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Abstract. Under heteroscedasticity of disturbances the significances of explana-
tory variables in a linear regression model have to be established employing the
White estimator of covariance matrix of the (Ordinary) Least Squares estimator
of regression coefficients. When the orthogonality condition is broken the Instru-
mental Variables (in econometrics, sociology, etc.) or the Total Least Squares (in
natural sciences) are used to preserve unbiasedness of estimation. If moreover, data
are contaminated a robust version of instrumental variables called the Instrumental
Weighted Variables is to be used to cope both with the break of orthogonality con-
dition as well as with contamination. Significance of explanatory variables (and of
instruments) is to be examined by a robust version of White estimator of covariance
matrix.

Keywords: Robustness, heteroscedasticity, Instrumental Weighted Variables,
White estimator

1 Introduction of basic framework

The set of all positive integers will be denoted by N and p-dimensional Eu-
clidean space by Rp.Let us consider the linear regression model

Yi = X ′
iβ

0 + ei, i = 1, 2, ..., n. (1)
We shall assume that:
C1 The sequence {(V ′

i , ei)′}∞i=1 is sequence of independent p-dimensional ran-
dom variables. There is an absolutely continuous d.f. , say FV,e(v, r) (denote
density fV,e(v, r)), so that the d.f.’s FV,ei(v, r) = FV,e(v, σi · r) and IEei = 0
for all i ∈ N . The marginal d.f.’s FV (v) of vectors Vi’s are the same for all
i ∈ N and have a bounded support, i.e. putting M = sup {‖v‖ : fV (v) > 0}
we have M < ∞. Moreover, the existence of second moments is assumed, the
density fV,e(v, r) is bounded, say by B, and supi∈N σi < ∞. Finally, consider
the sequence {(X ′

i, ei)′}∞i=1 where Xi1 = 1 and Xij = Vi,j−1, j = 2, 3, ..., p−1
for all i ∈ N .
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Notice please that we assume that the error terms ei’s can be correlated
with explanatory variables Vi’s. Moreover, error terms are assumed generally
heteroscedastic. Finally, as fV,ei

(v, r) = σi ·fv,e(v, σi ·r), we have fV,ei
(v, r) <

supi∈N σi ·B. For any β ∈ Rp ri(β) = Yi−X ′
iβ denotes the i-th residual and

r2
(h)(β) the h-th order statistic among the squared residuals, i.e. we have

r2
(1)(β) ≤ r2

(2)(β) ≤ ... ≤ r2
(n)(β). (2)

Without loss of generality we may assume that β0 = 0 (otherwise we should
write in what follows β − β0 instead of β).

2 Why Instrumental Weighted Variables?

The violation of orthogonality condition IE {ei|Xi} = 0 implies that

lim
n→∞

1
n

n∑

i=1

Xiei 6= 0 in probability (3)

and hence also inconsistency of

β̂(OLS,n) = β0 +

(
1
n

n∑

i=1

XiX
′
i

)−1
1
n

n∑

i=1

Xiei. (4)

The most frequently given examples of failure of the condition of orthogo-
nality are the measurement of explanatory variables with a random error or
the (dynamic) regression model with lagged response in the role of explana-
tory variable (Judge et al. (1985) or Vı́̌sek (1998)). Econometricians offer as a
remedy the method of the Instrumental Variables which defines the estimator
as (any) solution of the normal equations

n∑

i=1

Zi(Yi −X ′
iβ) = 0 (5)

where the sequence {Zi}∞i=1 is a sequence of i.i.d. instruments for explanatory
variables Xi’s given as follows: Let {Ui}∞i=1 be a sequence of p−1-dimensional
i.i.d. r.v.’s such that IEU1 · e1 = 0, so that putting Zi1 = 1 and Zij = Ui,j−1

for all i ∈ N the orthogonality condition IEZ1e1 = 0 holds. The analogy of
(4)

β̂(IV,n) = β0 +

(
1
n

n∑

i=1

ZiX
′
i

)−1
1
n

n∑

i=1

Ziei. (6)

hints that the estimator evaluated by means of method of the Instrumental
Variables is consistent provided (e. g.)

IEZ1X
′
1 = Q is regular and lim

n→∞
1
n

n∑

i=1

Ziei = 0 in probability (7)

In 1992 Hettmansperger and Sheather showed that the Least Median of
Squares (LMS) (Rousseeuw (1984)) can be considerably sensitive to some
very small changes of data. It appeared later that their result was due to
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bad algorithm for LMS (Vı́̌sek (1994)). Nevertheless, evaluating the Least
Trimmed Squares (LTS) (Hampel (1986)) by total search for data used by
Hettmansperger and Sheather (1992) (and hence reaching the exact value of
the estimator) revealed that the problem exists for LTS. Academic examples
in Vı́̌sek (1996b) and (2000a) indicated the reason for it (for any robust es-
timator with high breakdown point) and Vı́̌sek (1992), (1996a), (2000b) and
(2002c) brought the theoretical justification of the fact that the discontinuous
objective functions can cause (extremely) high sensitivity of robust estima-
tors to some changes of data. That was an inspiration for defining the Least
Weighted Squares (LWS) (Vı́̌sek (2000c), see also (2002a, b))

β̂(LWS,n,w) = arg min
β∈Rp

n∑

i=1

w

(
i− 1

n

)
r2
(i)(β)

= argmin
β∈Rp

n∑

i=1

w
(
F

(n)
β (|r2

i (β)|)
)

r2
i (β) (8)

where

F
(n)
β (v) =

1
n

n∑

j=1

I {|rj(β)| < v} =
1
n

n∑

j=1

I
{|ej −X ′

jβ| < v
}

(9)

is the empirical distribution function of the absolute values of residuals and
w is a weight function fulfilling:
C2 Weight function w : [0, 1] → [0, 1] is absolutely continuous and non-
increasing, with the derivative w′(α) bounded from below by −L (L > 0),
w(0) = 1.

It is only a technicality to show that β̂(LWS,n,w) has to be a solution of
n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
Xi (Yi −X ′

iβ) = 0. (10)

Then again, if
w

(
F

(n)
β (|e1|)

)
X1e1 6= 0,

β̂(LWS,n,w) is inconsistent. The remedy is straightforward, given by normal
equations n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
Zi (Yi −X ′

iβ) = 0 (11)

where again the sequence {Zi}∞i=1 is a sequence of i.i.d. instruments for Xi’s
(see text below the equation (5) and Vı́̌sek (2004)).

In the case of “classical” Instrumental Variables (6) and (7) indicated
that we don’t need any “qualitative relation” between explanatory variables
and instruments (although in practise it is not so - if there are not “natural”
instrument, e.g. lagged values, the method can work poorly). However for
robust version of the method we need some assumption about the mutual
behaviour of Xi’s and Zi’s. Let’s recall that we assume heteroscedasticity of
the error terms (see C1) and define a “mean” d.f.
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F n,β(v) =
1
n

n∑

i=1

P (|Yi −X ′
iβ| < v) . (12)

(a possibility to approximate the empirical distribution F
(n)
β (v) - see (9) - by

F n,β(v) uniformly in v ∈ R as well as in β ∈ Rp opened in fact the way for
results given below, see Vı́̌sek (2008d)). Further define

Fβ′ZX′β(u) = P (β′Z1X
′
1β < u)

and put for any λ ∈ R+ and any a ∈ R

γλ,a = sup
‖β‖=λ

Fβ′ZX′β(a). (13)

Finally, for any λ ∈ R+ let us denote

τλ = − inf
‖β‖≤λ

β′IE [Z1X
′
1 · I{β′Z1X

′
1β < 0}] β. (14)

C3 The p−1-dimensional r.v.’s {Ui}∞i=1 are independent and identically dis-
tributed with distribution function FU (u). Moreover, they are independent
from the sequence {ei}∞i=1, the joint distribution function FV,U (v, u) is ab-
solutely continuous, IEZ1Z

′
1 is positive definite and there is q > 1 so that

IE {‖Z1‖ · ‖X1‖}q
< ∞. Further, there is n0 ∈ N so that for all n > n0

IE
{

1
n

∑n
i=1

[
w(F n,β(|ei|))ZiX

′
i

]}
is regular. Finally, there is a > 0, b ∈

(0, 1) and λ > 0 so that
a · (b− γλ,a) · w(b) > τλ (15)

For discussion of C3 see Vı́̌sek (2008a).

C4 There is n0 ∈ N so that for all n > n0 the vector equation

β′IE

{
1
n

n∑

i=1

[
w(F n,β(|ri(β)|))Zi (ei −X ′

iβ)
]}

= 0 (16)

in the variable β ∈ Rp has unique solution β0 = 0.

Lemma 1. Let Conditions C1, C2, C3 and C4 be fulfilled. Then any se-
quence

{
β̂(IWV,n,w)

}∞
n=1

of the solutions of normal equations (11) is weakly
consistent.
Proof is given in Vı́̌sek (2008a) where also a simulation study demonstrates
that the algorithm, firstly presented in Vı́̌sek (2006a), works very well. Re-
sult in Vı́̌sek (2006b) opened way to prove

√
n-consistency and to find an

asymptotic representation of β̂(IWV,n,w) under following conditions (denote
by fe|V (r|V1 = x) the conditional density corresponding to the d.f. FV,e(v, r)):

NC1 The density fe|V (r|V1 = x) is uniformly with respect to x Lipschitz of
the first order (with the corresponding constant equal to Be). Moreover, f ′e(r)
exists and is bounded in absolute value by U ′

e.
NC2 The derivative w′(α) of the weight function is Lipschitz of the first
order (with the corresponding constant Jw).
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Lemma 2. Let the conditions C1, C2, C3, C4, NC1 and NC2 be fulfilled.
Then any sequence

{
β̂(IWV,n,w)

}∞
n=1

of the solutions of normal equations

(11) are
√

n-consistent.

For the proof see Vı́̌sek (2008b).

Denote by g(r) the density of the d.f. G(r) = P (e2
1 < r) (notice that

under C1 density g(r) always exists). Moreover, for any α ∈ (0, 1) denote by
u2

α the upper α-quantile of d.f. G, i.e. we have P (e2
1 > u2

α) = α.

AC1 For any α ∈ (0, 1) there is δ(α) > 0 so that

inf
r∈(0,u2

α+δ(α))
g(r) > Lg,α > 0 and inf

|r|∈(0,
√

u2
α+δ(α))

f(r) > Lf,α > 0. (17)

Similarly as above (see text under C1) the condition AC1 implies in fact
that (17) holds for all densities gei

(r) and fei
(r), i.e. for all i ∈ N .

AC2 There is q > 1 so that supi∈N IE |ei|2q
< ∞.

Lemma 3. Let the conditions C1, C2, C3, C4, NC1, NC2, AC1 and
AC2 hold. Then √

n
(
β̂(IWV,n,w) − β0

)
=

[
1
n

n∑

i=1

w
(
F n,β(0|ei|)

)
· ZiX

′
i

]−1

· 1√
n

n∑

i=1

w
(
F n,β0(|ei|)

)
·Ziei+op(1) (18)

as n →∞.

Having at hand the algorithm for the IWV and applying it on data, one
needs a test for homoscedasticity of error terms as disregarding heteroscedas-
ticity my lead to poor identification of regression model, frequently wrongly
assuming some insignificant explanatory variables as significant. Such a test
was for IWV established in Vı́̌sek (2007). When the test rejects the ho-
moscedasticity, we need estimators of variances of the estimates of regres-
sion coefficient “robust” against heteroscedasticity. Following Halbert White
(1980) and employing (4), we may prove:

Lemma 4. Let the conditions C1, C2, C3, C4, NC1, NC2, AC1 and
AC2 hold. Then

[
1
n

n∑

i=1

ZiX
′
i

]−1 [
n∑

i=1

r2
i (β̂(IWV,n,w))ZiX

′
i

][
1
n

n∑

i=1

ZiX
′
i

]−1

is weakly consistent estimator of covariance matrix of β̂(IWV,n,w).
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