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On Models of Partial Repairs

Jaroslav Ševč́ık, Petr Volf, ÚTIA AV ČR

Abstract

Models of imperfect repairs are mostly based on the reduction of the cumulated hazard rate,
either directly or indirectly (by reducing the virtual age of the system). Other set of models
connects the repair with the change of time scale after such a virtual age shift. If the state of
the system is characterized by a process of deterioration, the repair degree can be connected
with the reduction of deterioration level. Such a view actually transforms the time scale (or
the scale given by the cumulated hazard rate) to the scale of growing deterioration. From the
problems connected with such models (consistency of statistical analysis, model fit assessment
etc.) we shall discuss mainly the question of the repair schemes, their consequences, and
possibilities of an ’optimal’ repair policy leading to the hazard rate stabilization. Further, we
shall consider the case that the hazard rate model consists of more components (’repairable’
or not) and examine the same questions, namely that of the repair scheme and of the impact
of repairs under certain models for intensity of failures.

1 Introduction

In reliability models it is often assumed that the intensity of failure of a technical device is
influenced by a process of degradation. The degradation level is either observed directly, or just
indirectly, through statistical data. Further, let us assume that the component corresponding
to the device deterioration can be controlled. Hence, it is possible to search for the relationship
between the extent of repair (taken as the reduction of certain value characterizing the damage)
and the ”repair level” in the sense of Kijima models (Kijima, 1989), i.e. taken as the reduction
of virtual age of the object, or, in other words, as the increase of its survival time.

In the contribution, we concentrate to the case when the degradation is modeled via a
non-decreasing function or a random process, for instance the step-wise random shocks process
(actually a compound Poisson process or its generalization), with known or estimable statistical
characteristics. The effect of degradation level reduction will be studied and the prolonged
expected life-time after such actions evaluated. Finally, repair strategies optimal with respect
to certain requirements will be considered. Hence, the following sequence of problems will be
studied:
1. Models of repairs, in general, will be introduced.
2. A model proposed in Dorado et al (1997) considering the time shift and acceleration as a
consequence of a repair will be recalled.
3. Simple Kijima II type model for preventive repair will be considered and its scheme applied to
the case of a model with degradation process. Repair then will be connected with the reduction
of the level of degradation.
3. The case will be generalized to the scheme where the degradation will be modeled via the
compound Poisson process.
4. Regression models of intensity will be used in cases when just a part of the system is repaired.
5. Finally, the results of repair schemes will be displayed in several randomly generated examples.

2 Basic scheme of repairs

Let us first recall briefly the most common schemes of repair of a repairable component and the
relationship with the distribution of the time to failure. The renewal means that the component
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is repaired completely, fully (e.g. exchanged for a new one) and that, consequently, the successive
random variables – times to failure – are distributed identically and independently. The resulting
intensity of the stream of failures is called the renewal density, and has the meaning

h(t) = limd→0+
P (failure occurs in [t, t + d))

d
.

Its integral (i.e. cumulated intensity) is then H(t) = E[N(t)] =
∑∞

k=0 k · P (N(t) = k), where
N(t) is the number of failures in (0,t].

Let f(t), F (t)denote the density and distribution function of the time to failure. Then so
called renewal equation h(t) = f(t) +

∫ t
0 h(t− u)f(u)du holds provided the ’renewal’ occurs just

after each failure, consequently also H(t) = F (t) +
∫ t
0 H(t− u)f(u)du.

2.1 Kijima’s models

There are several natural ways how the notion of complete repairs can be generalized to repairs
partial, incomplete. One of basic contribution to it is in the paper of M. Kijima (1989).

Let F be again the failure distribution of a new system. Assume that at each time the system
fails, after a lifetime Tn from the preceding failure, a maintenance activity takes place (executed
in negligible time) such that reduces the virtual age to some value Vn = y, y ∈ [0, Tn + Vn−1]
immediately after the n-th repair (V0 = 0). The distribution of the n-th failure-time Tn is then

P [Tn ≤ x|Vn−1 = y] =
F (x + y)− F (y)

1− F (y)
.

M. Kijima then specified several sub-models of imperfect repairs. Denote by An the degree
of the n-th repair (a random variable taking values between 0 and 1). Then in Model I the n-th
repair cannot remove the damages incurred before the (n-1)th repair, Vn = Vn−1 + An · Tn.

On the contrary, the Model II allows for such a reduction of the virtual age, namely Vn =
An · (Vn−1 + Tn). Special cases contain the perfect repair model with An = 0, minimal repair
model, An = 1, and frequently used variant with constant degree An = a.

Naturally, there are many others different generalizations, e.g. we can consider a random-
ized degree of repair, or the regressed degree (based on the system history). A set of variant
models is also due M.S. Finkelstein (2000), who actually ’accelerated’ the virtual time after
each ’renewal’ repair. It means that the distributions of Ti, the time-to-failure after i-th repair,
differ. A reasonable assumption is that Ti is stochastically non-increasing with i, Ti+1 ≤st Ti,
i.e. Fi+1(t) ≥ Fi(t).

A simplest example assumes that Fi(t) = F (ui−1t), u > 1, then a generalization can consider
an accelerated time model with time-dependent functions Wi(t), i.e. Fi+1(t) = Fi(Wi(t)), where
usually Wi(t) ≥ t,W ′

i (t) ≥ 1. It follows that Fi(t) = F0(W0(W1(..(Wi−1(t))..). The interpreta-
tion is straightforward, values of W (t) measure (reflect) a relative speed of degradation.

3 Model with shift and change of scale

Dorado (1997) derived very useful generalization of Kijima virtual age models which allows us
not only to shift the age of the system after a repair but also to change the distribution of the
forthcoming cycle, i.e. the shape of the failure intensity after a repair.

For any CDF F , θ ∈ (0, 1] and v ∈ [0,∞), consider the family of distribution functions

F̄ θ
v (t) =

F̄ (θt + v)
F̄ (v)

, t > 0. (1)

The family of distributions
{
F θ

v

}
are stochastically ordered in θ, that is, θ ≤ θ′ implies F θ

v (t) ≤
F θ′

v (t), for all v and t. Then the survival function F̄ θ
v (t) can be viewed as the life of a functioning
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item of age v which has been scaled by a factor θ, with lower values of θ representing longer
remaining life. Authors mentioned above refer to F θ

v (t) as the life distribution of an item with
an effective age v and a life supplement θ.

Basic Scheme: Consider two sequences {Vi}i≥0 and {θi}i≥0 called the effective ages and life
supplements, respectively, satisfying

V0 = 0, Θ0 = 1, Vi ≥ 0, Θi ∈ (0, 1] and
Vi ≤ Vi−1 + Θi−1Ti for i > 0. (2)

The general model of virtual age defines the joint distributions of the inter-failure times Ti as
follows

P (Ti ≤ t|Vi−1, Θi−1, T1, . . . , Ti−1) = F
Θi−1

Vi−1
(t) (3)

for t > 0, i ≥ 1, where F
Θi−1

Vi−1
(t) is defined according to (1).

It is easy to see that Tj defined by distribution F
Θi−1

Vi−1
(t) is stochastically larger than Tj

defined by F 1
Vi−1

, i.e. better than the working item of age Vj−1. Furthermore, we can see that
for each i ≥ 1 the effective age Vi of the system after the i-th repair is less than its effective
age Xi := Vi−1 + Θi−1Ti just before the i-th repair, which in turn is less than the actual age Si.
Thus the general repair model defined above can be considered as a better-than-minimal repair
model.

Special Cases:

1. The perfect repair model. Consider the case when Θi = 1 and Vi = 0 for all i ≥ 0.
Then (2) is automatically satisfied and (3) reduces to P (Ti ≤ t|T1, . . . , Ti−1) = F 1

0 (t) =
F (t) for all i ≥ 1. From this we see that Ti’s are independent identically distributed with
common CDF F and that corresponds to the perfect repair model.

2. The minimal repair model. Consider the case when Θi = 1 and Vi = Si for each i.
Then Vi = Si = Vi−1 +Θi−1Ti and, hence, (2) is satisfied. Under these conditions (3) then
reduces to P (Ti ≤ t|Si−1) = F 1

Si−1
(t) and this corresponds to the minimal repair model.

3. Kijima’s Model I. Let {ξi}i≥1 be a sequence of random variables independently dis-
tributed on [0, 1] and independent of other processes. Consider the case when Θi = 1 for
each i and Vi =

∑i
k=1 ξkTk for i ≥ 1. Then Vi+1 = Vi + ξiTi and ξi ≤ 1 = Θi for each

i and, hence, (2) is satisfied. (3) reduces to P (Ti ≤ t|Tk, ξk, 1 ≤ k ≤ i − 1) = F 1
Vi−1

(t).
This is Kijima’s Model I.

4. Kijima’s Model II. Consider the case when Θi = 1 for each i and Vi =
∑i

k=1(
∏i

l=k ξl)Tk

for i ≥ 1. Since Vi = ξi(Vi−1 + Ti) and ξi ≤ 1 = Θi for each i, then (2) is satisfied and (3)
reduces again to P (Ti ≤ t|Tk, ξk, 1 ≤ k ≤ i− 1) = F 1

Vi−1
(t). This is Kijima’s Model II.

5. The supplemented life repair model. Up to this point we have restricted the Θi’s
to be identically equal to 1. Lets consider other choices of the life supplement sequence
{Θi} . We know that smaller values of Θi corresponds to the larger operation time of the
forthcoming cycle of the system. Hence, we can use Θi as a measure of how ith repair
supplements the expected remaining life of the system. This explain the use of the term
“life supplement”. Dorado (1997) restricted Θi’s to be in (0, 1] but one can also consider
Θi > 1. This case will reduce the expected remaining life of the system after i-th repair,
i.e. aging will accelerate, like in the setting of Finkelstein (2000).

Let us assume that a minimal repair was performed at the time of the first failure, then
T2 would have the distribution F 1

T1
. If we want a longer expected life for T2 than we can
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use the distribution FΘ1
T1

for some Θ1 ∈ (0, 1). Starting with the distribution FΘ1
T1

for T2

and using minimal repair upon the second failure, the random variable T3 would have the
distribution F 1

V2
where V2 = T1 + Θ1T2. Again, if we want a longer expected lifetime for

T3 we can use the distribution FΘ2
V2

for some Θ2 ∈ (0, 1). In general the supplemented life
repair model is defined as follows: Θ0 := 1, V0 := 0, Vi :=

∑i−1
k=0 ΘkTk+1 for i ≥ 1. It

is easy to see that Vi+1 = Vi + ΘiTi+1 for i ≥ 0 and the condition (2) is satisfied. The
condition (3) reduces to P (Tj ≤ t|Tk, Θk, 1 ≤ k ≤ i− 1) = F

Θi−1

Vi−1
and for failure intensity

we have h1(t) = h(t) and hi(t) = Θi−1h(Θi−1t + Vi−1), t ∈ (0, Ti] for i ≥ 2.

4 Kijima II model for preventive repairs

Let us consider the following simple variant of the Kijima II model with constant degree 1− δ
and assume that it is used for the description of the system virtual age change after preventive
repairs. Further, let us assume that after the failure the system is repaired just minimally, or
that the number of failures is much less than the number of preventive repairs. Let ∆ be the
(constant) time between these repairs, Vn, V ∗

n the virtual ages before and after n−th repair, and:

Vn = V ∗
n−1 + ∆, V ∗

n = δ · Vn.

If we start from time 0, then V1 = ∆, V ∗
1 = δ∆, V2 = δ∆+ δ = ∆(δ +1), V ∗

2 = ∆(δ2 + δ), V3 =
∆(δ2 + δ + 1) etc. Consequently, Vn → ∆

1−δ , i.e. it ’stabilizes’, for each δ and ∆ there is a
limit meaning that the actual intensity of failures h(t) ’oscillates’ between h0( δ∆

1−δ ) and h0( ∆
1−δ ),

where h0(t) is the hazard rate of the time-to-failure distribution of the non-repaired system.
Simultaneously, the cumulated intensity increases regularly through intervals of length ∆ by

dH = H( ∆
1−δ )−H( δ∆

1−δ ),, i.e. ’essentially’ with the constant slope a = dH/∆.

Example: Let us consider the Weibull model, with H0(t) = α · expβ, (β > 1, say). In that
case

dH = α∆β 1− δβ

(1− δ)β
, a = α∆β−1 1− δβ

(1− δ)β
.

As the special cases, again the perfect repairs, δ = 0, minimal repairs with δ ∼ 1, and the
exponential distribution case with β = 1 can be considered.

Figure 1 shows a graphical illustration of such a stabilization in the case that the hazard
rate h0(t) increases exponentially.

Remark 1. If the model holds (with constant times between repairs ∆) it is always possible
to stabilize the intensity by selecting the upper value of H∗ and repair always when H(t) should
reach that value. Then Vn = V = H−1(H∗), V ∗

n = δVn again, and the interval between repairs
should be ∆ = V (1− δ).

On the contrary, if we can reduce just the last time increment, (KIJIMA I model), for degrees
δn and intervals ∆n of repairs we get that Vn =

∑n
k=1 δk∆k, in the constant ∆ case we have

to decrease δk to 0 in order to keep Vn stabilized. Similarly in the case of accelerated model
of repairs, there has to be a deal between the acceleration and the decrease of inter-repairs
intervals.

4.1 An optimal selection of repair interval and degree

If we consider the stabilized case, and moreover the failures are much less frequent than pre-
ventive repairs, then there quite naturally arises the problem of selection of δ to given repair
interval ∆ (or optimal selection of both). By optimization we mean here the search for values

4



0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Hazard rate, exp case, ho(t)=0.01*exp(0.5*t), delta=0.7

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2
Cumulated hazard rate, with and without repairs

Figure 1: Case of exponentially increasing h0(t) = 0.01 ∗ exp(0.5 ∗ t), δ = 0.7, ∆ = 1

yielding the minimal costs of repairs, which has a sense especially in the case when the repairs
after failures are too expensive.

Let C0 be the cost of failure (and its repair), C1(δ, ∆) the cost of the preventive repair. Then
the mean costs to a time t can be written as

C ≈ C0 · E(N(t)) +
t

∆
· C1(δ,∆),

where E(N(t)) is the mean number of failures up to t, which is actually H(t), H is the cumulated
intensity of failures under our repairs sequence. Namely E(N(t)) ≈ t

∆ · dH. For instance, in the
Weibull model with H0(t) = α · expβ we already have seen that dH = α∆β(1− δβ)/((1− δ)β).

The problem is the selection of function C1, it should reflect the extent of repair. It leads us
to the idea to evaluate the level of system damage, deterioration, and connect the repair with
its reduction.

5 Incomplete repair reducing the system deterioration

Let us therefore consider a function S(t) (or a latent random process) evaluating the level of
degradation after a time t of system usage. In certain cases we can imagine S(t) =

∫ t
0 s(u)du

with s(u) ≥ 0 is a stress at time u. We further assume that the failure occurs when S(t) crosses
a random level X. Recall also that (in the non-repaired system) the cumulated hazard rate
H0(t) of random variable T = time-to failure has the similar meaning, namely the failure occurs
when H0(t) crosses a random level given by Exp(1) random variable,

Hence, as T > t <=> X > S(t), i.e. F̄0(t) = F̄X(S(t)), where by F̄ we denote the survival
function, then

H0(t) = −logF̄X(S(t)).

We can again have some special cases, for instance:
– X ∼ Exp(1), then H0(t) = S(t),
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– S(t) = c · td, d ≥ 0, and X is Weibull (a, b), then T is also Weibull (α = acb, β = b × d),
i.e. H0(t) = α · tβ.

Let us now imagine that the repair reduces S(t) as in the Kijima II model, to S∗(t) = δ ·S(t).
In the Weibull case considered above we are able to connect such a change with the reduction
of virtual time from t to some t∗:

S(t∗) = S∗(t) => t∗ = δ
1
d · t,

so that the virtual time reduction follows the Kijima II model, too, with δt = δ
1
d . As it has been

shown, each selection of δ, ∆ leads (converges) to a stable (’constant’ intensity) case.
For other forms of function S(t), e.g. if it is of exponential form, S(t) ∼ ect − 1, such a

tendency to a constant intensity does not hold. Nevertheless, it is possible to select convenient
δ and ∆, as noted in Remark 1. The case of growth of the intensity of failures is shown in
Figure 2, where δ = 0.7 is the order of reduction of S(t) = H(t), i.e. the case has X ∼ Exp(1)
distribution. Figure 3 then shows the case with the same initial distributions, but with larger
reduction δ = 0.3 and the result - stabilized intensity. We have to remind, that here we reduce
the degradation S by δ while in the preceding part the age was reduced!

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5
Hazard rate, exp case, h(t)=0.01*exp(0.5*t), delta=0.7

0 5 10 15 20 25 30 35 40
0

20

40

60

80
Cumulated hazard rate, with and without repairs

Figure 2: Growing intensity in the case h0(t) = 0.01 ∗ exp(0.5 ∗ t), δ = 0.7, interval ∆ = 1

6 Degradation as a random process

In the case we cannot observe the function S(t) directly, and it is actually just a latent factor
influencing the lifetime of the system, it can be modeled as a random process. What is the
convenient type of such a process? There are several possibilities, for instance:
1. S(t) = Y · S0(t), Y > 0 is a random variable,
2. Diffusion with trend function S0(t) and B(t)-the Brown process, S(t) = S0(t) + B(t).
3. S(t) cumulating a random walk s(t) ≥ 0.
4. Compound Poisson process (and its generalizations).

Though the last choice, sometimes connected also with the ”random shock model”, differs
from the others, because its trajectories are not continuous, we shall add several remarks namely
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Figure 3: Stabilized intensity in the case h0(t) = 0.01 ∗ exp(0.5 ∗ t), δ = 0.3, interval ∆ = 1

to this case. The compound point process is the following random sum

S(t) =
∑

Tj<t

Y (Tj) =
∫ t

0
Y (u)dN(u)

with the counting process N(t) yielding the random times Tj and random variables Y (t) > 0
giving the increments. It holds that

ES(t) =
∫ t

0
λ(u) · µ(u)du, var(S(t)) =

∫ t

0
λ(u) · (µ2(u) + σ2(u))du.

Again, it is assumed that the failure occurs when the process S(t) crosses a level x.
Hence, S(t) < x <=> t < T , therefore F̄0(t) = FS(t)(x), where FS(t)(x) is the compound

distribution at t. If X is a random level, then the right side has the form
∫∞
0 FS(t)(x)dFX(x).

The evaluation of the compound distribution is not an easy task, nor in the simplest version
of compound Poisson process. There exist approximations (derived often in the framework of the
financial and insurance mathematics). Another way how to evaluate it consists in the random
generation.

In the next part we shall deal only with the simplest case of constant λ and µ, with exponen-
tially (and independently on the process history) distributed increments and a constant bound
x.

Figure 4 displays such a case, with µ = 0.2 and λ = 5. 1000 trajectories were generated,
the upper plot shows only 20 of them, while the lower plot shows resulting (i.e. empirical)
distribution of the time of crossing the level x = 10. Next Figure 5. shows, how again a
regular preventive repair with sufficiently large repair degree – here δ = 0.4 –, leads to stabilized
intensity of failures, histogram of failures times has a form of exponential distribution density.

6.1 Partial repairs and their optimization

What occurs when, as in the preceding cases, the repairs of degree (1−δ) in regular time intervals
∆ are applied to the system? It is assumed that when we decide to repair, then we are able to
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Figure 4: Several randomly generated trajectories of compound Poisson process (above) and
generated distribution of time-to failure (below)

observe actual state of S(t). Random generation shows that the system then behaves similarly
as in the non-randomized case, and has the tendency to stabilize the intensity.

We can now return to the ’cost optimization’ problem which has been already described in
the part 2.1, but without specifying the function C1(δ, ∆). It can be done now for instance as
C1 · (dS(t))γ + C2, where dS(t) = S(t)(1− δ) = S(tend)− S(tinit),
C1 and C2 are constants, the later evaluating a fixed cost of each repair. Hence the mean costs
per time t can be expressed as

C0 · E(N(t)) +
t

∆
· [C1{(1− δ)S(trep)}γ + C2]

Following figures display several examples of search for optimal repair parameters. Thus,
Figure 6 concerns to search for optimal δ, for given fixed virtual age when repair is performed
tend = 5, S(t) = c ∗ td is a degradation function (non-random), with c = 0.5, d = 0.5, X ∼
Weib(0.1, 5), gamma = 1, C0 = 10, C1 = C2 = 1.

Figure 7 shows the case when distribution of X ∼ −Weib(a = 10, b = 7), EX = 9.35, S =
exp(ct) − 1, c = 0.05, γ = 1, C0 = 10, C1 = C2 = 1. We fixed the virtual age to which the
component is repaired: tinit = 5, interval between repairs ∆ is optimized.

Of course, a proper selection of costs and function C1 in real case is a matter of system
knowledge and experience. We performed several randomly generated examples, in some cases
it has been possible to find a minimum w.r. to δ and ∆, for given other parameters, mostly a
minimum of ∆ to fixed δ, while optimal δ to selected ∆ lied often close to complete or minimal
repair degree. Figure 7 shows one such an example, where degradation is given by a compound
Poisson process with λ = 5, µ = 0.2, further C0 = 20, C1 = C2 = 1, γ = 1. Values of mean costs
are displayed in a form of contour plot,
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Figure 5: Generated distribution of time-to failure when repairs with δ = 0.4 and ∆ = 5 are
applied in the case of Fig. 4

7 Degradation process as a part of intensity model

When the degradation process is just one of factors influencing the survival of the system, it is
quite natural to use it as a covariate in a regression model of failure intensity, In the situation
when such a factor is not observed directly, it is more appropriate to use a model with latent
component. In every case, it has a sense to consider the intensity of failure having several parts,
one of them expressing the influence of the degradation process of the interest. Moreover, if
the additive form of the intensity model is used (as in the case of Aalen regression model for
intensity), the components stay separated even when integrated to cumulated intensity. Let us
therefore recall several basic regression models for intensities of failures:

1. In the additive (also Aalen’s) model, the total intensity is the sum of the intensities of
components, e.g. h(t) = h1(t) + h2(t).

2. In the multiplicative model h(t) = h1(t) · h2(t). The Cox’s model uses the form h(t) =
h0(t) · exp(B(z(t)), where z(t) is the regressor, i.e. in our case some characteristics of the
deterioration (compare also Bagdonavicius and Nikulin, 1999).

3. Accelerated failure-time model H(t) = H0(V (t)) was already briefly recalled here, too,
in the connection with the model of growing virtual age proposed for instance in the paper of
Finkelstein (2000).

The schemes of regression mentioned above offer different possibilities how to model the
impact of degradation and then of repairs. Let us demonstrate it on the case of the multiplicative
model. Namely, let the underlying hazard rate of a non-repaired system be h0(t) · exp(S(t)),
where the function S(t) > 0 is non-decreasing and characterizes the degradation of a repairable
component. Let us for the simplicity consider just full repairs, in regular time intervals ∆, and
follow the system without failure. It starts at time 0, at times n · ∆ its intensity of failure is
h(n ·∆) = h0(n ·∆) exp(S(∆)), which is by the repair reduced to h0(n ·∆) (S(t) is reduced to
0). Thus, we can here speak about a constant degree (exp(−S(∆)) of the reduction of intensity,
but if h0 is increasing, the whole h(t) remains increasing by the same trend. In the time interval
s ∈ ((n − 1)∆, n∆) the intensity is then h(s) = h0(s) exp{S(s − (n − 1)∆)}. Consequently, it
yields the case different from the accelerated scheme studied in Finkelstein (2000).

The assumption of additive hazards leads to another set of models. It is also worth to
note that the additive model corresponds to certain extent to the case of serial system. In a
serial scheme of two independent parts the failure time of the system T = min(T1, T2), i.e.
F̄ (t) = F̄1(t) · F̄2(t), so that H(t) = H1(t) + H2(t), too.
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Figure 6: Optimization of δ, for given tend = 5, S(t) = c ∗ td, c = 0.5, d = 0.5, X ∼ Weib(0.1, 5)
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Figure 7: Distr. X ∼ Weib(a = 10, b = 7), S = exp(ct)− 1, c = 0.05tinit = 5

8 Load-sharing System

One of interesting cases when it has a sense to deal with virtual age is such one when the survival
distribution is changed (in discrete times) during the lifetime. An example could be the load
sharing parallel (or K out of M) system.

Consider a parallel system of M components with the same survival distribution, conditioned
by the load. More specifically, let Z be a “global” load (constant one, say) and the survival
of components be Weibull (α(z), β). Even more concretely, let us consider actually the AFT
model Zz = g(z) · e, e ∼ Weibull(α, β) = α(z) = α · g(z). One of realistic choices of g(z) is for
instance B · (z + C)−A, a hyperbolic (“Nelder”) curve.

Then, if the load z is divided among (shared by) M components, the load per component is
z0 = z

M . Let at time t1 the first component break, now the load per unit increases to z1 = z
M−1 ,

α decreases from α0 = α · g(z0) to α1 = α · g(z1) (our h(z) is decreasing). At that moment the
actual age of remaining components is t1, but from that moment they behave as having survival
distribution F 1(t). How old are they in the scale of this distribution?

In the “standardized” exp(1) scale they just survived H0(t1) =
(

t1
α0

)β
, which corresponds to

some t=1 H1(t∗1) = H0(t1). Hence, their ‘virtual’ age (in that sense) is

t∗1 = H−1
1 (H0(t1)) = t1 · α1

α0
.
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Figure 8: Mean costs corresponding to different ∆ (horiz. axis) and δ (vert. axis)

Here, as H1 > H0, t∗1 < t1.
We then can at t1 recompute the future survival, taking already survival time t∗1 and distri-

bution F 1(t).
After the 2-nd break, at real time t2, the situation is similar. Components in the world

of model F 1 again can be recomputed to the age corresponding to the future model F 2 ∼
Weib(α2, β), α2 = α · (z2), z2 = z/M − 2. Namely,

t22 = t∗2
α2

α1
, etc.

Naturally, when a unit is repaired, it starts with its own ‘history’, and the same model. Hence,
in described case both accelerated survival and shift of virtual age can be used.
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Figure 9:

Let us consider a numerical example, with M = 5, β = 3, α = 1000, global load z = 50,
model parameters A = 1.5, C = 0, B = 1. Then Figure 8 shows the medians of distributions
Weib(dz, β), αz = α/uzA (loadsh71.eps). We performed simulations of failures and compare real
time t(i) and virtual times (ages) tV (i) recomputed after i-th failure, load z(i) per 1 component
and α(i) before i-th failure.
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i 1 2 3 4 5
ti 187 202 232 236 238

tV (i) 134 96 69 25 –
z(i) 10 12.5 16.67 25 50
α(i) 316 226 147 80 28

No repairs were considered in this “mini-study”, however, as it has been said, they can be
easily incorporated, too. It is not easy to compute the distribution of such load-shoring system,
though there are some approximations available (Daniels, P. Kwam). Therefore we simulated
the system survival many times, the resulting histogram follows in Figure 9 above. Figure 9
below shows, for the comparison, the survival distribution of purely parallel system of M = 5
components with Weibull (α = α0,β) distribution, i. e. distribution of maxima of 5 i.i.d. Weibull
variables.

100 150 200 250 300 350 400 450
0

50

100

150

200

250

300
Histogram of surv. times under load sharing

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6
x 10

−3 Distribution of survival of pure parallel system

Figure 10: Comparison of final distributions

Recall that minimum has also Weibull distribution with α = α0/m
1
β , with median about 164.

9 Conclusion and connected problems

The objective of the paper was to propose several new models of (incomplete) repairs based
on the process of system deterioration. There are many different real cases corresponding to
different models forms. However, especially if the deterioration process is latent, its proper
modeling and estimation is crucial for further assessing the system optimal performance and
repairs effect. The contemporary statistical techniques based on the Bayes approach and random
generation can be very helpful in such analysis and should became the inevitable tool also in
the future works on the deterioration and repair schemes modeling.
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