the information contained in the original basic assignments.

The following assertion recollects the most important prop-
erties of the operator of composition.

Lemma 1: For arbitrary two basic assignments m1 on XK1

and m2 on XK2 the following properties hold true:

1) m1 . m2 is a basic assignment on XK1∪K2 .
2) (m1 . m2)↓K1 = m1.
3) m1 . m2 = m2 . m1 ⇐⇒ m↓K1∩K2

1 = m↓K1∩K2
2 .

4) If L ⊆ K1 then m↓L
1 . m1 = m1.

Proof: can be found in [5] - Lemma 1.

Realize that property (3) of the preceding Lemma says
that the operator is commutative if and only if it is applied
to two projective basic assignments. Generally, it is neither
commutative nor associative.

V. MULTIDIMENSIONAL MODELS

Consider a sequence of basic assignments m1,m2, . . . ,mn

defined on XK1 , XK2 , . . ., XKn
, respectively. Assume all

these assignments are low-dimensional and therefore repre-
sentable with a reasonable number of parameters. Applying
the operator of composition n − 1 times, one can construct
their multiple composition

m1 . m2 . . . . . mn,

which may be a multidimensional basic assignment of a rather
high dimension. Before starting discussing properties of this

expression we have to explain, however, how to understand it;
we always apply the operators from left to right:

m1 . m2 . m3 . . . . . mn = (. . . ((m1 . m2) . m3) . . . . . mn).

Therefore, to define a multidimensional assignment in this
form, it is enough to specify an ordered sequence, we call it
a generating sequence, of low-dimensional basic assignments.
It is obvious that for any permutation j1, j2, . . . , jn of indices
1, . . . , n the expression

πj1 . πj2 . . . . . πjn

determines a basic assignment with the same frame of dis-
cernment, however, for different permutations these basic
assignments can differ from one another. In this way, a natural
question arises: Which permutation defines a basic assignment
with the most advantageous properties? The answer to this
question is given in the following definition.

Definition 2: An generating sequence of basic assignments
m1,m2, . . . ,mn is said to be perfect if

m1 . m2 = m2 . m1,

(m1 . m2) . m3 = m3 . (m1 . m2),
...

(m1 . · · · . mn−1) . mn = mn . (m1 . · · · . mn−1).

The following characterization theorem expresses perhaps
the most important result concerning perfect sequences. It says
that they compose multidimensional basic assignments that are
extensions of all the assignments from which the joint one is
composed.

Theorem 1: The sequence m1,m2, . . . ,mn is perfect iff all
the basic assignments m1,m2, . . . ,mn are marginal to basic
assignment m1 . m2 . . . . . mn.

Proof: can be found in [5] - Theorem 1.

VI. COMPOSITION OF BAYESIAN BASIC ASSIGNMENTS

It is well known that if all focal elements of a basic
assignment m are singletons, i.e. if m(A) > 0 implies
that |A| = 1, then this basic assignment corresponds to a
probability distribution, and it is why some authors call it
Bayesian basic assignment. Regarding the fact that operators
of composition were originally defined for composition of
probability distributions1 a natural question arises: What is
the relation of compositional models in these two theoretical
frameworks? To answer this question we shall compare the
properties of the corresponding operators of composition. But
first, let us recollect how the operator of composition is defined
in its probabilistic version.

Let us start considering probability distributions pi defined
on XKi

(i.e. pi : XKi
−→ [0, 1] and

∑
x∈XKi

pi(x) = 1).

Analogously to the notation used for basic assignments, their

1Probabilistic compositional models were designed as a non-graphical
alternative to Bayesian networks and other Graphical Markov models in [4].
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marginal distributions (for L ⊂ Ki) will be denoted p↓Li .
Realize that pi(∅) = 0, but p↓∅i (∅) = 1.

Definition 3: Consider arbitrary two probability distribu-
tions p1 and p2 defined on XK1 ,XK2 , respectively (K1 6=
∅ 6= K2). If p↓K1∩K2

1 is dominated by p↓K1∩K2
2 , i.e.

∀z ∈ XK1∩K2 p↓K1∩K2
2 (z) = 0 =⇒ p↓K1∩K2

1 (z) = 0,

then p1 . p2 is for all x ∈ XK∪L defined by the expression

(p1 . p2)(x) =
p1(x↓K1) · p2(x↓K2)

p↓K1∩K2
2 (x↓K1∩K2)

.

(In case of necessity we define 0·0
0 = 0.) Otherwise the

composition p1 . p2 remains undefined.

The reader certainly noticed the main difference between
the definitions of operators of composition in the two consid-
ered theoretical settings: In contrast to composition of basic
assignments, it may happen that the composition of probability
distributions in not defined. It occurs when p↓K1∩K2

2 does not
dominate p↓K1∩K2

1 . In other words, it is undefined if there
would be for some x ∈ XK∪L value (p1 . p2)(x) defined by
an indeterminate term

(p1 . p2)(x) =
p1(x↓K1) · 0

0

with p1(x↓K1) > 0.
In [5] we proved that if we compose by the operator2 of

composition two Bayesian basic assignments, such that the
corresponding probability distributions may be composed by
the probabilistic operator of composition (i.e. the probabilistic
composition is defined) then the resulting distribution is again
Bayesian. The assertion we are about to present here is a little
bit stronger: It says that the resulting compositions coincide.

Lemma 2: Let m1 and m2 be Bayesian basic assignments
on XK1 and XK2 , respectively, for which

m2
↓K1∩K1(A) = 0 =⇒ m1

↓K1∩K2(A) = 0 (1)

for any A ⊆ XK1∩K2 . Let p1 and p2 be probabilistic
distributions for which

∀x ∈ XK1 m1({x}) = p1(x);
∀y ∈ XK2 m2({y}) = p2(y).

Then m1 . m2 is a Bayesian basic assignment and

∀z ∈ XK1∪K2(m1 . m2)({z}) = (p1 . p2)(z).

Proof: To prove that basic assignment m1 . m2 is
Bayesian, it is enough to show that if A ⊆ XK1∪K2 is not a
singleton then (m1 . m2)(A) = 0.

Consider any A ⊆ XK1∪K2 that is not a singleton. There-
fore there must exist two two different elements x, y ∈ A.

2Notice that by Definitions 1 and 3 we have introduced two operators of
composition, both of which are denoted by the same symbol .. We believe
that it is obvious that for composition of probability distributions one has to
apply the probabilistic version, i.e. Definition 3, whilst for composition of
basic assignments one has to apply operator from Definition 1.

Since x 6= y then either x↓K1 6= y↓K1 or x↓K2 6= y↓K2

(or both). Therefore either A↓K1 or A↓K2 is not a singleton
and therefore m1(A↓K1) · m2(A↓K2) = 0. This means that
if m2

↓K1∩K2(A↓K1∩K2) > 0 then, due to Definition 1,
(m1 . m2)(A) = 0.

If m2
↓K1∩K2(A↓K1∩K2) = 0 then, because we assume

the validity of implication (1), m1
↓K1∩K2(A↓K1∩K2) = 0

and therefore also m1(A↓K1) = 0. Therefore, according to
Definition 1, (m1 .m2)(A) = 0, too. So, we have proved that
m1 . m2 is Bayesian.

Now, consider a singleton A = {x} for some x ∈ XK1∪K2 .
If m↓K1∩K2

2 (A↓K1∩K2) = p2(x↓K1∩K2) > 0, point [a] of
Definition 1 yields

(m1 . m2)(A) =
m1(A↓K1) ·m2(A↓K2)

m↓K1∩K2
2 (A↓K1∩K2)

,

and Definition 3 gives

(p1 . p2)(x) =
p1(x↓K1) · p2(x↓K2)

p↓K1∩K2
2 (x↓K1∩K2)

=
m1(A↓K1) ·m2(A↓K2)

m↓K1∩K2
2 (A↓K1∩K2)

= (m1 . m2)(A).

Similarly, if m↓K1∩K2
2 (A↓K1∩K2) = p2(x↓K1∩K2) = 0, we

get according to point3 [c] of Definition 1 that (m1.m2)(A) =
0, and according to Definition 3

(p1 . p2)(x) =
p1(x↓K1) · p2(x↓K2)

p↓K1∩K2
2 (x↓K1∩K2)

=
0 · 0
0

= 0,

which finishes the proof.

It is a direct conclusion following from Lemma 2 that the
probabilistic operator of composition meets all the properties
presented in Lemma 1. So, the following assertion holds true.

Lemma 3: Consider three probability distributions
p1, p2, p3, defined on XK1 ,XK2 ,XK3 , respectively. If p1 . p2

is defined then
1) p1 . p2 is a probability distribution on XK1∪K2;
2) (p1 . p2)↓K1 = p1;
3) p1 . p2 = p2 . p1 ⇐⇒ p↓K1∩K2

1 = p↓K1∩K2
2 ;

4) L ⊆ K1 =⇒ p↓L1 . p1 = p1;

Let us conclude the section with a simple example (bor-
rowed from [5]) showing a situation when p1.p2 is undefined.

Example 2: Let X1,X2 and X3 be as in the previous ex-
ample and consider the following Bayesian basic assignments
m1 and m2 on X1 ×X2 and X2 ×X3, respectively (realize
that since m1,m2 are Bayesian, m1(A) = m2(A) = 0 for all
A, for which |A| > 1):

m1({ab}) = m1({ab̄}) = m1({āb}) = m1({āb̄}) = 0.25,

m2({bc}) = m2({bc̄}) = 0.5,

m2({b̄c}) = m2({b̄c̄}) = 0.

3Notice that for singleton A ⊆ XK1∪K2 , A = A↓K1 ⊗ A↓K2 but A 6=
A↓K1 ×XK2\K1 .
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TABLE IV
SET OF PROBABILITY DISTRIBUTIONS CORRESPONDING TO m1 . m2

FROM EXAMPLE 2.

a ā

b b̄ b b̄

c 0.125 α 0.125 β

c̄ 0.125 1− α 0.125 1− β

Let us compute m1 . m2 for singletons {x1x2x3} ∈ X1 ×
X2 ×X3. If x2 = b then

(m1 . m2)({x1bx3}) =
m1({x1b}) ·m2({bx3})

m
↓{2}
2 ({b})

=
0.25 · 0.5

1
= 0.125,

and for singletons {x1b̄x3} we get

(m1 . m2)({x1b̄x3}) = 0,

because m
↓{2}
2 ({b̄}) = 0. In this case, however, we get

(according to the point [b] of Definition 1)

(m1 . m2)({x1b̄} ×X3) = m1({x1b̄}) = 0.25.

This means that in this case there are 6 focal elements of
m1 . m2, namely 4 singletons:

{x1bx3}, for x1 ∈ X1, x3 ∈ X3,

for which (m1 . m2)({x1bx3}) = 0.125, and 2 two-element
sets:

{x1b̄} ×X3 = {x1b̄c, x1b̄c̄}, for x1 ∈ X1,

for which (m1 . m2)({x1b̄} ×X3) = 0.25.

Regarding this example, let us remark two points:
1) m1 . m2 corresponds to a whole set of probability

distributions, which are recorded in Table IV (for any
α ∈ [0, 0.25] and β ∈ [0, 0.25]). It is in correspondence
with a general rule holding for any two Bayesian basic
assignments m1 and m2 and the corresponding proba-
bility distributions p1 and p2: If p1 . p2 is not defined
then m1 . m2 is not Bayesian.

2) In contrast to m1 . m2, m2 . m1 is a Bayesian basic
assignment. This basic assignment has 4 focal elements:

(m2 . m1)({x1bx3}) = 0.25, for x1 ∈ X1, x3 ∈ X3.

VII. GENERALIZATION OF PROBABILISTIC MODELS

In this section we shall make a couple of suggestions
enabling us to understand multidimensional models of basic
assignments as a real enrichment of probabilistic models. First
let us have a look how the concept of conditional independence
was introduced in these two theoretical settings.

Consider three disjoint sets I, J,K ⊂ N (I 6= ∅ 6= J) and a
probability distribution p on XN . We say that for distribution p
groups of variables XI and XJ are conditionally independent

given variables XK if for all x ∈ XI∪J∪K the following
equality holds true

p↓I∪J∪K(x) · p↓K(x↓K) = p↓I∪K(x↓I∪K) · p↓J∪K(x↓J∪K).

It is well known that this is equivalent to the fact that

p↓I∪J∪K(x) = p↓I∪K(x↓I∪K) · p↓J∪K(x↓J |x↓K),

or, using the probabilistic operator of composition

p↓I∪J∪K = p↓I∪K . p↓J∪K .

How is it for basic assignments? Answering the question
is not so easy because of the fact that this notion for belief
functions was introduced in several different ways. Perhaps
the most frequent (and maybe also with the greatest number
of supporters) is the one, which can be easily defined with the
help of commonality function. Using notation of Studený [9],
commonality function Comm is defined for basic assignment
m (assuming that m is defined on XN ) for each A ⊂ XN by
a simple formula

Comm(A) =
∑
B⊇A

m(B).

Ben Yaghlane et al. [1], [2], [3] define the concept of condi-
tional non-interactivity (as well as Shenoy defines his concept
of conditional independence [8]) in the way that variables
XI and variables XJ are conditionally non-interactive given
variables XK if and only if for all A ⊆ XN

Comm↓I∪J∪K (A↓I∪J∪K) · Comm↓K (A↓K)
= Comm↓I∪K (A↓I∪K) · Comm↓J∪K (A↓J∪K).

In this paper we shall denote this property by

XI ⊥⊥[m] XJ |XK .

Unfortunately, for basic assignments it does not hold true
that XI ⊥⊥[m] XJ |XK if and only if the basic marginal
assignment m↓I∪J∪K factorizes in the following sense

m↓I∪J∪K = m↓I∪K . m↓J∪K . (2)

Nevertheless, there are still properties indicating a similarity
of these two notions. First, Ben Yaghlane et al. in [2] showed
that if XI ⊥⊥[m] XJ |XK then all focal elements of m↓I∪J∪K

(i.e. sets A ⊆ XI∪J∪K , for which m↓I∪J∪K(A) > 0) are Z-
layered rectangles, which are nothing else, as we said before,
than sets A ⊆ XI∪J∪K , which can be expressed as an
extension of its respective projections:

A = A↓I∪K ⊗A↓J∪K .

Therefore, combining the mentioned Ben Yaghlane et al. prop-
erty with Definition 1 we get the following simple assertion.

Assertion: Consider a basic assignment m on XN and three
disjoint subsets I, J,K ⊂ N (I 6= ∅ 6= J). If A ⊆ XI∪J∪K is
a focal element of m↓I∪J∪K and A 6= A↓I∪K ⊗A↓J∪K then
neither of the following two expressions holds true:

XI ⊥⊥[m] XJ |XK ,
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and
m↓I∪J∪K = m↓I∪K . m↓J∪K .

So, the first property connecting the concepts of conditional
non-interactivity and factorization for basic assignments is
that any of them guarantees that the focal elements of the
respective basic assignment can be expressed as an extension
of its corresponding projections (Z-layered rectangles in the
language of Ben Yaghlane et al.).

Another connecting property says that these notions coin-
cide for Bayesian basic assignments. Namely, in [9] Studený
claims that for Bayesian basic assignments the concept of
conditional non-interactivity coincides with the concept of
conditional independence of the corresponding probability
distribution. Due to Lemma 2 the same holds also for the
concept of factorization in the sense of equation (2).

Let us now pinpoint the difference between the studied
concepts. In [2] the authors admit that their concept of
conditional non-interactivity (as showed by Studený) is not
consistent with marginalization[10], [11]. This means that it
may happen that there are two consistent basic assignments
m1 and m2 defined on XI∪K and XJ∪K , respectively (I, J,K
disjoint, I 6= ∅ 6= J), for which there does not exist a basic
assignment m on XI∪J∪K , such that m1 and m2 would be its
marginal assignments and simultaneously XI ⊥⊥[m] XJ |XK .
For an example see [2]. Such a situation, however, cannot
happen for the concept of factorization, since m1 . m2 is
always defined and (m1 .m2)↓K1 . (m1 .m2)↓K2 = m1 .m2.

Taking into account also the fact that, as we showed in
[6], factorization in the sense of equality (2) meets all the
semigraphoid axioms, we are making the following suggestion.

PROPOSAL 1: Introduce the concept of conditional inde-
pendence relation for basic assignments with the help of
factorization in the sense of equality (2).

Probabilistic compositional models have, from the point of
view of practical applications, a disadvantage that a necessary
composition need not be defined. It is true that it may happen
only in situations when one composes probability distributions
which are not consistent. But it may easily occur when one
constructs a model from data from different sources or when a
source with missing data is considered. To avoid this problem
we propose the following solution.

PROPOSAL 2: Apply the operator of composition de-
signed for basic assignments (Definition 1) even when
handling probability distributions and consider in some
cases sets of probability distributions.

Surprisingly enough, realization of this proposal need not
increase computational complexity of the used algorithms.
This statement is based on the fact that space complexity of
these models is not higher that space complexity of the corre-
sponding probabilistic models. Going back to the Example 2
we can see that basic assignment m1.m2 has a smaller number
of focal elements (i.e. it is defined with a smaller number of

parameters) than a general 3-dimensional probability distri-
bution. In fact, it is a rule, that when composing Bayesian
basic assignments then the resulting basic assignment does
not have more focal elements than the number of points of
the corresponding frame of discernment. This statement is
trivial when the result is again Bayesian assignment, however
it is important to realize it holds also when the result is non-
Bayesian.

VIII. CONCLUSION

In the paper we have introduced an operator of composition
for basic assignments, which enables us to construct mul-
tidimensional models from a sequences of low-dimensional
assignments. We showed that these models are true gener-
alization of probabilistic models and therefore we propose
to use them whenever classical probabilistic model, due to
incoherence of low-dimensional probability distributions, does
not exist.

To increase consistency of probabilistic models and a wider
class of models constructed from basic assignments, we pro-
posed also to introduce a new concept of conditional inde-
pendence for basic assignments: the concept corresponding to
factorization.
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[11] M. Studený, Probabilistic Conditional Independence Structures.
Springer, London, 2005.

1316


