Conditional Independence and Factorization of Multidimensional
Models
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Abstract—1In this paper, three different frameworks for un-
certainty description are considered: probability and possibility
theories, and Dempster-Shafer theory of belief functions. For all
of them special operators of composition are introduced, which
enable, among others, defining the concept of factorization
(used here as an alternative notion for conditional indepen-
dence) meeting all the semigraphoid axioms. It is showed
that whilst for probability and possibility theories factorization
and conditional independence coincide, they differ from each
other for belief functions. Since the introduced factorization
manifests most of the properties required for the concept of
conditional independence, the question arises whether it would
be useful to substitute the often used concept of the conditional
independence with the factorization introduced in this paper.

I. INTRODUCTION

PERHAPS the main reason, why about 25 years ago the
concept of conditional independence got into the center
of research of so many scholars, is the fact that it enables

efficient representation of multidimensional probability dis-
tributions: multidimensional models. Namely, given its con-
ditional independence structure (i.e. a list of all the condi-
tional independence relations that hold true) the considered
probability distribution is uniquely specified by a system
of its marginal distributions or conditional low-dimensional
distributions. Naturally, such a system of low-dimensional
distributions can be represented by a much smaller number
of parameters (probabilities) than the considered multidimen-
sional distribution.

So, under the assumption of validity of all the conditional
independence relations that can be read from the respective
acyclic directed graph, the distribution represented by a
Bayesian network is uniquely specified by a system of condi-
tional distributions. Similarly, for graphical models, assuming
that all the conditional independence relations specified by
the separation criterion hold true, one gets that the respective
multidimensional probability distribution is uniquely deter-
mined by its marginal distributions corresponding to cliques
of the underlying graph.

The main difference between these two just mentioned
models consists in the fact that whereas for Bayesian net-
works there exists an explicit formula how to compute
the respective multidimensional distribution (it is a simple
product of the considered conditional distributions) no such
a formula exists for general (cyclic) graphical models; linear
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programming or iterative fitting approaches must be used.
An existence of such an explicit formula is usually based
on the fact that variables X and Y are conditionally in-
dependent given variable Z if and only if p(X,Y,Z) =
p(X,Z) - p(Y|Z). The mentioned unique specification by
its marginals and the existence of the explicit formula
inspired us about 10 years ago to introduce an operator
of composition that, if applied iteratively, describes how
multidimensional distributions can be computed from its low-
dimensional marginals. Later, the operator of composition
was introduced in possibility theory and recently also for
belief functions. In this paper we briefly recall all three
definitions and their connection to the concept of conditional
independence. In the main part of the paper we shall show
that only 6 simple properties must hold for the operator
of composition to guarantee that the corresponding relation
of conditional independence, we will call it factorization
here, meets the semigraphoid properties, which are generally
accepted as axioms, which should hold true for any relation
of conditional independence (irrelevance, non-interactivity).

II. OPERATORS OF COMPOSITION - NOTATION

In the whole paper we shall deal with a finite number of
variables X7, Xo,..., X, each of which is specified by a
finite set X; of its values. So, we will consider multidimen-
sional set (space)

Xy =X1; xXg X...xX,,

and its subspaces. For K C N = {1,2,...,n}, Xk denotes
a Cartesian product of those X;, for which ¢ € K:

X = XierxXi,

and Xx = {X;}iex denotes the set of the respective
variables.

A projection of © = (x1, 2, . ..
be denoted 21, i.e. for K = {iy,is,..

,Tp) € Xy into X will
'7iﬁ}

LK ,J}i@) EXK.

T = (T4, Tigs - - -

Analogously, for K ¢ L € N and A C X, AYE will
denote a projection of A into X

ALK:{yGXKZH.TGA (y:TlK)}

Let us remark that we do not exclude situations when K = ().
In this case A = 0.

In addition to the projection, in this text we will need also
the opposite operation which will be called extension. By
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an extension of two sets A C Xg and B C X we will
understand a set

A B={reXgur: 2t e A & 'L e B

Notice that if K and L are disjoint then their extension is
just their Cartesian product

A® B=AxB.
If KNL # ( and AVSNEQBIKNL — () then also A® B = .

A. Probability Distributions

Let us start considering probability distributions on X
and its subspaces Xx (K C N). For L C K and a
probability distribution p on X, i.e.

szK I [071]7

> pla) =1,

reX K

for which

symbol p'& will denote its marginal distribution defined on
Xr. It is defined for all z € X, by the expression

)= Y

yeXgyll=zx

p(y)-

As usually, we will also speak about probability p(A) of a set
A C Xk, which is a sum of probabilities of the respective
points

p(A) = 3 pla).

z€A

Realize that p(() = 0, but p'?(9) = 1.

Consider three disjoint sets I, .J, K C N (I # 0 # J). We
say that for distribution p groups of variables X; and X ; are
conditionally independent given variables X (in symbol
Xy AL X]|XK[])]) if for all x € Xy ux the following
equality holds true

piIUJUK(x) ‘le(QﬂlK) _ plIuK(leUK) ApJ,JUK(:L,lJUK).

It is well known that this is equivalent to the fact that

,LIUJUK( lIUK(xlIUK). lJUK(le‘le).

P T)=p P

From two low-dimensional distributions p; and ps one can
get a distribution of a higher dimension with the help of the
following operator of composition.

Definition 1: Consider arbitrary two distributions p; and
po defined on Xy, Xk,, respectively (K; # 0 # K»). If
0 g dominated by pi 175 e

LK1NK2

02 (2) = 0 = pi () =0,

Vz € X_KlﬁKQ p

then p; > po is for all x € Xk defined by the expression

_ pa(@t) - po(athe)
- p%IﬁﬂKz(leanz)'

(p1v>p2)(x)

Otherwise the composition p; > p2 remains undefined.
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What is the result of composition of two distributions p;
and po? The basic answer to this question is given by the
following simple assertion.

Lemma 1: Consider three probability  distributions
p1,p2,p3, defined on Xg,,Xk,, Xk, respectively. If
p1 > po is defined (in case of point (iv) we assume that
(p1 > p2) > ps is defined) then

(1) p1 > pe is a probability distribution on Xk, UKk,;

(i) (p1>p2)tfr =py;

(iii) p1>p2 =p2>bp1 = pj =p

(iv) K12 (KanNK3z) = (p1bp2)bps = (p1>p3)opo;

() K2 D LD (KiNKa) = pibps = (p1ops-)bpa;

(Vl) (Kl UKQ) 2 L 2 Kl
_—

IK1NK2

>

IK1NK2
2

(p1 '>p2)lL =D DPéK2ﬂL~

All these properties were proved in our preceding papers
[4], [6], nevertheless most of them follow immediately from
the fact that if p; > ps is defined then

(01> p2)(@) = pr (@) - pa(a K0\ 0K,

From this equality one can also immediately see the property,
which is of great importance from the point of view of this
paper, and which is expressed by the following assertion (its
proof can also be found in [4]).

Lemma 2: Let I,J, K be disjoint subsets of N, I and J
be nonempty. For a probability distribution p defined on X

L TUJUK IUK lJUK

p
if and only if

=p >p

Xr L X | Xk[p]-

The lemma reads that for probability distributions we
could define a concept of conditional independence on the
basis of factorization: Variables X; and X ; are conditionally
independent given variables Xy for distribution p if and
only if the marginal distribution p'/“YX factorizes in the
following sense

PHUIUE _ pLIUK LUK

p p

B. Possibility Distributions

To distinguish possibility distributions from probability
ones, we will denote possibility distributions by Greek char-
acter m (with possible indices). In analogy to a probability
distribution, possibility distribution 7 on X is also a
mapping

m: Xg — [0,1].

In this paper we will consider only normal possibility distri-
butions, i.e. distributions 7 for which

max 7(z) = 1.
reX K

In a way closely connected with the notion of normalization
is the most important difference between probabilistic and
possibilistic settings, which concerns marginalization.
Marginalization in possibility theory differs from that in
the probabilistic framework in using maximization instead
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of summation. For J C K a marginal possibility distribution
w4/ of distribution 7 (which is assumed to be defined on
X ) is defined for all z € X by the formula

L

™ (x) =  max

™ .
yeXiytl=x (U)

In analogy to this, possibility m(A) of a set A C X is got
from the respective possibility distribution 7 defined on X g
in the following way
A) = .
m(A) max m(x)

Since conditioning as well as the concept of independence
in possibility theory are closely connected with t-norms, it
is quite natural that also operator of composition is parame-
terized by a t-norm.

Definition 2: A triangular norm (or a t-norm) T is a
binary operator on [0,1] (i.e. T : [0,1]> — [0,1]) satisfying
the following three conditions:

e forany z € [0,1], T(1,z) = a;

o forany z1,x2,y1,92 € [0, 1] such that z1 < @2, 41 < 92

T(x1,y1) < T(2,y2);

o for any z,y,z € [0,1], T(T(z,y),2) = T(z,T(y, 2)),
and T'(z,y) = T(y, z).

In this paper we shall deal only with continuous t-norms,
i.e. with ¢-norms which are continuous functions. The reader
not familiar with t-norms can consider in the following text
only the simplest t-norms: either Gidel’s t-norm Tg(x,y) =
min(z,y), or product t-norm Tp(z,y) = x - y;

Consider possibility distribution 7 defined on Xy and
two disjoint nonempty subsets I,.J of K. The conditional
distribution w!/VK (21| 217} is defined by

gHUK (g1 gl7)
=sup{z € [0,1] : T(z, 7! (z'7)) < 7HV7 (2HV7)}.
In the case that
aHOT (ZUOTY = 7 (g4 (21) 24 (247))

the two groups of variables X; and X; are said (for
distribution 7) to be T'-independent.

To be able to introduce conditional independence let us
consider three disjoint subsets I, J and K (I # () # J). For
a possibility distribution 7 two groups of variables X; and
Xy are conditionally T-independent given the third group
Xk if

pHUJUK (3L IUJUK)

— iz—v(ﬂ_lIuK(gjllul()7 TI'lJUK(Z‘iJ|TJUlK)).

This property will be denoted by X7 L1 X 5| Xk[n].
In [15], Vejnarovd defined a possibilistic version of the
operator of composition.

Definition 3: Consider arbitrary two possibility distribu-
tions m; and my defined on Xg, and Xk,, respectively
(K1 # 0 # K>). For an arbitrary continuous t-norm 7" their
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composition w b o is defined for all x € Xz by the
following expression

(m1 > 7o) () = T(Tl’l(l‘lKl), TI'Q(ZE‘LKz\Kl |$LK1HK2)).

Let us highlight the main difference between probabilistic
and possibilistic operators of composition: whereas in prob-
ability theory the operator of composition may be undefined
for a couple of probability distributions, in possibility theory
the result of composition is always defined.

From the point of view of this paper the most important
are the properties of the possibilistic operator of composition
formulated in the following two Lemmas, which were proved
by Vejnarova in [15], [16] and [17].

Lemma 3: For arbitrary three possibility distributions
m, e, T3, defined on X, ,Xk,, Xg,, respectively, and a
continuous t-norm T the following six properties hold true:

(1) m b w2 is a possibility distribution on Xk, UK,;

(i) (m1 pp m)tEr =my;

(iil) 71 D o = Mo D My
(IV) K1 2 (KQ ng)
—— (7I'1 DT7T2)I>T7T3:(7T1 I>T7I'3)I>T7T2,'

(v) K22 LD (KiNK,)

— M Dp o = (71'1 > F%L) D> o,
(Vl) (Kl @] KQ) 2 L 2 Kl
= (morm)!l =miop ﬂ%KmL.

Lemma 4: Let I,J, K be disjoint subsets of N, I and J
be nonempty. For a possibility distribution 7 defined on X

IKiNK2 _ _|KiNKs,
1 =T ,

— T

qHOIUK _ fLIUK (o LJUK

if and only if
X L X5 Xk[n].

The last lemma reformulates for possibility distributions
what was said for probability distributions: variables X7
and X ; are conditionally 7T-independent given variables X
for possibility distribution 7 if and only if the marginal
distribution wHY7VK factorizes in the following sense

gUIUK _ f LUK LTUK,

C. Belief Functions

A belief function is defined with the help of a basic
(probability or belief) assignment m on Xy, i.e.

m:PXny) — [0,1]

Z m(A) = 1.

ACX N

for which

Therefore, for the sake of simplicity, we will not speak
about belief functions but about basic assignments: We shall
marginalize and compose basic assignments. For each K C
N marginal basic assignment of m is defined (for each
B C Xk):

m* (B = >

ACX ALK =B

m(A).
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TABLE I
BASIC ASSIGNMENTS m1 AND ma.
ACXy my(A) B C Xs ma(B)
{a} 0.2 {b} 0.6
{a} 0.3 {b} 0
{aa} 0.5 {ab} 0.4

An operator of composition was for basic assignments
defined in [8] by the following definition.

Definition 4: For two arbitrary basic assignments mj on
Xk, and mg on X, (K1 # 0 # K3) a composition mi>msa
is defined for each C' C X, Uk, by one of the following
expressions:

[a] if m3" 1M (CHKINK2) 5 0 and C = OV @ OLK:

then

ml(ciKl) ~m2(ClK2).

(WLIDmQ)(C) = méKlﬂKz(ClKlﬁKz) ’

[b] if my™ "2 (CHANK2) = g and C = OV x X e\ g,
then
(my>mg)(C) = my (CH);

[c] in all other cases (my >mg)(C) = 0.

Since one of the goals of this paper is to show that this
operator enables us to define for belief functions an innova-
tive version of the relation of conditional independence, we
will, in agreement with the requirements of an anonymous
referee, illustrate its properties on a couple of examples.

Example 1: Consider two basic assignments m; and my
on X; = {a,a} and Xy = {b,b}, respectively, which are
specified in Table I. Since, in this case, m; and my are
defined for disjoint sets of variables (K7 N Ky is empty),
composition simplifies to the expression

(m1>ma)(C) = ma (CHY) - my (O,

which is to be understood exactly in the sense of Definition 4:
for all C such that C = CH1} @ CH2} it is defined by the
product my (CHY) . my(CH2H), for all the other C it is 0
(see also Table II).

With respect to the main purpose of this paper, it is relevant
to notice the following fact. Consider, for example, set
C = {ab,ab} # C' @ C'? = {a,a} ® {b,b} = X; ® Xa.
In this case Definition 4 assigns my > mo(C) = 0. If any
positive value were assigned to this set C, it would express
that one gives a part of her belief either a A b or a A b. This
means that one believes that there is a type of dependence
between variables X; and Xo.

Using Table II, where the values of mj>ms are presented,
the reader can easily check also other properties expected for
the composition; for example that m; = (my Dmg)l{l}, and
since my and my are trivially projective (consistent) also
mg = (m1>mg) 2 (see property (iii) of Lemma 5 below).

|
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TABLE I

BASIC ASSIGNMENT mj > mg FROM EXAMPLE 1.

CC Xy c=cHll @2t | (m1pme)(C)
{ab} {a} ® {b} 0.12
{ab} {a} ® {B} 0
{ab} {a} ® {b} 0.18
{ab} {a} @ {b} 0

{ab, ab} {a} ® X» 0.08
{ab, ab} X1 ® {b} 0.3
{ab,ab} 0
{ab,ab} 0
{ab, ab} X1 ® {b} 0
{ab, ab} {a} ® X2 0.12

{ab, ab, ab} 0

{ab, ab, ab} 0

{ab, ab, ab} 0

{ab, ab, ab} 0

{ab, ab, ab, ab} X @ Xgo 0.2
TABLE III

BASIC ASSIGNMENTS m1 (Z(1,2}) AND ma(z (2 3})-

CCXpnoy m1(C) CC Xz | m2(C)
{ab} 0.1 {bc} 0
{ab} 0.5 {vc}

{ab} 0.2 {bc} 0.3
{ab} 0 {bc} 0.1
{ab, ab} 0 {bc, bc}
{ab, ab} 0 {bc, bc}
{ab,ab} 0 {be, be} 0.1
{ab, ab} 0 {be, be} 0
{ab, ab} 0 {bc, bc} 0
{ab, ab} 0 {bc, bc} 0.1

{ab, ab, ab} 0 {bc, be, be} 0

{ab, ab, ab} 0 {bc, bé, bc} 0

{ab, ab, ab} 0 {be, be, bc} 0.3

{ab, ab, ab} 0 {be, be, be} 0

{ab, ab, ab, ab} 0.2 {be, be, be, be} 0.1

Example 2: Consider three binary variables X, Xo, X3
with X; = {a,a}, Xy = {b,b}, X5 = {c,¢}, and two
2-dimensional basic assignments m; and mg as specified in
Table III.

Notice that these two assignments are not projective;
for this see their one-dimensional marginals in Table IV.
Therefore, because of property (iii) of Lemma 5 presented
below my > mg # mo > my.

To determine general 3-dimensional assignment (of binary
variables) one has to specify 255 numbers, because X1 3 33
has 28 — 1 = 255 nonempty subsets. However, when
computing m; > mg, most of these 255 values equal 0
because most of these subsets do not meet the condition
C = CHL2 @023} and therefore the corresponding value
of the assignment my >my is defined by the point [c] of the
definition.

What are the subsets for which C' # CH1.2} @ CH{23}9
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TABLE IV

ONE-DIMENSIONAL MARGINAL ASSIGNMENTS Tlli{lhmi{Q} AND
{2 {3
mi )

Acx, | mit ACX, | mitP
{a} 0.6 {b} 0.3
{a} 0.2 {b} 0.5

{a,a} 0.2 {b,b} 0.2

AC Xy mi,{Z}(A) ACX3 mi,{S}(A)
{b} 0 {c} 0.3
{0} 0.5 (@ 0.3
{b,b} 0.5 {c, e} 0.4

TABLE V

BASIC ASSIGNMENT m1 > mo FOR EXAMPLE 2.

C C X(1.2,3) cHL2Y @ cH23) | (my > mae)(C)
[a] {abc} {ab} ® {bc} 0.3
[a] {abc} {ab} ® {be} 0.1
[a] {abc, abc} {ab} ® {bc, bc} 0.1
[b] {abc, abc} {ab} ® X3 0.1
[b] {abe, abc} {ab} ® X, 0.2
[a] | {abc,abc, aEE,_aEE} X (1,2 ® {be, be} 0.04
abe, abe, abc ST
[a] {650, abe, ﬁBE} X{LZ} ® {bc, be, be} 0.12
abc, abe, abe, abe
fal {abé, abe, abe, aEé} X2y ® X2 0.04

For example, it is easy to show that all the sets of cardi-
nality 7 belong to this category (hint: show that for any
C C X{1,2,3}, for which [C| = 7, CH12} = X4 5 and
cH23) = X{Qﬁg})-

Since all singletons (one-point-sets) meet the considered
equality ¢ = CH12} @ CH23} all sets C, for which
C # cH12 @ CH23} must have at least two elements: an
example is {abc,abc}. As further examples may serve sets
{abe, abc, abe, abe} and {abc, abe, abc}. A common charac-
teristics of all these sets is that assigning a positive belief
to them one introduces a type of conditional relationship
between X; and X3 given (at least one) value of Xo.

Let us turn our attention back to computation of mj >meo
for assignments of our example. For this, one immediately
notices that point [b] of the definition is used whenever
C C Xji,2,3) is considered for which CcH2} = p, since
m%m} (b) = 0. In fact, we get only 8 subsets, for which
assignment my >msg is positive - see Table V, where the first
column bears the information, which point of the definition
is used to compute the respective value. -

Let us start studying properties of the operator of com-
position for basic assignments. The reader will perhaps not
be surprised if we claim that the operator of composition
meets all the six basic properties holding for operators of
composition in probabilistic as well as in possibilistic cases.
Notice that similarly to the possibilistic version (and in
contrast to the probabilistic one), the operator of composition
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for basic assignments is always defined.

Lemma 5: For arbitrary basic assignments my, Mo, m3
defined on X, Xgq, X3, respectively
(1) mq > mg is a basic assignment on X, UK,;
(i) (mq>mo)tEr =my;
(iil) mq > mo = mo > my
— (m1 l>m2)>m3 = (ml l>m3)>mg;
(v) Ko O LD (K NK>)

KinK.
= mifanke

KiNnK.
— TVL% 1N 2.

= mid>mg=(m> m%L) > Moy
(Vl) (Kl UKQ) 2 L 2 Kl
= (miom)f =mip> m%szL.

All these properties were proved in [8]. The only exception
is property (v); however its proof is rather technical and we
omit it due to the lack of space.

Answering the question, what is the relationship between
the factorization with the help of the operator of composition
and the concept of conditional independence, is in this case
much more difficult than in the previous two subsections.
One of the reasons is the fact that the notion of the con-
ditional independence for belief functions was introduced in
several different ways. Perhaps the most frequent (and maybe
also with the greatest number of supporters) is the one, which
can be easily defined with the help of commonality func-
tion. Using notation of Studeny [11], commonality function
Com,, is defined for basic assignment m (assuming that m
is defined on X ) for each A C X by a simple formula

Comy,(A) = Z m(B).
BDA

Yaghlane et al. [2] define the concept of conditional non-
interactivity (as well as Shenoy defines his concept of
conditional independence) in the way that variables X
and variables X ; are conditionally non-interactive given
variables X if and only if for all A C Xy

Compirusox (AHYIYEY . Com,, e (AYE)
= Compirox (AHYEY . Com,, ok (AVVE).
In this paper we shall denote this property by
X1 Ay X1 Xk
Though for basic assignments it does not hold true that

X Wy Xg| Xk if and only if the basic marginal assign-
ment m!TY7VUE factorizes in the following sense

mHVIUK _ LUK ) LIUK

still there are properties which reflect a similarity of these
two notions. First, Yaghlane er al. in [2] showed that if
X7 Apm Xs| Xk then all focal elements of mHUJUK
(ie. sets A C Xjujuk, for which mHY/VE(A) > 0)
are Z-layered rectangles, which are nothing else than sets
A C Xjujuk, which can be expressed as an extension of
its respective projections:

A:AiIUK®AlJUK.
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Therefore, combining the mentioned Yaghlane ez al. property
with Definition 4 we get the following simple assertion.

Assertion: Consider a basic assignment m on Xy and
three disjoint subsets I,J, K C N (I # 0 # J). If A C
X usuk is a focal element of m"TY7YK and A # AMVK @

AYVYE then neither of the following two expressions holds
true:

X J-L[m] XJ|XK7
and

mlIUJUK — miIUK DmlJUK.

So, the first property connecting the concepts of condi-
tional non-interactivity and factorization is that any of them
guarantees that the focal elements of the respective basic
assignment can be expressed as an extension of its corre-
sponding projections (Z-layered rectangles in the language
of Yaghlane et al.).

It is well known that if all focal elements of a basic
assignment m are singletons, i.e. if m(A) > 0 implies
that |[A| = 1, then this basic assignment corresponds to
a probability distribution, and it is why some authors call
it Bayesian basic assignment. In [11] Studeny claims that
for Bayesian basic assignments the concept of conditional
non-interactivity coincides with the concept of conditional
independence of the corresponding probability distribution.
In [8], we proved that if we compose by the operator of
composition two Bayesian basic assignments, such that the
corresponding probability distributions may be composed
by the probabilistic operator of composition (i.e. the com-
position is defined) then the resulting distribution is again
Bayesian.

Lemma 6: Let my and mqy be Bayesian basic assignments
on X and Xy, respectively, for which

ma 0 (A) =0 = m M (A) =0 (1)

for any A C Xgyp. Then my > msy is a Bayesian basic
assignment.

From this, it is obvious that considering Bayesian assign-
ment m, for composition of its marginals m YK » m /UK
only case [a] of the definition is applied.! Therefore, com-
paring Definitions 1 and 4 we see that the result is always
defined (composed distributions, being marginals of the same
distribution are consistent) and is the same for both the
Definitions.

These considerations result in a second property con-
necting the concepts of conditional non-interactivity and
factorization: for Bayesian basic assignments they coincide
with probabilistic conditional independence.

In conclusion of this section we will show the difference
between the compared concepts. Namely, in [2] the authors

'In fact, case [b] is used when m!KNE(ALKNLY = ( but then the
results equals zero, which is the same value, which would be received by
application of rule [a].
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admit that their concept of conditional non-interactivity (as
showed by Studeny) is not consistent with marginalization.
What does it mean and the fact that the factorization consid-
ered in this paper does not suffer from this imperfectness will
be visible from the following example, which is borrowed
from [2].

Example 3: Consider three binary variables X, X», X3
with X; = {a,a}, Xy = {b,b}, X3 = {c,¢} as in Exam-
ple 2, and two basic assignments m(x (1 3}), m2(2{2,3})
each of which having only two focal elements:

m1({ac,ac}) = 0.5 mq({ac,ac}) =0.5
my ({b,bc}) = 0.5 my({be,bc}) = 0.5
For them, it is showed in [2] that there does not exist basic
assignment m on Xy 5 3y such that mq, ms are its marginals
(ie. m 3 = my, mH23} = my) and Xy 1Ly, Xa|Xs.
Since

m{{S}({E}) _ m%{is}({é}) =.5,
m{{‘%}({cj E}) _ mé{?)}({c, E}) =.5,

basic assignments m; and mq are projective (consistent),
and therefore their composition (and due to property (iii)
it does not matter whether we consider m = mj > moy or
m = mg>my) is an assignment having both m; and my for
its marginals. As the reader easily verifies, it is an assignment
with also only two focal elements

(my >mg)({abé, abé, abe, abe}) = .5,

(mq >ma)({abe,abc}) = .5.
Now, let us show that X _LK[mIDmQ] X2|X3._F0r this, it is
enough to show for one set A C {a,a} x {b,b} x {c, ¢} the
following equality does not hold true
Comp,(A) - Com,, (3 (Al{g})

= C’ommi{l,a} (Al{l"g}) . C’ommuz,s} (Al{2’3}).

Let us consider A = {ab¢, abé, abé, abc} and compute the
necessary commonality functions
Com,, ({abe, abe, abe, abe}) = m({abe, abe, abe, abe})
=0.5,
Com,, .0 ({ac, ac}) = m" 3} ({ag, ac}) = 0.5,
Com,,112.8y ({bG, be}) = mH23 ({be, be}) = 0.5

and, eventually
Com,isr ({2}) = m"¥ ({e}) + m" ¥ ({e,2}) = 1.0.

So we see that though the basic assignment m factorizes in
the sense that m = m {13 o m 23} Xy 0 Xo| X5, m

III. GENERAL PROPERTIES OF THE OPERATOR

This section will be devoted to properties of the operator
of composition which do not depend on the framework in
which the operator is defined. The studied characteristics
can be deduced with the help of properties (i)-(vi) (see
Lemmas 1, 3 and 5), which hold for all three versions of
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the operator. Therefore, in this section we will consider an
object p, which may be either probability distributions, or
possibility distributions or basic assignments. Recalling that
properties (i)-(vi) hold for probability distributions only if
p1 > pa (or (p1 > p2) > ps in case of point (iv)) is defined,
we have to realize that if we compose marginals p!, p'” of
a probability distribution p then the composition pt! > p+J
is always defined. Moreover, we also must not forget that in
case when g is a possibility distribution then the operator of
composition > is parameterized by a continuous t-norm.
Let us consider an arbitrary object g defined on X and
show that the ternary relation of factorization defined (for
disjoint I, J,L C N, I #0 # J) in the following way

lITUJUL IUL lJUL

X]J.Lg,XJ|XL — § = > ©

is a semigraphoid, i.e. it meets the four semigraphoid axioms
listed below. In what follows, each axiom is reformulated into
the language of composition and the corresponding theorem
is proved.

A. Symmetry

X7 JLK, X,]‘XL = X JL@ X[‘XL

Theorem 1: If WVl = QUHUL o oLIVL whep glso
QHUJUL — GLIUL G LIUL,

Proof: The assertion follows immediately from the fact
that marginals /Y% and o!/“T are consistent, and therefore
property (iii) may be applied
1IuL LJUL

LJUL _ LIuL

& >p

© >
B. Decomposition

X7 JLP XJUK|XL = X7 JL@ XK|XL

Theorem 2: If pt!VIVEVL — oUUL L GLIUKUL theon glso
QHUKUL — (LIUL  (LKUL,

Proof: The assertion will be got just by application of
marginalization property (vi)

TUKUL TUJUKUL) HUKUL
pl UKU (pl UJUKU )
) JTUKUL
_ <p11uL > ot IuKuL)
QUL IKUL,
| |
C. Weak Union

Xr L, Xyur| X = X5 1L, X5|XkuL

Theorem 3: If ptVIVEVL — oUUL L GLIUKUL thon glso
QUUJUKUL — o ITUKUL 1, L JUKUL

Proof: To prove this assertion we have to realize that,
due to property (v),

L ITUL |JUKUL __ ( |IUL lKUL) lJUKUL
- ’

© > ® >p >p

and that, because the assumptions of Theorem 2 are fulfilled,

also

UKUL _ LIUL o IKUL

g & g
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Using these two equalities we finish the proof in a simple
way

pLIUJUKUL L IUL D[QLJUKUL

LIUL LKUL) lJUKUL

("
QHUKUL

>
| JUKUL

D. Contraction
X[ ‘LL@ XK‘XL & X] JLKJ XJ|XKUL
= X J.Lp X,]U[(|XL
Theorem 4: If gJ“UKUL = goUUL > gleUL, and
@l IUIUKUL _ UUKUL o LJUKUL © yop
SOiIUJLJKUL — piIUL > leUKUL.

Proof: We will follow the same idea as in the preceding
proof but in the reverse order. First, we will use property (v)
and then both assumptions of this assertion.

also

LIUL lJUKUL LIUL iKUL) lJUKUL

>
|JUKUL

(" p
puuKuL b o

L TUJUKUL
© .

& >p

IV. CONCLUSIONS

In three different frameworks we introduced an operator
of composition, which, when applied to low-dimensional
objects, forms a more-dimensional objects of the same type.
Therefore, when applied iteratively, the operator of compo-
sition enables constructing multidimensional models from a
system of low-dimensional objects. In this paper we were
interested only in the very basic properties of the operator:
especially, in possibility to introduce the ternary relation of
factorization:

Xr A, X;51Xg

lfuJuL _ |IUL |JUL

— © > ©

We showed a close connection between the relations of
factorization and conditional independence in probability and
possibility theories, and compared these two notions for
belief functions. It appeared to be interesting that for proving
famous semigraphoid axioms for the concept of factorization
we needed only six basic properties (i)-(vi) (though we are
not sure, we expect them to be independent).

When comparing factorization with the prevalent concept
of conditional independence for belief functions (Yaghlane
et al. call it conditional non-interactivity) we showed that,
though manifesting some equal properties, they differ from
each other. We showed that our concept of factorization
does not suffer from the insufficiency, which Studeny calls
inconsistency with marginalization. Nevertheless, we do not
hide the fact that in contrast with the fact that belief
function factorization coincides with probabilistic conditional
independence for Bayesian basic assignments, no such a
coincidence holds for basic assignments representing possi-
bilistic distributions. This is, however, quite a different (and
complex) question (we know that it is under a serious reserch
of J. Vejnarova [18]).
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