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Abstract Moment invariants are features calculated on an
image, which do not change their values after a transforma-
tion of the image. This paper focuses on the so called com-
bined invariants, which obey additional requirement of in-
variance to image blurring. Our first contribution is a review
of achievements most relevant to the derivation of algebraic,
moment and combined invariants. The review explains and
develops parallels between the moment and the blur invari-
ants. Gradually, it reveals new properties, simplifying con-
struction of the combined invariants, but having more gen-
eral extent. Resulting substitution rules for easy construction
of the combined invariants from other invariants are thus the
main results of this paper. All the conclusions can be under-
stood without knowledge of the tensor calculus. This paper
addresses construction of the combined invariants in arbi-
trary dimension.
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1 Introduction

Analysis and interpretation of an image which was acquired
by a real (i.e. non-ideal) imaging system is the key problem
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Pod vodárenskou věží 4, 18208 Prague 8, Czech Republic
e-mail: boldys@utia.cas.cz

J. Flusser
e-mail: flusser@utia.cas.cz

in many application areas such as remote sensing, astron-
omy and medicine, among others. Since real imaging sys-
tems as well as imaging conditions are usually imperfect,
the observed image represents only a degraded version of
the original scene. Various kinds of degradations (geometric
as well as radiometric) are introduced into the image during
the acquisition by such factors as imaging geometry, lens
aberration, wrong focus, motion of the scene, systematic and
random sensor errors, etc.

Generally, relation between the ideal image f and the
observed image g is described as g = D(f ), where D is a
degradation operator. In the case of a linear shift-invariant
imaging system, D usually has a form of

g = τ(f ) ∗ h + n, (1)

where h is the point-spread function (PSF) of the system, n

is an additive random noise, τ is a transform of spatial co-
ordinates due to projective imaging geometry and ∗ denotes
an N -D convolution. Knowing the image g, our objective is
to analyze the unknown scene f . Descriptors invariant to the
degradation are thus needed in pattern recognition, fulfilling
I (g) = �I (f ). � can be a function of only the degradation
parameters, or � = 1.

Moment invariants belong to the most popular invariant
features. Moment forms invariant to geometric deformations
were used by Dudani [1] and Belkasim [2] to recognize
aircraft silhouette. Wong and Hall [3], Goshtasby [4] and
Flusser and Suk [5] employed moment invariants in tem-
plate matching and registration of satellite images, Mukun-
dan [6, 7] applied them to estimate the position and the atti-
tude of the object in 3-D space, Sluzek [8] proposed to use
local moment invariants in industrial quality inspection and
many authors used moment invariants for character recog-
nition [2, 9–12]. Maitra [13] and Hupkens [14] made them
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invariant also to contrast changes, Wang [15] proposed il-
lumination invariants particularly suitable for texture clas-
sification. Li [16] and Wong [17] presented the systems of
invariants up to the orders of nine and five, respectively.

There is also an alternative approach to deriving invari-
ants called image normalization (see [18] and [19] for in-
stance). First, the object is brought into certain “normalized”
or “canonical” position, which is independent of the actual
position, rotation, skewing, etc. of the original object. In this
way, the influence of the deformation is eliminated. Since
the normalized position is the same for all objects differing
from each other just by the assumed transform, the moments
of the normalized object are in fact invariants of the origi-
nal object. Although this approach seems to be different, it
finally ends up with the same moment functions as the “ex-
plicit” invariants.

All the above mentioned invariants deal with geometric
distortion of the objects. Much less attention has been paid
to invariants with respect to changes of the image intensity
function (we call them radiometric invariants) and to com-
bined radiometric-geometric invariants. In fact, just the in-
variants both to radiometric and geometric image degrada-
tions are necessary to resolve practical object recognition
tasks because usually both types of degradations are present
in input images.

Van Gool et al. introduced so-called affine-photometric
invariants of gray-level [20] and color [21] images. These
features are invariant to the affine transform and to the
change of contrast and brightness of the image simultane-
ously. A pioneer work on this field was done by Flusser
and Suk [22] who derived invariants to convolution with
an arbitrary centrosymmetric PSF. From the geometric
point of view, their descriptors were invariant to transla-
tion only. Despite of this, the invariants have found suc-
cessful applications in face recognition on out-of-focused
photographs [23], in normalizing blurred images into the
canonical forms [24, 25], in template-to-scene matching of
satellite images [22], in blurred digit and character recogni-
tion [15, 26], in registration of images obtained by digital
subtraction angiography [27] and in focus/defocus quanti-
tative measurement [28]. Other sets of blur invariants (but
still only shift-invariant) were proposed for some particular
kinds of PSF—axisymmetric blur invariants [29] and mo-
tion blur invariants [30, 31]. A significant improvement mo-
tivated by a problem of registration of blurred images was
made by Flusser et al. They introduced so-called combined
blur-rotation invariants [32] and combined blur-affine invari-
ants [33] and reported their successful usage in satellite im-
age registration [34] and in camera motion estimation [35].
These invariants were generalized to arbitrary dimensions
in [36] and [37]. Later, method how to add blur invariance
to a general N -D rotation [38] was presented.

From the practitioners’ point of view, it is very useful to
find as many simplifications of the moment invariant con-
struction, as possible. For construction of the plain moment
invariants, the Fundamental Theorem of Moment Invariants
(FTMI) was introduced in [39]. Provided, the so called al-
gebraic invariants to certain geometric transformations are
known, it allows to construct the analogous moment invari-
ants.

The FTMI uses results of the theory of algebraic invari-
ants, which was introduced in the 19-th century [40]. For a
survey about its main results and its connections to tensor
calculus, see [41]. Although the center of gravity of the the-
ory of algebraic invariants is the so-called algebraic forms,
it is fully equivalent to the tensor view of it. The algebraic
forms approach is more acceptable to people without knowl-
edge of tensor calculus. On the other hand, tensor calculus
shows more clearly, how to construct invariants from diverse
objects used in image processing. This contribution aims to
take advantage of both approaches.

A similar practical tool for construction of the combined
invariants has been missing. Substitution rules for easy con-
struction of the combined invariants from other invariants
are the main results of this paper. This paper is intended to
help practitioners in the combined invariant construction by
providing links to existing works deriving other invariants
and by substantial simplification of subsequent construction
of the combined invariants. This contribution should pro-
mote usage of the blur invariance in new circumstances, due
to good understanding of the underlying principles. Valid-
ity of the derived results, as well as invariance and discrim-
inability of the derived combined invariants, are documented
on examples from the literature. All the published special-
ized applications are thus for the first time unified here. Fi-
nally, this contribution generally addresses construction of
the combined invariants in arbitrary dimension.

The main results of this paper are illustrated by several
examples. In the next section, notation and some prelimi-
nary results have to be presented for later convenience. It
includes brief derivation of the plain blur invariants and it
recalls basic concepts of the theory of algebraic forms.

2 Preliminaries

In this section we recall some basic definitions and lemma
which are important to introduce the following theory. We
will use the notation proposed in [36]:

Notation: For N ≥ 1, given the xi ∈ R, pi ∈ N0, ki ∈ N0

(R and N0 denote the sets of real numbers and non-negative
integers, respectively). Then

x ≡ (x1, . . . , xN)T
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denotes N -dimensional vector of coordinates,

p ≡ (p1, . . . , pN)T , k ≡ (k1, . . . , kN)T

denote N -dimensional vectors of parameters. Logical rela-
tions are defined analogically to

p < k =⇒ pi < ki for ∀i.

The following notation is further introduced:

dx ≡ dx1 · · ·dxN, |p| ≡
N∑

i=1

pi,

xp ≡
N∏

i=1

x
pi

i , p! ≡
N∏

i=1

(pi !),

(
p
k

)
≡

N∏

i=1

(
pi

ki

)
.

In our notation, |p| thus refers to the sum of the vector com-
ponents, not to the usual euclidean length.

In the following text other N -dimensional vectors are
used (they are denoted by bold symbols). We believe, it will
be clear from the context, whether it is a coordinate or a pa-
rameter vector.

Definition 1 By N -dimensional image function (or image)
we understand any real function f (x) ∈ L1(R

N) which has
bounded support and non-zero integral.

Definition 2 Ordinary geometric moment mp of order |p|
of the image f (x) is defined by the integral

mp[f ] =
∫

RN

xpf (x)dx. (2)

In the following text, provided there is no risk of con-
fusion, we will not always denote, which function the mo-
ments are calculated on (later also Fourier transform and
other moment forms).

Definition 3 Central geometric moment μp of order |p| of
the image f (x) is defined as the ordinary geometric moment
of the image obtained from f (x) by shifting its center of
gravity to the origin of the coordinate system.

Definition 4 Fourier transform (or spectrum) F(u) of the
image f (x) is defined as

F [f ](u) =
∫

RN

f (x)e−2πiu·xdx, (3)

where i is the imaginary unit.

By means of expansion of the exponential in the Fourier
transform (3) we get the following theorem.

Theorem 5 Fourier transform of an image f (x) can be ex-
panded into power series

F [f ](u) =
∑

0≤k

(−2πi)|k|

k! mk[f ]uk (4)

where the coefficients mk[f ] are ordinary geometric mo-
ments.

3 Blur Invariants

The combined invariants are moment forms invariant both
to geometric degradations and blur. In this section, blur in-
variants, which have been published, are reviewed. Blur can
be often modeled by convolution. In this paper, we will
consider only convolution with kernels which are constant
throughout the image and which are centrally symmetrical,
i.e.

h(x) = h(−x). (5)

The following two theorems are of fundamental importance
for derivation of the corresponding invariants.

Theorem 6 Tangent of the Fourier transform phase is blur
invariant.

Proof To prove this theorem it is sufficient to realize that
the phase of the Fourier transform of h(x), as of centrally
symmetrical function, can equal only 0 or π . �

Theorem 7 Tangent of the Fourier transform phase of an
image f (x) can be expanded into power series (except of
the points in which F(u) = 0 or phF(u) = ±π/2)

tan(phF [f ](u)) = ImF [f ](u)

ReF [f ](u)
=

∑

0≤k

ck[f ]uk, (6)

where the ck’s are also blur invariants.

Proof The tan(phF(u)) is a ratio of two absolutely conver-
gent power series, thus it can be also expressed as the power
series. Invariance of ck’s follows from comparison of coef-
ficients of the same monomials uk. �

After expansion, (6) can be simplified using substitution

Qp = cpp!
(−1)(|p|−1)/2(−2π)|p| . (7)

Qp’s are an equivalent set of blur invariants. Since m0 	= 0
(see Definition 1), we can straightforwardly derive the fol-
lowing theorem from (6).
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Theorem 8 The moment forms Qp are invariant to an N -
dimensional convolution with a centrally symmetrical ker-
nel.

Qp = mp

m0
− 1

m0

∑

0≤n≤p
0<|n|<|p|

(
p
n

)
Qp−nmn

for odd |p|, (8)

Qp = 0 for even |p|.

We would like to remark that (8) implies immediately
independence of Qp’s for odd |p|.

4 Algebraic Invariants

Normalized moments and many other objects used in pat-
tern recognition can be described as tensor coordinates in
certain coordinate system. Although tensor calculus is men-
tioned several times here, its knowledge is not necessary for
understanding the results of this paper. However, you might
wish to recall the basics from [41].

Given spatial coordinates x are transformed into x′ as fol-
lows:

x′ = Ax. (9)

Intuitively speaking, tensor is an object, whose coordinates
(denoted schematically a) are under (9) linearly transformed
into new coordinates a′.

An important task of pattern recognition is to look for
functions of the tensor coordinates, which stay invariant to
the transformation (9), or which change in an easy to handle
way. This is formulated in the next definition.

Definition 9 Given I (a, b, . . .) is a function of coordi-
nates of tensors a, b, . . . (not necessarily of all of them).
If I (a, b, . . .), under the transformation of spatial coordi-
nates (9), fulfills the condition

I (a′, b′, . . .) = �I (a, b, . . .) (10)

where � is only a function of the transformation parame-
ters from (9), then it is called relative algebraic invariant. If
� = 1 then I (a, b, . . .) is an absolute invariant. For detailed
discussion about �, see [41].

There are standard methods how to calculate invariants
from the tensor coordinates. If (9) is a general linear trans-
formation, the methods are well described in [41]. It is clear,
it helps to identify the moments and other interesting objects
as tensor coordinates (or to adapt them so), if possible. Then
either the mentioned methods can be applied on them or the

objects can be substituted into invariants found in the litera-
ture.

However, in the literature concerning moment invariants,
a different approach has been traditionally used. Instead of
working with invariants on tensor coordinates, invariants on
coefficients of algebraic forms have been preferred.

Definition 10 n-ary algebraic form of order p is defined as
a homogeneous polynomial

f =
∑

|p|=p

p!
p! apup (11)

of elements of n-dimensional vector of variables u, where
p = |p|.

The notion of invariant here is analogous. Given I (a) is
a function of coefficients ap (not necessarily of all of them),
which originate from the n-ary algebraic form (11) of order
p. After substitution of a general linear transformation

u = AT u′ (12)

into the algebraic form (11), new coefficients a′
p corre-

sponding to monomials u′p appear.

f =
∑

|p|=p

p!
p! apup =

∑

|p|=p

p!
p! a

′
pu

′p. (13)

If I (a) fulfills the condition (10), then it is an invariant of
the form.

Relation of moments to tensor coordinates is more visi-
ble, if we introduce the tensor notation of moments and other
forms (denoted by tilde). For example, a 2-D moment of or-
der 3 (p + q = 3; indices i1, i2, i3 can be either 1 or 2;
number of 1’s is p, number of 2’s is q; xi = xi here) can be
written as

mp,q ≡
∫

R2
x

p

1 x
q

2 f (x1, x2)dx1dx2

=
∫

R2
xi1xi2xi3f (x1, x2)dx1dx2

≡ m̃i1,i2,i3 . (14)

It is possible to look at the value of the form f (13) as at
a simultaneous (absolute) invariant of the vector u and of
the set of coefficients ap under the transformation A. The
vector u is transformed as a covariant vector (i.e. the trans-
formation is determined by (12)). We can use a basic fact
from the tensor calculus, see e.g. [41]: If the form f stays
invariant and u is transformed like a covariant vector under
the transformation A, and if the coefficients of the form are
symmetric in all indices (in tensor notation), then the coeffi-
cients ap, |p| = p are coordinates of a tensor. This tensor is
contravariant (of order p) and symmetric.
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This observation turns our attention back to investigation
of invariant properties of tensors (contravariant and symmet-
ric tensors are relevant here). If we find an invariant on a
tensor, we can use it for an arbitrary object, which was iden-
tified as a tensor (simultaneous invariants on several tensors
are analogous). Of course, the substituted objects must have
the same properties, i.e. to be contravariant and symmetric
and to have the same order.

It is really possible to make a tensor from moments. An-
other tensor is formed by blur invariant moment forms (8).
The following section demonstrates it.

5 Fundamental Theorems

The Fundamental Theorem of Moment Invariants (FTMI)
was formulated, because moments do not generally behave
like tensors. The reason why it could be formulated is, that
moments can be normalized to behave like tensors. Al-
though several authors, e. g. [42–44], had realized this fact,
it did not become widely used.

The main goal of this section is to prepare the way to
the main results of this paper. Connections with previous re-
search in the field of moment invariants are mentioned here.
Although the contents of this section may seem redundant,
we believe the following summary is more natural and un-
derstandable for people with little or no knowledge of tensor
calculus.

A closer look at expansions from Theorems 5 and 7 re-
veals that they can be rewritten as sums of n-ary algebraic
forms of orders p ≥ 0. We can transform the spatial coor-
dinates (9) in these expansions. We can find the new co-
efficients corresponding to the new monomials u′p—these
are transformed by (12). After these steps, we are ready to
use already known invariants on the form (11) to construct
analogous invariants containing either moments mk or blur
invariants ck (resp. Qk).

Both moments mk and blur invariants ck are closely re-
lated to Fourier transform, see (4) and (6). Thus, recalling
transformational properties of the Fourier transform seems
a natural starting point.

It is desirable to rewrite a Fourier transform after the
transformation (9) again as a Fourier transform of any func-
tion. Using (12), we get

∫

RN

f (x)e−2πiu·xdx = 1

|J |
∫

RN

f ′(x′)e−2πiu′·x′
dx′ (15)

where

f (x) = f ′(x′)

and J is the Jacobian of the transformation (9). The relation
(15) can be rewritten as

F [f ](u) = 1

|J |F [f ′](u′). (16)

In other words, if an image is transformed according to the
transformation (9), then the Fourier transform remains the
same (except the factor 1

|J | ) if the spectral coordinates are
transformed according to (12). Using example of 2-D rota-
tions, if an image is rotated, then its Fourier transform is
rotated as well, by the same angle.

Derivation of the fundamental theorem now follows from
(16) immediately. The FTMI was published e.g. in [45]. For
completeness and relation to the rest of this paper, we red-
erive it here again.

Fundamental Theorem of Moment Invariants

Applying Theorem 5 to both sides of (16), we get

∑

0≤k

(−2πi)|k|

k! mk[f ]uk

= 1

|J |
∑

0≤k

(−2πi)|k|

k! mk[f ′]u′k. (17)

The monomials uk of the same order are under linear
transformation (12) transformed among themselves (e.g.
from a quadratic monomial we get a linear combination of
quadratic monomials again). Therefore, as we mentioned
before, it is possible to separate the equality (17) according
to the order |k| of the monomials. For one particular order
k = |k| we thus get

∑

|k|=k

k!
k!mk[f ]uk = 1

|J |
∑

|k|=k

k!
k!mk[f ′]u′k, (18)

what is an expression for the transformation of n-ary alge-
braic form of order k = |k|, see Definition 10.

In agreement with Definitions 10 and 9, the coefficients
corresponding to the monomials up

ap = mp[f ] (19)

are after the transformation (12) changed to

a′
p = 1

|J |mp[f ′] (20)

which appear with the monomials u′p.
If the invariant I (a, b, . . .) from (10) is a homogeneous

function of order k in the coordinates of the tensors, then
substituting (19) and (20) we obtain the following theorem.
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Theorem 11 (Generalized Fundamental Theorem of Mo-
ment Invariants) If the n-ary algebraic forms have under
transformation (9) invariant as a homogeneous function of
order k

I (a′, b′, . . .) = �I (a, b, . . .)

then the same function of moments of orders corresponding
to the orders of substituted coefficients (denoted schemati-
cally) is invariant

I (ma[f ′],mb[f ′], . . .) = �|J |kI (ma[f ],mb[f ], . . .)
with the factor multiplied by |J |k , where |J | is the absolute
value of the Jacobian of transformation (9).

It should be pointed out that in the first presentation [39],
this theorem contained an error. The first correct version was
published in a local journal [46]. However, the result did
not become well known and the FTMI was independently
revised again by Flusser and Suk [47] and Reiss [48]. The
FTMI was then generalized to N -D by [45].

Fundamental Theorem for Moment Blur Invariants

It is natural to investigate, what is the corresponding result
for blur invariants ck. We proceed analogously to the deriva-
tion of the FTMI.

Calculating tangent of phase of both sides of (16)

tan
[
phF [f ](u)

] = tan
[
phF [f ′](u′)

]
(21)

removes the factor 1/|J |. Application of the Theorem 7 to
both sides of (21) gives

∑

0≤k

ck[f ]uk =
∑

0≤k

ck[f ′]u′k. (22)

One particular order k = |k| is again extracted from (22).
However, we substitute (7) to get relation

∑

|k|=k

k!
k!Qk[f ]uk =

∑

|k|=k

k!
k!Qk[f ′]u′k (23)

in terms of the new set of blur invariants Qp. The coeffi-
cients corresponding to the monomials up, resp. u′p are

ap = Qp[f ], (24)

resp.

a′
p = Qp[f ′]. (25)

Substituting (24) and (25) to (10), we can formulate an anal-
ogous theorem to the Theorem 11.

Theorem 12 If the n-ary algebraic forms have under trans-
formation (9) invariant

I (a′, b′, . . .) = �I (a, b, . . .),

then the same function of moment forms Q of orders corre-
sponding to the orders of substituted coefficients is invariant
under transformation (9)

I (Qa[f ′],Qb[f ′], . . .) = �I (Qa[f ],Qb[f ], . . .).

Of course, this result is really useful when only non-
trivial blur invariants are used (i.e. of odd orders, see (8)).
Otherwise we could get either trivial results, or expressions,
which are not defined (e.g. division by zero).

6 Simplification with Moment Tensors

There is a substantial difference between the Theorems 11
and 12. The latter theorem does not contain the factor 1

|J |
in (18) any more. We can proceed further.

From (18) it follows for k = 0 that

m0[f ] = 1

|J |m0[f ′]. (26)

In both (26) and (18), the same transformation (9) is used.
Therefore the equalities can be divided and we get

∑

|k|=k

k!
k!

mk[f ]
m0[f ]uk =

∑

|k|=k

k!
k!

mk[f ′]
m0[f ′]u′k. (27)

From comparison of (13) and (27) we get equivalence

ap = mk[f ]
m0[f ] , (28)

and

a′
p = mk[f ′]

m0[f ′] . (29)

Now we could have formulated a theorem analogous to the
Theorem 12 and dedicated to moments.

Instead of comparing the forms (13), (23) and (27), we
can find the same results differently. As in case of the form
(13), we can look at forms (23) and (27) as at invariants un-
der the transformation A. In both forms, u is transformed as
a covariant vector. Objects mp/m0 and Qp are symmetric in
all indices (in tensor notation). Then using the same conclu-
sion as before, these objects must be contravariant symmet-
ric tensors. We will use notation

τk[f ] ≡ mk[f ]
m0[f ] (30)
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and we will call it a moment tensor, as other authors.
The fact that τp’s and Qp’s are coordinates of tensors can

be seen immediately after substitution of the transformation
coefficients. However, the presented derivation is probably
more illustrative.

At this moment, the way how to treat τp’s and Qp’s is
determined: they are objects equivalent to ap’s. Therefore,
the same methods can be applied to calculate invariants on
them. Provided, we have a function of coordinates of one
of these three tensors, we can use it for the other tensors as
well.

The FTMI shows that moments mp are transforming al-
most in the same way as ap. Due to presence of the addi-
tional factor 1

|J | , simple substitution

ap −→ mp

is not possible. The FTMI investigates the consequences
of this substitution. However, such a treatment is not
necessary—the moment tensor can be used.

Normalizing by m0 is not the only possibility to make
a tensor from a moment. It is just the most straightforward
choice. Other scalars transforming under the transformation
(9) according to

scalar[f ′] = |J |scalar[f ] (31)

can be found. Every ratio of relative moment invariants in
the forms of homogeneous polynomials fulfills this condi-
tion provided that: (1) the weights of both invariants are the
same; (2) order of the polynomial in the nominator minus
order of the polynomial in the denominator equals one.

7 Practical Consequences

The results derived in the last section can be formulated in a
theorem.

Theorem 13 Given there is an invariant function of coor-
dinates of one of the tensors a, τ , Q, we can use it for all
these tensors. In terms of their coefficients, we can perform
all the possible substitutions:

In practice, invariants built on moments, not on the mo-
ment tensors, are often at disposal. Therefore, it would be
desirable to have a recipe, how to make blur invariants from
them—in the best case, by a simple substitution. Before
composing the recipe, the next section discusses the ques-
tion of order of applying the blur and geometric degrada-
tions.

Another important question concerns independence of
the invariants. This paper elaborates on adding blur invari-
ance to already existing geometrical invariants. Discussion
of the independence of the geometrical invariants was a
topic of several earlier papers and therefore we do not deal
with this issue here. More information about this generally
unresolved problem can be found in [41, 49, 50]. Blur invari-
ants Qp of odd orders |p| are independent, as mentioned in
Sect. 3. Therefore, as far as only invariants containing odd
order moments are used, dependence/independence of the
combined invariants would remain the same as of the orig-
inal geometrical invariants. Usage of invariants with even
order moments would lead to trivial combined invariants.
Here we assume that the geometrical invariants are so-called
irreducible, i.e. they cannot be expressed as a linear combi-
nation or a product of other invariants.

7.1 Order of the Blur and Geometric Degradations

Model expressed by (1) describes most of the practical
degradation problems, which have been studied in the litera-
ture. This model assumes, that the geometric degradation is
applied before the blur degradation. This is the case of out-
of-focus blur, atmospheric blur and most of the blurs caused
by motion. Omitting noise, (1) is

g = τ(f ) ∗ h. (32)

The combined invariants described in this paper are con-
structed so, that blur invariant forms are used to add an ad-
ditional geometric invariance. Influence of the blur degrada-
tion, which is the second degradation in (32), is immediately
removed by using the blur invariants instead of moments.
Since the blur invariants are geometrically analogous to mo-
ments, influence of the remaining geometric degradation can
be also easily removed.

Certain degradations could be modeled by reverse order
of the degradations

g = τ(f ∗ h). (33)

One example could be an observation of a surface diffusion
process. However, other examples are difficult to find.

The degradations (32) and (33) are not equivalent—
convolution and geometric transformation are generally not
commutative. Fortunately, the second model can be ex-
pressed as the first model, using a different convolution ker-
nel:

τ(f ∗ h) = τ(f ) ∗ 1

|J |τ(h), (34)

where J is the Jacobian of the transformation τ .
This result shows, that the combined invariants reviewed

in Sect. 3 can be used also for the model (33). However,
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symmetry of the convolution kernel has to be kept in mind.
Kernels with the central symmetry keep the property (34)
after a linear transformation and they can be used safely.

7.2 Invariants to Brightness Non-preserving Blur

Given an arbitrary function of moments is an invariant to the
transformation (9). Then it is possible to rewrite it as

I (mp, . . .) = I

(
mp

m0
m0, . . .

)
= I (τpm0, . . .). (35)

If we want to make (35) invariant also to blur (for the
model (1)), we must substitute blur invariant objects for τp
and m0, which are transforming in the same way under the
geometric transformation. According to the Theorem 12, we
substitute Qp for τp. Unfortunately, there is apparently no
scalar, transforming like (31), which would be invariant also
to brightness non-preserving blur. Thus, there is no object,
which could be simply substituted for m0.

There are two possibilities how to proceed:

• m0 is eliminated in (35).
It can happen when the invariant is a rational function.
Equation (35) is then immediately also a blur invariant.

• a power of m0 can be factored out of the invariant func-
tion.
The factor can be simply omitted. This step will change
the � in (10) (it can destroy an absolute invariance,
see [41]). However, the resulting relative invariants can be
combined to get a new absolute invariant. If a k-th power
of m0 is omitted, then the new � equals the old � divided
by |J |k .

7.3 Invariants to Brightness Preserving Blur

Another possibility is to leave the formerly formulated re-
quirement of blur invariance. Instead of it, brightness pre-
serving blur can be taken into account:
∫

RN

h(x)dx = 1. (36)

This is a very common condition in practice (motion blur,
de-focus, atmospheric blur, dispersion). Thus, it is very use-
ful to investigate this case. Under this condition, the moment
form denoted as

Mp = m0Qp (37)

is also blur invariant. We can reveal transformational prop-
erties of these forms by multiplying (26) and (23). This can
be done, because the same transformation (9) is used in both
of them and we get

∑

|k|=k

k!
k!Mk[f ]uk = 1

|J |
∑

|k|=k

k!
k!Mk[f ′]u′k. (38)

By comparison with (18), the moment blur invariants Mp are
transforming in the same way as moments mp. Therefore,
we can formulate the following theorem.

Theorem 14 Under the condition (36), a moment blur in-
variant can be constructed from the plain moment invariant
by substitution of the blur invariants Mp for the moments
mp for |p| > 0:

mp ←→ Mp.

7.4 Invariants to Geometric Transformation with |J | = 1

The last proposed simplification stays with the Qp’s and
with the brightness non-preserving blur. On the other hand,
it gives up generality concerning the types of geometric
transformations. If the geometric transformation is orthog-
onal, i. e. |J | = 1, then analogously to the previous discus-
sion, comparing the equalities (18) and (23), we get the con-
sequence: the moment blur invariants Qp are transforming
in the same way as moments mp. Therefore, if we are inter-
ested only in orthogonal transformations, we can substitute
Qp for mp. We need also a blur invariant, transforming like
(31) under condition |J | = 1. We can simply use 1 and for-
mulate the following theorem.

Theorem 15 Given a function of moments mp is an invari-
ant to orthogonal transformation of spatial coordinates. Un-
der the condition |J | = 1, a combined invariant can be con-
structed from the plain moment invariant by substitutions:

mp −→ Qp,

m0 −→ 1.

7.5 Shift Invariance

Finally, possible shift invariance should be discussed. Al-
though the geometric transformations mentioned so far have
been linear, the additional shift invariance can be obtained
simply by substitution of the central moments μp to the or-
dinary moments:

mp −→ μp.

Two points must be clarified to justify this step. Coordinates
of the center of gravity are spatial coordinates. Thus, the
shift to the center of gravity does not change transforma-
tional properties of moments. Secondly, the center of gravity
is a blur invariant (it equals the vector of Qp’s for |p| = 1).

Analogously, it is also possible to use the substitutions
proposed in this section, when invariants containing central
moments are at disposal. We must simply use central mo-
ment counterparts of Mp’s and Qp’s.
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8 Examples

In this section, numerous examples illustrate how to apply
the rules derived in this paper. It is demonstrated, that many
results, published in the literature, could have been obtained
more easily. Using the derived rules, other applications will
hopefully appear. We will not demonstrate invariance and
discriminability of the combined invariants. Instead, we pro-
vide several links to papers, where these experiments have
already been performed. Numerical stability of the blur in-
variants in 2-D, combined blur-rotation invariants and com-
bined blur-affine invariants was explicitly studied in [22, 33,
38, 51, 52].

8.1 Invariants to Rotation and Blur

8.1.1 2-D Rotation

One of the famous Hu’s invariants published in [39] is

φ3 = (m30 − 3m12)
2 + (3m21 − m03)

2.

Since this is a form of moments of the third order, corre-
sponding blur invariants Q are non-trivial. However, if the
central moments are used, they equal the corresponding mo-
ments and the resulting combined invariant is φ′

3 = φ3.
If an invariant of order five is used, the result is more in-

teresting. Given the following invariant (calculated accord-
ing to [49])

I = (m50 − 10m32 + 5m14)
2

+ (5m41 − 10m23 + m05)
2,

Q’s can be substituted to obtain a combined invariant, which
is not identical to I , but which is not listed here due to its
length.

Similar approach to obtain combined invariants to blur
and rotation is undertaken in [32], although another proof of
invariance is provided. The authors evaluate usefulness of
the combined invariants for pattern recognition tasks.

8.1.2 3-D Rotation

Conclusions of this paper can be applied to any number of
dimensions. In [38], group representation theory is applied
to derive combined invariants to blur and rotation in arbi-
trary number of dimensions. Particularly, a few 3-D invari-
ants are derived there and their applicability to 3-D image
registration is demonstrated (see also [53] and [54]).

The same results can be obtained by finding 3-D moment
invariants and substituting the blur invariants Q for the mo-
ments. For example, in [53], the following invariant is de-
rived:

I = (
m003

2 + 6m012
2 + 6m021

2 + m030
2

+6m102
2 + 15m111

2

−3m102m120 + 6m120
2

−3m021m201 + 6m201
2

−3m003(m021 + m201)

−3m030m210 + 6m210
2

−3m012(m030 + m210)

−3m102m300 − 3m120m300 + m300
2)/m000

2.

If the central moments are used, the combined invariant I ′
is identical, i.e. I ′ = I .

8.2 Invariants to Affine Transformation and Blur

In the literature, two approaches can be found to obtain in-
variants to affine transformation. The first approach [47, 55]
finds invariant forms of moments, like that of (10). The sec-
ond approach [55] sequentially imposes constraints on im-
age moments so, that they are finally independent of the
transformation parameters.

8.2.1 Moment Invariants

Reference [33] is an example of a paper using moment in-
variants in the form of (10). A few invariants to affine trans-
formation are listed there. The authors gave a proof, that af-
ter substitution of Mpq to mpq , additional blur invariance is
obtained. However, this fact is obvious from Theorem 14.

On the following examples, the rules derived in this pa-
per are demonstrated. The following affine invariant is listed
in [33]:

I1 = (μ2
30μ

2
03 − 6μ30μ21μ12μ03 + 4μ30μ

3
12

+ 4μ3
21μ03 − 3μ2

21μ
2
12)/μ

10
00.

We can factor out 1
μ6

00
and omit it. This changes the weight

to � = |J |6. Then we can substitute the corresponding Q’s
to get the relative combined invariant

I ′
1 = (μ2

30μ
2
03 − 6μ30μ21μ12μ03 + 4μ30μ

3
12

+ 4μ3
21μ03 − 3μ2

21μ
2
12)/μ

4
00.

In case of brightness-preserving blur, M’s can be used and
the combined absolute invariant is identical to I1. For the
other invariants listed in [33], the corresponding combined
invariants would be more difficult. However, the formulae
are complex. The authors [33] experimentally verified the
combined invariance both on simulated and real data. They
also revealed the discrimination power of the invariants.
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Table 1 Survey of publications
suitable as sources of invariants
for practical calculations.
Geometric transformation is
specified for each contribution,
as well as number of
dimensions. When the
dimension is arbitrary, the
results are not limited to a
particular dimension. However,
dimension of the examples is
specified in parentheses.

Publication Geometric tr. Dimension Invariants

Suk, Flusser [33] shift 2 blur invariants

Flusser et al. [37] shift arbitrary (3) blur invariants

Flusser [49] rotation 2 moments

Lo, Don [53] rotation 3 moments

Guo [54] rotation 3 moments

Flusser et al. [47] affine 2 moments

Suk, Flusser [50] affine 2 moments

Gurevich [41] affine arbitrary (2,3) algebraic invariants

Reiss [55] affine arbitrary (2,3) algebraic invariants

Mamistvalov [45] affine arbitrary (2,3) algebraic invariants

Hilbert [40] affine arbitrary (2,3) algebraic invariants

Rothe et al. [18] affine 2 moments, normalization

Shen, Ip [19] affine 2 moments, normalization

Flusser et al. [56] affine 2 moments, normalization

Zhang et al. [25] affine 2 combined inv., norm.

8.2.2 Image Normalization

Methods of moment (or image) normalization to obtain in-
variants to affine transformation of 2-D images can be found
in [18, 19, 56]. Affine transformation is always decomposed
into several simpler transformations. For example in [56],
affine transformation is decomposed into horizontal and ver-
tical translation, scaling, first rotation, stretching, second ro-
tation and mirror reflection. Constraints are chosen to nor-
malize image moments to all these transformations, sequen-
tially.

Since it is known from Theorem 14 that moments mpq

are transforming in the same way as blur invariants Mpq ,
we can use Mpq instead of mpq . If the deformation corre-
sponds to the model (32), it is natural to calculate the blur
invariants Mpq first to remove the dependence on blur. Nor-
malization can be done afterwards, where all the procedures
of [56] would be analogous. Usage of blur invariants would
insure that the final normalized values are invariant both to
affine transformation and blur.

A paper has already been published, using the method
of normalization [25]. As the normalization constraints, the
authors use the central moments of the third order, which
are also invariant to blur. These constraints can be used also
on images degenerated by different degrees of blur. After
the moments are normalized to affine transformation, every-
thing built on them stays affine invariant, as the authors ar-
gue. Therefore, blur invariants are calculated from the nor-
malized moments, resulting in combined invariants.

However, the sequence of steps could have been different.
Blur invariants Mpq can be again used immediately instead
of mpq . These M’s can be then normalized to the remaining
affine degradation. The resulting moment forms would be

equivalent. The authors [25] proved the combined invariance
of their results, as well as their discriminability.

It should be pointed out, that the method presented in [25]
works only for the centrally symmetrical blur, as claimed.
Although the method is tested on the degradation (32), affine
degradation is normalized first. Initial assumptions allow
such a procedure, see also (34).

8.3 Literature Containing Lists of Invariants

Table 1 contains links to several contributions, presenting
lists of algebraic or moment invariants, their derivation and
other information, which is relevant to this paper. The table
cannot be regarded as complete. Our aim was to find pa-
pers, which could serve, together with the provided rules, as
recipes how to build blur invariants easily and fast.

9 Conclusions

Contribution of this paper is two-fold. First, it can serve as a
review for those familiar with the field of combined invari-
ants. The way of explanations in this paper and all the con-
text should contribute to better orientation in this field also
for developers, which would readily like to use this kind of
invariants.

For the first time, the substitution rules for straightfor-
ward construction of the combined invariants are published
here. The rules simplify the calculations significantly. Nu-
merous examples are given, giving a unified explanation to
several already published results. We hope that this contri-
bution will encourage a broader and more creative usage of
combined invariance.
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The goals of this contribution are mainly theoretical and
unifying. However, as it was pointed out in the introduction,
the resulting combined invariants have already been tested.
They proved to be robust and at the same time discriminative
features, suitable for usage in many image processing tasks.
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