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Abstract

We recall the basic idea of an algebraic approach to learning a Bayesian network (BN)
structure, namely to represent every BN structure by a certain (uniquely determined)
vector, called standard imset. The main result of the paper is that the set of standard
imsets is the set of vertices (= extreme points) of a certain polytope. Motivated by
the geometric view, we introduce the concept of the geometric neighborhood for standard
imsets, and, consequently, for BN structures. To illustrate this concept by an example,
we describe the geometric neighborhood in the case of three variables and show it differs
from the inclusion neighborhood, which was introduced earlier in connection with the GES
algorithm. This leads to an example of the failure of the GES algorithm if data are not
“generated” from a perfectly Markovian distribution. The point is that one can avoid this
failure if the greedy search technique is based on the geometric neighborhood instead.

1 Introduction

The motivation for this theoretical paper is
learning a Bayesian network (BN) structure
from data by the method of maximization of
a quality criterion (= the score and search
method). By a quality criterion, also named
a score metric by other authors, we mean a real
function Q of the BN structure, usually rep-
resented by a graph G, and of the database
D. The value Q(G,D) “evaluates” how the BN
structure given by G fits the database D.

An important related question is how to rep-
resent a BN structure in the memory of a com-
puter. Formerly, each BN structure was rep-
resented by an arbitrary acyclic directed graph
defining it, which led to the non-uniqueness in
its description. Later, researchers calling for
methodological simplification came up with the
idea to represent every BN structure with a
unique representative. The most popular graph-
ical representative is the essential graph. It is a
chain graph describing shared features of acyclic
directed graphs defining the BN structure. The
adjective “essential” was proposed by Anders-
son, Madigan and Perlman (1997), who gave a
graphical characterization of essential graphs.

Since direct maximization of a quality crite-
rion Q seems, at first sight, to be infeasible, var-
ious local search methods have been proposed.
The basic idea is that one introduces a neigh-
borhood relation between BN structure repre-
sentatives, also named neighborhood structure
by some authors (Bouckaert, 1995). Then one
is trying to find a local maximum with respect
to the chosen neighborhood structure. This is
an algorithmically simpler task because one can
utilize various greedy search techniques for this
purpose. On the other hand, the algorithm can
get stuck in a local maximum and fail to find the
global maximum. A typical example of these
techniques is greedy equivalence search (GES)
algorithm proposed by Meek (1997). The neigh-
borhood structure utilized in this algorithm is
the inclusion neighborhood, which comes from
the conditional independence interpretation of
BN structures. Chickering (2002) proposed a
modification of the GES algorithm, in which he
used the essential graphs as (unique) BN struc-
ture representatives.

There are two important technical require-
ments on a quality criterion Q brought in con-
nection with the local search methods, namely
to make them computationally feasible. One



of them is that Q should be score equiva-
lent (Bouckaert, 1995), which means it ascribes
the same value to equivalent graphs. The
other requirement is that Q should be decom-
posable (Chickering, 2002), which means that
Q(G,D) decomposes into contributions which
correspond to the factors in the factorization
according to the graph G.

The basic idea of an algebraic approach to
learning BN structures, presented in Chapter
8 of (Studený, 2005), is to represent both the
BN structure and the database with real vec-
tors. More specifically, an algebraic representa-
tive of the BN structure defined by an acyclic
directed graph G is a certain integer-valued vec-
tor uG, called the standard imset (for G). It is
also a unique BN structure representative be-
cause uG = uH for equivalent graphs G and H.
Another boon of standard imsets is that one can
read practically immediately from the differen-
tial imset uG − uH whether the BN structures
defined by G and H are neighbors in the sense
of inclusion neighborhood. However, the cru-
cial point is that every score equivalent and de-
composable criterion Q is an affine function (=
linear function plus a constant) of the standard
imset. More specifically, it is shown in § 8.4.2 of
(Studený, 2005) that one has

Q(G,D) = sQD − 〈t
Q
D, uG〉 ,

where sQD is a real number, tQD a vector of the
same dimension as the standard imset uG (they
both depend solely on the database D and the
criterion Q) and 〈∗, ∗〉 denotes the scalar pro-
duct. The vector tQD is named the data vector
(relative to Q).

We believe the above-mentioned result paves
the way for future application of efficient linear
programming methods in the area of learning
BN structures. This paper is a further step in
this direction: its aim is to enrich the algebraic
approach by a geometric view. One can imagine
the set of all standard imsets over a fixed set of
variables N as the set of points in the respec-
tive Euclidean space. The main result of the
paper is that it is the set of vertices (= extreme
points) of a certain polytope. One consequence

of this result is as follows: since every “reason-
able” quality criterion Q can be viewed as (the
restriction of) an affine function on the respec-
tive Euclidean space, the task to maximize Q
over standard imsets is equivalent to the task of
maximizing an affine function (= the extension)
over the above-mentioned polytope.

Now, a well-known classic result on convex
sets in the Euclidean space, Weyl-Minkowski
theorem, says that a polytope can equivalently
be introduced as a bounded polyhedron. Thus,
once one succeeds in describing the above-
mentioned polytope in the form of a (bounded)
polyhedron, one gets a classic task of linear pro-
gramming, namely to find an extremal value of
a linear function over a polyhedron. There are
efficient methods, like the simplex method, to
tackle this problem (Schrijver, 1986). To illus-
trate the idea we describe the above-mentioned
(standard imset) polytope in the form of a
bounded polyhedron in the case |N | = 3 in the
paper and give a web reference for |N | = 4.

However, because it is not clear at this mo-
ment how to find the “polyhedral” description
of the polytope for arbitrary |N |, we propose
an alternative approach in this paper. The ba-
sic idea is to introduce the concept of geometric
neighborhood for standard imsets, and, there-
fore, for BN structures as well. The standard
imsets uG and uH will be regarded as (geo-
metric) neighbors if the line-segment connect-
ing them is a face of the polytope (= the edge
of the polytope in the geometric sense). The
motivation is as follows: one of possible in-
terpretations of the simplex method is that it
is a kind of “greedy search” method in which
one moves between vertices (of the polyhedron)
along the edges - see § 11.1 of (Schrijver, 1986).
Thus, provided one succeeds at characterizing
the geometric neighborhood, one can possibly
use greedy search techniques to find the global
maximum of Q over the polytope, and, there-
fore, over the set of standard imsets. To illus-
trate the concept of geometric neighborhood we
characterize it for 3 variables in the paper and
give a web reference to the characterization in
the case of 4 variables.

The finding is that the inclusion neighbor-



hood and geometric neighborhood differ already
in the case of 3 variables. This observation has a
simple but notable consequence: the GES algo-
rithm, which is based on the inclusion neighbor-
hood, may fail to find the global maximum of
Q. We give such an example and claim that this
is an inevitable defect of the inclusion neigh-
borhood, which may occur whenever the data
faithfulness is not guaranteed. In our view, the
data faithfulness relative to a perfectly Marko-
vian distribution is a very strong unrealistic as-
sumption except for the case of artificially ge-
nerated data.

2 Basic Concepts

In this section we recall basic definitions and
results concerning learning BN structures.

2.1 BN Structures

One of the possible definitions of a (discrete)
Bayesian network is that it is a pair (G,P ),
where G is an acyclic directed graph over a
(non-empty finite) set of nodes (= variables) N
and P a discrete probability distribution over
N that (recursively) factorizes according to G
(Neapolitan 2004). A well-known fact is that P
factorizes according to G iff it is Markovian with
respect to G, which means it satisfies the con-
ditional independence restrictions determined
by the graph G through the corresponding (di-
rected) separation criterion (Pearl, 1988; Lau-
ritzen, 1996). Having fixed (non-empty finite)
sample spaces Xi for variables i ∈ N , the re-
spective (BN) statistical model is the class of all
probability distributions P on XN ≡

∏
i∈N Xi

that factorize according to G. To name the
shared features of distributions in this class one
can use the phrase “BN structure”. Of course,
the structure is determined by the graph G, but
it may happen that two different graphs over N
describe the same structure.

2.1.1 Equivalence of graphs
Two acyclic directed graphs over N will be

named Markov equivalent if they define the
same BN statistical model. If |Xi| ≥ 2 for ev-
ery i ∈ N , then this is equivalent to the con-
dition they are independence equivalent, which

means they determine the same collection of
conditional independence restrictions – cf. § 2.2
in (Neapolitan, 2004). Both Frydenberg (1990),
and Verma and Pearl (1991) gave classic graph-
ical characterization of independence equiva-
lence: two acyclic directed graphs G and H over
N are independence equivalent iff they have
the same underlying undirected graph and im-
moralities, i.e. induced subgraphs of the form
a → c ← b, where [a, b] is not an edge in the
graph.

2.1.2 Learning BN structure

The goal of (structural) learning is to deter-
mine the BN structure on the basis of data.
These are assumed to have the form of a com-
plete database D : x1, . . . , xd of the length d ≥ 1,
that is, of a sequence of elements of XN . Pro-
vided the sample spaces Xi with |Xi| ≥ 2 for
i ∈ N are fixed, let DATA(N, d) denote the col-
lection of all databases over N of the length d.
Moreover, let DAGS(N) denote the collection of
all acyclic directed graphs overN . Then we take
a real function Q on DAGS(N)×DATA(N, d) for
a quality criterion. The value Q(G,D) should
reflect how the statistical model determined by
G is suitable for explaining the (occurrence of
the database) D. The learning procedure based
on Q then consists in maximization of the func-
tion G 7→ Q(G,D) over G ∈ DAGS(N) if the
database D ∈ DATA(N, d), d ≥ 1 is given.

A classic example is Jeffreys-Schwarz
Bayesian information criterion (BIC), defined
as the maximum of the likelihood minus a
penalty term, which is a multiple of the number
of free parameters in the statistical model
(Schwarz, 1978). To give a direct formula
for BIC (in this case) we need a notational
convention. Given i ∈ N , let r(i) denote the
cardinality |Xi|, paG(i) ≡ {j ∈ N ; j → i}
the set of parents of i in G ∈ DAGS(N), and
q(i, G) ≡ |

∏
j∈paG(i) Xj | the number of parent

configurations for i (in G). Provided i ∈ N
is fixed, the letter k will serve as a generic
symbol for (the code of) an element of Xi (=
a node configuration) while j for (the code
of) a parent configuration. Given a database
D of the length d ≥ 1 let dijk denote the



number of occurences in D of the (marginal)
parent-node configuration encoded by j and k;
put dij =

∑r(i)
k=1 dijk. Here is the formula - see

Corollary 8.2 in (Studený, 2005):

BIC (G,D) =
∑
i∈N

q(i,G)∑
j=1

r(i)∑
k=1

dijk · ln
dijk

dij

− ln d
2
·
∑
i∈N

q(i, G) · [r(i)− 1] .

In this brief overview we omit the question of
statistical consistency of quality criteria; we re-
fer the reader to the literature on this topic
(Chickering, 2002; Neapolitan, 2004). A quality
criterion Q will be named score equivalent if, for
every D ∈ DATA(N, d), d ≥ 1,

Q(G,D) = Q(H,D) if G,H ∈ DAGS(N)

are independence equivalent. Moreover, Q will
be called decomposable if there exists a collec-
tion of functions qi|B : DATA({i} ∪ B, d) → R
where i ∈ N , B ⊆ N \ {i}, d ≥ 1 such that, for
every G ∈ DAGS(N), D ∈ DATA(N, d) one has

Q(G,D) =
∑
i∈N

qi|paG(i)(D{i}∪paG(i)) ,

where DA : x1
A, . . . , x

d
A denotes the projection

of D to the marginal space XA ≡
∏

i∈A Xi for
∅ 6= A ⊆ N .

2.1.3 Inclusion neighborhood
The basic idea of local search methods for

the maximization of a quality criterion (= score
and search methods) has already been explained
in the Introduction. Now, we define the in-
clusion neighborhood formally. Given G ∈
DAGS(N), let I(G) denote the collection of con-
ditional independence restrictions determined
by G. Given G,H ∈ DAGS(N), if I(H) ⊂
I(G),1 but there is no F ∈ DAGS(N) with
I(H) ⊂ I(F ) ⊂ I(G), then we say H and G
are inclusion neighbors. Of course, this termi-
nology can be extended to the corresponding
BN structures and their representatives.

1Here, I ⊂ J denotes strict inclusion, that is, I ⊆ J
but I 6= J .

Note that one can test graphically whether
G,H ∈ DAGS(N) are inclusion neighbors; this
follows from transformational characterization
of inclusion I(H) ⊆ I(G) provided by Chicker-
ing (2002).

2.1.4 Essential graph
Given an (independence) equivalence class G

of acyclic directed graphs over N , the respec-
tive essential graph G∗ is a hybrid graph (= a
graph with both directed and undirected edges)
defined as follows:

• a→ b in G∗ if a→ b in every G ∈ G,

• a ! b in G∗ if there are G,H ∈ G such that
a→ b in H and a← b in G.

It is always a chain graph (= acyclic hybrid
graph); this follows from graphical characteriza-
tion of (graphs that are) essential graphs by An-
dersson, Madigan and Perlman (1997). Chick-
ering (2002) used essential graphs as unique
graphical BN structure representatives in his
version of the GES algorithm.

2.2 Standard Imset

By an imset u over N will be meant an integer-
valued function on the power set of N , that is,
on P(N) ≡ {A; A ⊆ N}. We will regard it
as a vector whose components are integers and
are indexed by subsets of N . Actually, any real
function m : P(N)→ R will be interpreted as a
(real) vector in the same way, that is, identified
with an element of RP(N). The symbol 〈m,u〉
will denote the scalar product of two vectors of
this type:

〈m,u〉 ≡
∑
A⊆N

m(A) · u(A) .

To write formulas for imsets we introduce the
following notational convention. Given A ⊆ N ,
the symbol δA will denote a special imset:

δA(B) =
{

1 if B = A,
0 if B 6= A,

for B ⊆ N.

By an elementary imset is meant an imset

u〈a,b|C〉 = δ{a,b}∪C + δC − δ{a}∪C − δ{b}∪C ,



where C ⊆ N and a, b ∈ N \ C are dis-
tinct. In our algebraic framework it encodes an
elementary conditional independence statement
a ⊥⊥ b |C.

Given G ∈ DAGS(N), the standard imset for
G, denoted by uG, is given by the formula

uG = δN−δ∅+
∑
i∈N

{ δpaG(i)−δ{i}∪paG(i) }. (1)

It follows from (1) that uG has at most 2 · |N |
non-zero values. Thus, one can keep only
its non-zero values, which means the memory
demands for representing standard imsets are
polynomial in the number of variables.

It was shown as Corollary 7.1 in (Studený,
2005) that, given G,H ∈ DAGS(N), one has
uG = uH iff they are independence equivalent.
Moreover, Corollary 8.4 in Studený (2005) says
that G,H ∈ DAGS(N) are inclusion neighbors
iff either uG − uH or uH − uG is an elementary
imset. Finally, Lemmas 8.3 and 8.7 in (Studený,
2005) together claim that every score equivalent
and decomposable criterion Q necessarily has
the form:

Q(G,D) = sQD − 〈t
Q
D, uG〉 (2)

for G ∈ DAGS(N), D ∈ DATA(N, d), d ≥ 1
where the constant sQD ∈ R and the (data) vec-
tor tQD : P(N)→ R do not depend on G.

The reader can object that the dimension of
tQD grows exponentially with |N |, making the
method unfeasible for many “real-world” prob-
lems. However, since 2|N | ≤ |XN |, the rep-
resentation of a database D in the form of a
data vector may appear to be even more effec-
tive than (one of the traditional ways) in the
form of a contingency table! Another point is
that to compute 〈tQD, uG〉 one only needs at most
2 · |N | values of the data vector. In brief, we be-
lieve that whenever one is able to represent the
database in the memory of a computer then one
should be able to take care of the data vector
as well.

3 Some Geometric Concepts

In this section we recall well-known concepts
and facts from the theory of convex polytopes
(Schrijver, 1986).

3.1 Polytopes and Polyhedrons

These sets are special subsets of the Euclidean
space RK , where K is a non-empty finite set.
The points in this space are vectors v = [vi]i∈K .
Given x,v ∈ RK their scalar product is 〈v,x〉 =∑

i∈K vi · xi.
A polytope in RK is the convex hull of a finite

set of points in RK ; if the set consists of points
in QK , the polytope is rational. It is straight-
forward that the smallest set of points whose
convex hull is a polytope P is the set of its ver-
tices (≡ extreme points), that is, of those points
in P which cannot be written as convex combi-
nations of the other points in P. In particular,
the set of vertices of P is finite. The dimen-
sion dim(P) of P ⊆ RK is the dimension of its
affine hull aff(P), which is the collection of affine
combinations

∑
v∈R λv · v, where ∅ 6= R ⊆ P is

finite and λv ∈ R,
∑

v∈R λv = 1.2 A polytope is
full-dimensional if dim(P) = |K|.

An affine half-space in RK is the set

H+ = {x ∈ RK ; 〈v,x〉 ≤ α} ,

where 0 6= v ∈ RK and α ∈ R. A polyhedron
is the intersection of finitely many affine half-
spaces. It is bounded if it does not contain a ray
{x + α ·w; α ≥ 0} for any x,w ∈ RK , w 6= 0.

A well-known classic, but non-trivial, result
is that P ⊆ RK is a polytope iff it is a bounded
polyhedron – see Corollary 7.1.c in (Schrijver,
1986). A further important observation is that
if P is a full-dimensional polytope then its ir-
redundant description in the form of a polyhe-
dron3 is unique – see claim (17) on page 102 of
(Schrijver, 1986).

Finally, there are software packages that al-
low one, on the basis of the list of vertices of a
rational polytope P, to compute all inequalities
defining an irredundant polyhedral description
of P, e.g. (Franz, 2006).

2There is a unique linear subspace L ⊆ RK such that
aff(P) = w + L for some w ∈ RK . The dimension of
aff(P) is defined as the dimension of L.

3By this is meant the intersection of such a collec-
tion of half-spaces in which no half-space can be dropped
without changing the polyhedron.



4 Main Result

In this section we give the main result and illus-
trate it in an example with three variables. Let
S denote the set of standard imsets over N :

S ≡ {uG; G ∈ DAGS(N)} ⊆ RP(N) .4

Theorem 1. The set S of standard imsets over
N is the set of vertices of a rational polytope
P ⊆ RP(N). The dimension of the polytope is
2|N | − |N | − 1.

Because of a limited scope for this paper we
skip the proof, which can be found in (Studený
and Vomlel, 2008).
Example Let us describe the situation in the
case of three variables. Then one has 11 stan-
dard imsets and they break into 5 types (= per-
mutation equivalence classes). They can also be
classified by the number of edges in the corre-
sponding essential graph. (c.f. Figure 1 below)

• The zero imset corresponds to the complete
(undirected) essential graph.

• Six elementary imsets break into two types,
namely u〈a,b|∅〉 and u〈a,b|c〉; the essential
graphs are a→ c← b and a ! c ! b.

• Three “semi-elementary” imsets of the
form u〈a,bc|∅〉 ≡ δabc + δ∅ − δa − δbc define
one type; the essential graphs have just one
undirected edge.

• The imset δN −
∑

i∈N δi +2 ·δ∅ corresponds
to the empty essential graph.

By the theorem above, the dimension of the
polytope generated by these 11 imsets is 4. To
get its irredundant description in the form of a
polyhedron it is suitable to have it embedded (as
a full-dimensional polytope) in a 4-dimensional
space. To this end, we decided to identify eve-
ry standard imset over N with its restriction to
K ≡ {A ⊆ N ; |A| ≥ 2}. Then we used the com-
puter package Convex (Franz, 2006) to get all
13 polyhedron-defining inequalities. They break
into 7 types and can be classified as follows:

4To avoid misunderstanding recall that distinct
G, H ∈ DAGS(N) may give the same standard imset
uG = uH ; however, the set S contains only one imset for
each independence equivalence class.

• Five inequalities hold with equality for the
zero imset. They break into 3 types:
0 ≤ 2 · δabc + δab + δac + δbc, 0 ≤ δabc + δab

and 0 ≤ δabc.

• Eight inequalities achieve equality for the
imset corresponding to the empty graph.
They break into 4 types, namely δabc ≤ 1,
δabc + δab ≤ 1, δabc + δab + δac ≤ 1 and
δabc + δab + δac + δbc ≤ 1.

We also made analogous computation in the
case |N | = 4. In this case one has 185 standard
imsets breaking into 20 types. The dimension
of the polytope is 11. The number of corre-
sponding polyhedron-defining inequalities is 154
– see vertex-facet table in (Vomlel and Studený,
2008).

Thus, in the case of three and four variables,
the polyhedral description of the polytope P was
found. In particular, the task to maximize a
(score equivalent and decomposable) quality cri-
terion Q is, by (2), equivalent to a standard lin-
ear programming problem, namely to minimize
a linear function u 7→ 〈tQD, u〉 over the domain
specified by those 13, respectively 154, inequal-
ities. Note that the formula for the data vector
relative to BIC is also known, see (8.39) in (Stu-
dený, 2005):

tBIC
D (A) = d ·H(P̂A|

∏
i∈A

P̂i)

− ln d
2
· { |A| − 1 +

∏
i∈A

r(i)−
∑
i∈A

r(i)}

for A ⊆ N , where H(∗|∗) is the relative entropy
and P̂A is the marginal empirical distribution
given by (the projection of the database) DA.

5 Geometric Neighborhood

We say that two standard imsets u, v ∈ S are
geometric neighbors if the line-segment E con-
necting them in RP(N) is an edge of the poly-
tope P (generated by S), which means P \ E
is convex. The motivation for this concept has
already been explained in the Introduction. Of
course, the concept of geometric neighborhood
can be extended to the corresponding BN struc-
tures, and to the essential graphs as well.
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Figure 1: The geometric and inclusion neighborhood (for essential graphs) in the case of 3 variables.

Example We characterized the geometric
neighborhood in the case of three variables and
compared it with the inclusion neighborhood.
We found out that the inclusion neighborhood
is contained in the geometric one. The result is
depicted in Figure 1, in which BN structures are
represented by essential graphs, solid lines join
inclusion neighbors and dashed lines geometric
neighbors that are not inclusion neighbors. Dif-
ferent levels correspond to the numbers of edges.

We made a similar computation also in the
case of four variables – see vertex-vertex table
in (Vomlel and Studený, 2008). The descrip-
tion of our method for computing the geometric
neighborhood is also available at (Vomlel and
Studený, 2008).

5.1 GES Failure

What does it mean that u, v ∈ S are geomet-
ric but not inclusion neighbors? The fact that
they are geometric neighbors means there exists
a linear function on RP(N) achieving its maxi-
mum over S just in {u, v}. Analogously, since
u is a vertex of P, there exists (another) lin-
ear function achieving its maximum just in u.
Therefore, by a suitable convex combination of
these functions, one can construct a linear func-
tion L on RP(N) such that L(u) > L(v) > L(w)
for any w ∈ S \{u, v}. Provided u and v are not
inclusion neighbors, L achieves its local maxi-

mum (with respect the inclusion neighborhood)
in v and the global maximum over S in u.

Now, it has already been explained that every
“reasonable” quality criterion Q is (the restric-
tion of) an affine function on RP(N). Thus, the
reader may ask whether this may happen for Q
in place of L. Indeed, this is true in the case of
three variables for the imset u = u〈a,c|∅〉, which
corresponds to an “immorality” a→ b← c and
the imset v corresponding to the empty graph
– see Figure 1.
Example There exists a database D (of the
length d = 4) over N = {a, b, c} such that the
BIC criterion achieves its local maximum in the
empty graphG0 and its global maximum in (any
of) the graph(s) Ĝ of the type a → b ← c.
Put Xi = {0, 1} for i ∈ N and x1 = (0, 0, 0),
x2 = (0, 1, 1), x3 = (1, 0, 1), x4 = (1, 1, 0).
Then direct computation of BIC (see § 2.1.2)
gives BIC(Ĝ) = −14 ln 2, BIC(G0) = −15 ln 2
and BIC(G′) = −16 ln 2 for any graph G′ over
N having just one edge.

The reader may object that this is perhaps a
rare casual example because of a short database.
However, BIC exhibits the same behavior if the
database D is multiplied! The limited scope
of this contribution does not allow us to give
the arguments why (we think) this is, actu-
ally, asymptotic behavior of any consistent score
equivalent decomposable criterion Q, provided
the database is “generated” from the empirical



distribution P̂ given by D. The point is that P̂
is not perfectly Markovian with respect to any
G ∈ DAGS(N).

In particular, the GES algorithm – see
(Chickering, 2002) for details about this algo-
rithm – should (asymptotically) learn the empty
graph G0, while it is clear that (any of the
graphs) Ĝ is a more appropriate BN structure
approximation of the “actual” conditional inde-
pendence structure given by P̂ .

6 Conclusion

In our view, this is an example of the failure of
the GES algorithm which may occur whenever
a disputable data faithfulness assumption is not
fulfilled.5 This assumption is “valid” if data are
artificially generated, but, in our view, one can
hardly ensure its validity for “real” data.

On the other hand, the point of the example
from 5.1 is that the GES algorithm is based on
the inclusion neighborhood. This cannot hap-
pen if the greedy search technique is based on
the geometric neighborhood. Indeed, we are
able to show that each local maximum (of an
affine function) with respect to the geometric
neighborhood is necessarily a global maximum
(over P). The proof is at the manuscript stage
and will be published later. The conjecture that
the inclusion neighborhood is always contained
in the geometric one has recently been con-
firmed by Raymond Hemmecke (personal com-
munication). Therefore, we think the concept
of geometric neighborhood is quite important.
We plan to direct our future research effort to
algorithms for its efficient computation.

Acknowledgements

We are grateful to our colleague Tomáš
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