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Abstract

The paper gives instructions how
to read conditional independence re-
lations for multidimensional proba-
bility distributions represented in a
form of a compositional model.
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1 Introduction

Most of the graphical Markov models offer
a way how to read conditional independence
relations from their underlying graphs. For
Bayesian networks one can do it either using
Pearl’s d-separation criterion [6, 1], or with
the help of moralization criterion of Lauritzen
et al. [5]. For the same purpose we introduced
in [4] persegrams, special tables representing
structures of compositional models, i.e. mul-
tidimensional distributions assembled from a
system of low-dimensional distributions by it-
erative application of an operator of compo-
sition. In [4] we also proved theorem saying
that two groups of variables are (uncondition-
ally) independent if there does not exist a sim-
ple trail between the corresponding variables.
In the present paper we present a new term:
L-active trail (hopefully a more transparent
modification of the formerly introduced no-
tion of an avoiding trail), which is a general-
ization of a simple trail enabling us to read
conditional independence relations. We show
that persegrams can also be used to recog-
nize whether two permutations of a generat-

ing sequence define the same model or not.
Both the important notions, persegram and
L-active trail, are abundantly illustrated with
examples.

2 Probabilistic compositional
models

In the whole paper we shall deal with a fi-
nite number of variables X1, X2, . . . , Xn each
of which is specified by a finite set Xi of its
values. A projection of x = (x1, x2, . . . , xn) ∈
XN = X1 × . . . ×Xn into XK = ×i∈KXi is
denoted x↓K . π(K) denotes probability dis-
tribution defined for the group of variables
XK = {Xi}i∈K . π(x) for x ∈ XK denotes
the value of this distribution for the vector
x ∈ XK . For L ⊂ K, symbol π↓L denotes
the marginal distribution defined for variables
XL, i.e. for each x ∈ XL

π↓L(x) =
∑

y∈XK :y↓L=x

π(y).

(Realize that π↓∅ = 1.) Consider three
disjoint sets I, J,K ⊂ N (I 6= ∅ 6= J).
We say that for distribution κ(N) groups
of variables XI and XJ are conditionally
independent given variables XK (in symbol
XI ⊥⊥ XJ |XK [κ]) if for all x ∈ XI∪J∪K the
following equality holds true

κ↓I∪J∪K(x) · κ↓K(x↓K)
= κ↓I∪K(x↓I∪K) · κ↓J∪K(x↓J∪K).

It is well known that this is equivalent to the
fact that for all x ∈ XI∪J∪K

κ↓I∪J∪K(x) = κ↓I∪K(x↓I∪K)·κ↓J∪K(x↓J |x↓K).
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From two low-dimensional distributions π1

and π2 one can get a distribution of a higher
dimension with the help of the following op-
erator of composition.

Definition 1 Consider arbitrary two distri-
butions π(K1) and π(K2) (K1 6= ∅ 6= K2). If
π↓K1∩K2

1 is dominated by π↓K1∩K2
2 , i.e. for all

z ∈ XK1∩K2

π↓K1∩K2
2 (z) = 0 =⇒ π↓K1∩K2

1 (z) = 0,

then π1 . π2 is for all x ∈ XK1∪K2 defined by
the expression

(π1 . π2)(x) =
π1(x↓K1) · π2(x↓K2)

π↓K1∩K2
2 (x↓K1∩K2)

.

(0·0
0 = 0.) Otherwise the composition π1 . π2

remains undefined.

We proved it in the paper [2] that the result of
composition, if defined, is a probability distri-
bution of variables XK1∪K2 . Therefore, if the
operator is applied iteratively to a sequence of
distributions π1(K1), π2(K2), . . . πn(Kn) (we
will call it a generating sequence in the se-
quel), and if the resulting distribution

π1 . π2 . . . . . πn = (. . . (π1 . π2) . . . . . πn)

is defined, it is a probability distribution for
variables XK1∪K2∪...∪Kn . Remember that the
operators are always, if not specified by brack-
ets otherwise, applied from left to right.

In the rest of the paper we will consider a gen-
erating sequence π1(K1), π2(K2), . . . πn(Kn),
for which π1 . π2 . . . . . πn is defined, and will
deal with the problem how to read conditional
independence relations for this distribution.

3 Persegrams

Definition 2 Persegram of a generating se-
quence is a table in which rows correspond to
variables (in an arbitrary order) and columns
to low-dimensional distributions; ordering of
the columns corresponds to the generating se-
quence ordering. A position in the table is
marked if the respective variable is among the
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X7

X8

π1π2π3π4π5π6π7uuuuu uuu uu uu
Figure 1: Persegram

arguments of the corresponding distribution.
Markers for the first occurrence of each vari-
able (i.e. the leftmost markers in rows) are
squares (we will call them box-markers) and
for other occurrences they are bullets.

Example 1 In Figure 1 we can see a perseg-
ram for the sequence

π1({1, 2}), π2({3}), π3({4}), π4({1, 2, 3, 5}),
π5({3, 4, 6}), π6({5, 7}), π7({6, 8}).
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(b)

Figure 2: Persegram

Taking another permutations of this gen-
erating sequence π2, π1, π4, π6, π3, π5, π7

and π2, π4, π6, π3, π5, π7, π1 we get different
persegrams presented in Figure 2(a) and (b),
respectively. Notice the difference between
these persegrams. Whilst the only difference
between persegrams in Figures 1 and 2(a) is
the ordering of distributions π1, π2, . . . , π7,
the difference between persegram in Fig-
ure 2(b) and the other two ones is more
fundamental. Examine, for example, the
markers of the distribution π4. In Figures 1
and 2(a) this distribution has only one
box-marker: X5π4. On the other hand, in
persegram in Figure 2(b) there are 3 box-
markers for this distribution: X1π4, X2π4

and X5π4. Importance of this difference will
be clear from the following assertion.
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Theorem 1 Consider a generating se-
quence π1, π2, . . . , πn and its permutation
πi1 , πi2 , . . . , πin. If the corresponding perseg-
rams have the same box-markers (i.e. Xiπj

is a box-marker in the persegram of sequence
π1, . . . , πn if and only if it is a box marker
also in the persegram of πi1 , . . . , πin), then
these two generating sequences represent the
same multidimensional distribution:

π1 . π2 . . . . . πn = πi1 . πi2 . . . . . πin .

Proof Consider the persegram of the gener-
ating sequence π1, π2, . . . , πn and denote for
each i = 1, . . . , n by Bi the set of those indices
j from Ki, for which Xjπi is a box-marker.

Generating sequence π1, π2, . . . , πn represents
multidimensional distribution

π1 . . . . . πn = π1 ·
n∏

i=2

πi

π
↓Ki∩(K1∪...∪Ki−1)
i

.

From the definition of a persegram it is
obvious that j ∈ Ki ∩ (K1 ∪ . . . ∪ Ki−1) if
and only if the corresponding marker Xjπi

is a bullet. Since all markers corresponding
to π1 (in the persegram of π1, π2, . . . , πn) are
box-markers, and π↓∅1 = 1, we see that

π1 . . . . . πn =

n∏
i=1

πi

n∏
i=1

π
↓Ki\Bi

i

.

An analogous expression can be deduced also
for generating sequence πi1 , πi2 , . . . , πin . Due
to the assumption of this assertion, sets Bi are
the same for both the considered generating
sequences and therefore also the correspond-
ing multidimensional distributions must coin-
cide. �

Remark Let us stress that this assertion
holds true only under the implicit assumption
that both π1 . . . . . πn and πi1 . . . . . πin are
defined.

Definition 3 Consider a persegram of
a generating sequence π1, . . . , πn and
L ⊂ K1 ∪ . . . ∪ Kn. A sequence of markers
m0,m1, . . . ,mt of a persegram is called an
L-active trail (L ⊂ K1 ∪K2 ∪ . . . ∪Kn) that
connects m0 and mt if it meets the following
4 conditions:
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(b)

Figure 3: Active trails: (a) X7π6, X5π6,
X5π4, X3π4, X3π5, X6π5, X6π7, X8π7;
(b) X3π2, X3π5, X6π5, X4π5, X4π3

1. for each s = 1, . . . , t a couple (ms−1,ms)
is in the same row (i.e. horizontal con-
nection) or in the same column (vertical
connection);

2. each vertical connection must be adja-
cent to a box-marker (one of the markers
is a box-marker);

3. no horizontal connection corresponds to
a variable from XL;

4. vertical and horizontal connections
regularly alternate with the following
possible exception: two vertical con-
nections may be in a direct succession
if their common adjacent marker is a
box-marker of a variable from XL.

If an L-active trail connects two box-markers
corresponding to variables Xj and Xk, j 6∈ L,
k 6∈ L, we also say that these variables are
connected by an L-active trail. This situation
will be denoted Xj  L Xk.

Remark Notice, that in an L-active trail one
marker may appear several times.

Example 2 An example of a {2, 4}-active
trail is the trail in Figure 3(a); horizontal con-
nections of this trail correspond to variables
X3, X5 and X6, so all the conditions of Def-
inition 3 are fulfilled. (Notice, it is also an
∅-active trail, which is also called a simple
trail.) However, this trail is not a {3, 4}-active
trail because there is a horizontal connection
(X3π4, X3π5) corresponding to variable X3.

A little bit more complex example of an ac-
tive trail is in Figure 3(b): it is a {6}-active
trail. It starts with a horizontal connection
(X3π2, X3π5), after which two vertical con-
nections (X3π5, X6π5) and (X6π5, X4π5) go in

Proceedings of IPMU’08 917



X1

X2

X3

X4

X5

X6

X7

X8

π1π2π3π4π5π6π7uuuuu uuu uu uu
(a)

X1

X2

X3

X4

X5

X6

X7

X8

π1π2π3π4π5π6π7uuuuu uuu uu uu
(b)

Figure 4: Active trails: (a) {7}-active trail
X2π1, X2π4, X5π4, X5π6, X7π6, X5π6, X5π4,
X3π4, X3π2; (b) {5, 6}-active trail X2π1,
X2π4, X5π4, X3π4, X3π5, X6π5, X4π5, X4π3

a direct succession. This is possible because
both of them are adjacent to a box-marker
X6π5.

Other examples of active trails can be seen
in Figure 4. The trail in Figure 4(a) con-
tains two consecutive vertical connections
X5π6, X7π6, X5π6 with the common box-
marker X7π6. This is possible because the
trail is 7-active. Notice also that in this trail
there appear some connections twice, which is
not forbidden by the definition.

The trail in Figure 4(b) is {5, 6}-active.In this
trail there are two consecutive vertical con-
nections X2π4, X5π4, X3π4, which is allowed
since the common adjacent marker X5π4 cor-
respond to variable X5 and the trail is {5, 6}-
active. An analogous property holds also for
the other couple of consecutive vertical con-
nections X3π5, X6π5, X4π5.

Let us now present the main result of this
contribution.
Theorem 2 Consider a generating se-
quence π1, . . . , πn, and three disjoint subsets
I, J, L ⊂ K1 ∪ . . . ∪Kn such that I 6= ∅ 6= J .
If there does not exist an L-active trail
Xi  L Xj in the corresponding persegram
with i ∈ I and j ∈ J then the groups
of variables XI and XJ are conditionally
independent given variables XL under the
distribution π1 . . . . . πn:

XI ⊥⊥ XJ |XL[π1 . . . . . πn].
The proof of this assertion is rather technical
and requires some lemmas proved in previous
papers and therefore we adjourn it to the ap-
pendix.

Remark Let us say that conditional inde-
pendence relations determined from a perseg-
ram are those, which are necessary for any
distribution represented by a generating se-
quence with the given persegram. This sys-
tem of conditional independence relations is
also maximal in the sense that if there ex-
ists an active trail Xj  L Xk then there ex-
ists a distribution represented by a generat-
ing sequence with the given persegram, and
variables Xj , Xk are conditionally dependent
given variables XL under this distribution.

Example 3 Consider a generating sequence

π1(x1), π2(x2), π3(x1, x2, x3),
π4(x2, x3, x4), π5(x3, x5),

and show how to read all the (conditional) in-
dependence relations from its persegram (see
Figure 5(a)). Let us stress that we do not
present here a general algorithm; this should
be based on the principles employed in algo-
rithms for seeking all paths in graphs.

X1
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X3

X4

X5

π1π2π3π4π5uu uu u
(a)

X1

X2

X3

X4

X5

π1π2π3π4π5uu uu u
(b)

Figure 5: Persegram of a sequence from Ex-
ample 3

It is obvious that the trail connecting X1 and
X3 (see Figure 5(b)) is an L-active trail for
any L ⊆ {2, 4, 5} (including ∅). Therefore,
variables X1 and X3 cannot be (conditionally)
independent. The same holds also for cou-
ples (X2, X3), (X2, X4), (X3, X4), (X3, X5).
Therefore, in what follows we shall investi-
gate only the remaining couples: (X1, X2),
(X1, X4), (X1, X5), (X2, X5), (X4, X5).

Let us examine for which L there exist
L-active trails connecting X1 and X2. One
can easily verify that there is no such a trail
with L = ∅.
The trail in Figure 6(a) is L-active for any L
equaling to {3}, {3, 4}, {3, 5}, {3, 4, 5}. The
trail in Figure 6(b) is L-active for L = {4} and
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Figure 6: Active trails connecting X1 and
X2: (a) X1π1, X1π3, X3π3, X2π3, X2π2; (b)
X1π1, X1π3, X3π3, X3π4, X4π4, X2π4, X2π2;
(c) X1π1, X1π3, X3π3, X3π5, X5π5, X3π5,
X3π3, X2π3, X2π2
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Figure 7: Active trails connecting X1 and
X4: (a) X1π1, X1π3, X3π3, X3π4, X4π4, (b)
X1π1, X1π3, X3π3, X2π3, X2π4, X4π4

L = {4, 5}. The trail in Figure 6(c) is L-active
for L = {5} (and also L = {4, 5}, for which
the previous trail was also L-active). Summa-
rizing the up to now achieved results we get
that there exist L-active trails connecting X1

and X2 whenever L is a non-empty subset of
{3, 4, 5}. Therefore X1 and X2 are (uncon-
ditionally) independent but not conditionally
independent given any (non-empty) subset of
the remaining variables.

How is it with the couple X1 and X4? Ex-
amining the persegram in Figure 7 one can
see that all L-active trails connecting X1 and
X4, must contain at least one horizontal con-
nection corresponding either to X2 or to X3.
Therefore, there exists neither a {2, 3}-active
trail nor {2, 3, 5}-active trail connecting vari-
ables X1 and X4. On the other hand, for all
the remaining subsets there exists at least one
L-active trail connecting X1 and X4: trail in
Figure 7(a) is L-active for L = ∅, {2}, {5}
and {2, 5}, whereas the trail in Figure 7(b) is
L-active for L = {3} and {3, 5}. Summarizing
this we get that variables X1 and X4 are con-
ditionally independent only for conditioning
sets {X2, X3} and {X2, X3, X5}.

The rest of the example is simple since all
the remaining couples contain variableX5 and
all trails connecting this variable with any
other must contain marker X3π5. Therefore
we leave it to the reader to show that

X2 ⊥⊥ X5|X3, X2 ⊥⊥ X5|X1, X3,
X2 ⊥⊥ X5|X3, X4, X2 ⊥⊥ X5|X1, X3, X4,
X4 ⊥⊥ X5|X3, X4 ⊥⊥ X5|X1, X3,
X4 ⊥⊥ X5|X2, X3, X4 ⊥⊥ X5|X1, X2, X3.

4 Conclusions

In the paper we presented a new notion of an
L-active trail. It enabled us to read from a
persegram corresponding to a generating se-
quence all the conditional independence re-
lations guaranteed by a structure of a com-
positional model. We also showed in Theo-
rem 1 that persegrams can be used to uncover
that two permutations of a system of low-
dimensional distributions represent the same
multidimensional model.

Acknowledgements

This work was partially supported by MŠMT
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Appendix: Proof of Theorem 2

Lemma 1 Let K,L,M ⊆ N . If K ∪ L ⊇
M ⊇ K ∩ L then for any probability distribu-
tions π ∈ Π(K) and κ ∈ Π(L)

(π . κ)↓M = π↓K∩M . κ↓L∩M .

Lemma 2 Let ν(xK∪L) = π(xK) . κ(xL) be
defined. Then

XK\L ⊥⊥ XL\K |XK∩L[ν].

Lemma 3 Consider a distribution π(xK)
and two subsets L1, L2 ⊂ K such that L1 \
L2 6= ∅ 6= L2 \ L1. Then

XL1\L2
⊥⊥ XL2\L1

|XL1∩L2 [π]

⇐⇒ π↓L1∪L2 = π↓L1 . π↓L2 .

Proof of the preceding Lemmas can be found
in [2], the next Lemma was proved in [3].

Lemma 4 If K2 ⊇ (K1 ∩K3) then

π1 . π2 . π3 = π1 . (π2 . π3) = π2 . π3 / π1.

Proof of Theorem 2. The proof will be per-
formed with the help of mathematical induc-
tion with respect to the length n of the gen-
erating sequence in question.

Let us start considering a generating sequence
π1(xK1), π2(xK2). We know that any Xi, Xj ∈
XK1 are connected by a trail consisting of
a single vertical connection (Xiπ1, Xjπ1) (see
Figure 8(a)). The same holds also for i, j ∈
K2 \K1. Realize that these single-connection
trails (Xiπ`, Xjπ`) are L-active trails for any

X1

X2

X3

X4

X5

X6
...

Xm

π1π2

u

K1 ∩K2 = ∅
(a)

X1

X2

X3

X4

X5

X6
...

Xm

π1π2

u

4 ∈ K1 ∩K2 6= ∅
(b)

Figure 8: Examples of persegrams for a gen-
erating sequence π1, π2

L ⊆ K1 ∪ K2 \ {i, j}. From Figure 8(b) we
can also see that if k ∈ K1 ∩K2 6= ∅ then

Xiπ1, Xkπ1, Xkπ2, Xjπ2

is a an ∅-active trail Xi  ∅ Xj for i ∈ K1\K2

and j ∈ K2 \ K1. Moreover, it is also an
L-active trail Xi  L Xj for any

L ⊆ (K1 ∪K2) \ {i, j, k}.

Therefore, we can easily answer the question
when there does not exist a trail Xi  L Xj .
It happens if and only if i and j are not simul-
taneously in one of the sets K1 or K2, and if
L ⊇ K1∩K2. It means that if I, J, L meets all
the assumptions of the theorem, we know that
(because there does not exist an L-active trail
Xi  L Xj for i ∈ I and j ∈ J) I must be a
subset of one of the sets K1 \K2 or K2 \K1, J
must be a subset of the other one from these
two sets, and L ⊇ K1 ∩ K2. Without loss
of generality assume that I ⊆ K1 \ K2 and
J ⊆ K2 \ K1, and, applying Lemma 1, com-
pute

(π1 . π2)↓I∪J∪L = π
↓I∪(L∩K1)
1 . π

↓J∪(L∩K2)
2 ,

from which, using Lemma 2, we get

XI∪(L∩K1)\K2
⊥⊥XJ∪(L∩K2)\K1

|XK1∩K2 [π1.π2],

which, when marginalized, yields the required
conditional independence

XI ⊥⊥ XJ |XL[π1 . π2],

which finishes the proof for n = 2.

Now, assume the assertion holds for all gener-
ating sequences of length less or equal n ≥ 2.
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We have to prove that it also holds for a gen-
erating sequence π1(xK1), . . . , πn+1(xKn+1).
This part of the proof, in which

M = Kn+1 ∩ (K1 ∪ . . . ∪Kn),

will be performed in four successive steps:

A we will show that the assertion holds in
case that I ∪ J ∪ L ⊆ K1 ∪ . . . ∪Kn;

B under the assumption that I ∪ J ⊆
K1 ∪ . . . ∪ Kn and L ∩ (Kn+1 \M) 6= ∅
we will prove validity of the extended
property :
there is no L-active trail Xi  L Xj

in the corresponding persegram with
i ∈ I ∪ (M \ L) and j ∈ J ;

C we will show that the extended property
holds also in case that J ⊆ K1 ∪ . . .∪Kn

and I ∩ (Kn+1 \M) 6= ∅;
D we will finish the proof by showing that

the required conditional independence
can be deduced from the extended
property.

Notice that we need not consider the case with
I∩(Kn+1\M) 6= ∅ 6= J∩(Kn+1\M), because
in this situation there exists an L-active trail
(Xi  L Xj with i ∈ I and j ∈ J) consist-
ing of one vertical connection, which violates
assumptions of the theorem. Situation when
I ⊆ K1 ∪ . . . ∪ Kn and J ∩ (Kn+1 \M) 6= ∅
is covered by step C after exchanging denota-
tion of sets I and J .

Step A. So, let us assume the simplest sit-
uation when I ∪ J ∪ L ⊆ K1 ∪ . . . ∪ Kn, i.e.
the box-markers of all the variables XI∪J∪L

are not in the last column of the perseg-
ram corresponding to the generating sequence
π1, . . . , πn+1. Regarding the assumption that
for any i ∈ I and j ∈ J there is no L-active
trail Xi  L Xj in the persegram corre-
sponding to π1, . . . , πn+1, no such an L-active
trail can exist in the persegram of π1, . . . , πn.
Therefore, due to the induction assumption,

XI ⊥⊥ XJ |XL[π1 . . . . . πn].

Since π1 .. . ..πn is marginal to π1 .. . ..πn+1,

XI ⊥⊥ XJ |XL[π1 . . . . . πn+1]

Xj′

Xi′

X`

πn+1u u
u

u u
u��

�1
mt

�����)

m̄s

Figure 9: Construction of a trail Xi  L Xj

holds also true.

Step B. Consider the situation when I, J ⊆
K1 ∪ . . . ∪Kn and L ∩ (Kn+1 \M) 6= ∅. We
will show that the set M \ L can be added
either to I or to J without violating the as-
sumption of the theorem; we will show that
either there does not exist an L-active trail
Xi  L Xj for i ∈ I ∪ (M \ L) and j ∈ J ,
or there does not exist such a trail for i ∈ I
and j ∈ J ∪ (M \ L). Assume the opposite.
Since there are not L-active trails from I to
J , this assumption means that there are two
L-active trails Xi  L Xj′ and Xj  L Xi′

for i ∈ I, j ∈ J, i′, j′ ∈ M \ L. Now we will
show that from these two L-active trails it is
always possible to construct an L-active trail
Xi  L Xj .

Let m0, . . . ,mt and m̄0, . . . , m̄s denote trails
Xi  L Xj′ and Xj  L Xi′ , respectively.
Choose any ` ∈ L∩ (Kn+1 \M). From Figure
9 it is obvious that:

1. if both (mt−1,mt) and (m̄s−1, m̄s) are
vertical connections, then
m0, . . .mt, Xj′πn+1, X`πn+1,

Xi′πn+1, m̄s, m̄s−1, . . . , m̄0

is a required L-active trail Xi  L Xj ;
2. if (mt−1,mt) is a vertical and (m̄s−1, m̄s)

is a horizontal connection, then the
required L-active trail is
m0, . . .mt, Xj′πn+1, X`πn+1,

Xi′πn+1, m̄s−1, m̄s−2 . . . , m̄0;

3. if (mt−1,mt) is a horizontal and
(m̄s−1, m̄s) is a vertical connection, then

m0, . . .mt−1, Xj′πn+1, X`πn+1,

Xi′πn+1, m̄s, m̄s−1 . . . , m̄0

is Xi  L Xj ;
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4. if both (mt−1,mt) and (m̄s−1, m̄s) are
horizontal connections, then one can
consider L-active trail

m0, . . .mt−1, Xj′πn+1, X`πn+1,

Xi′πn+1, m̄s−1, m̄s−2, . . . , m̄0,

which connects Xi and Xj .

Thus we have proved that M \ L can always
be added either to I or to J without violat-
ing the assumptions on non-existence of an
L-active trail from I to J . Without loss of
generality assume we can add it to I. So there
does not exist an L-active trail Xi  L Xj for
i ∈ I ∪ (M \ L) and j ∈ J in the persegram
corresponding to π1, . . . , πn+1.

Step C. Now, we will show that the same
property (extended property) holds also
in the last case we have not considered
yet. This step will again be performed by
contradiction. Assume J ⊆ K1 ∪ . . . ∪ Kn

and I ∩ (Kn+1 \M) 6= ∅, and assume there
is an L-active trail m0,m1, . . . ,mt, which is
Xj  L Xi′ for j ∈ J and i′ ∈ I ∪ (M \ L).
Since we assume that there is no such a trail
between I and J we know that the assumed
trail must connect j ∈ J with i′ ∈ M \ L.
However, again, this trail can be prolonged
in a simple way to get an L-active trail
Xj  L Xi for any i ∈ I ∩ (Kn+1 \ M). If
(mt−1,mt) is a vertical connection then such
a trail is m0,m1, . . . ,mt, Xi′πn+1, Xiπn+1.
If (mt−1,mt) is a horizontal con-
nection then the required trail is
m0,m1, . . . ,mt−1, Xi′πn+1, Xiπn+1.

Step D. So, up to now we have proved that
if J ⊆ K1 ∪ . . . ∪ Kn and either I or L
(or both) has a nonempty intersection with
(Kn+1 \M), then there does not exists an L-
active trail Xi  L Xj for i ∈ I ∪ (M \ L)
and j ∈ J in the persgram corresponding to
π1, π2, . . . , πn+1. The more there does not ex-
ist an L-active trail Xi  L∩(K1∪...∪Kn) Xj in
the presegram of π1, . . . , πn (for i ∈ I ∩ (K1 ∪
. . . ∪Kn) ∪ (M \ L) and j ∈ J).

In the rest of the proof we will use the fol-
lowing symbols: κn = π1 . . . . . πn, I− = I ∩
(K1∪ . . .∪Kn), I+ = I \(K1∪ . . .∪Kn), L− =

L∩(K1∪. . .∪Kn) and L+ = L\(K1∪. . .∪Kn).
Using them the above expressed nonexistence
of an L-active trail says that in the perseg-
ram of π1, . . . , πn there is no L-active trail
Xi  L− Xj for i ∈ I− ∪ (M \ L) and j ∈ J .
According to the induction assumption we can
deduce that

XI−∪(M\L) ⊥⊥ XJ |XL− [π1 . . . . . πn],

or, expressing this equivalently (due to
Lemma 3)

κ↓J∪I−∪L−∪M
n = κ↓J∪I−∪L−∪(M\L)

n

= κJ∪L−
n . κ↓I

−∪(M\L)∪L−
n

= κJ∪L−
n . κ↓I

−∪M∪L−
n . (1)

Since κn is marginal to π1 . . . . . πn+1, it is
evident that

κ↓J∪L−
n = (π1 . . . . . πn+1)↓J∪L− . (2)

In the next computations we will also need
the following equality (which is deduced with
the help of Lemma 1)

(π1 . . . . . πn+1)↓I∪L∪M = (κn . πn+1)↓I∪L∪M

= κ↓I
−∪L−∪M

n . (πn+1)↓I
+∪L+∪M . (3)

In the following computation we use in suc-
cessive steps Lemma 1, equality (1), Lemma 4
and finally equalities (2) and (3).

(π1 . . . . . πn+1)↓I∪J∪L∪M

= (κn . πn+1)↓I∪J∪L∪M

= κ↓I
−∪J∪L−∪M

n . π↓I
+∪L+∪M

n+1

= κJ∪L−
n . κ↓I

−∪M∪L−
n . π↓I

+∪L+∪M
n+1

= κJ∪L−
n .

(
κ↓I

−∪M∪L−
n . π↓I

+∪L+∪M
n+1

)
= (π1 . . . . . πn+1)↓J∪L−

.(π1 . . . . . πn+1)↓I∪L∪M .

This yields (see Lemma 3)

XJ ⊥⊥ XI∪L+∪(M\L−)|XL− [π1 . . . . . πn+1],

from which the required independence

XJ ⊥⊥ XI |XL[π1 . . . . . πn+1]

can be received by marginalization. �
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