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Abstract

When two or more images are spliced together, to create
high quality and consistent image forgeries, almost always
geometric transformations such as scaling or rotation are
needed. These procedures are typically based on a resam-
pling and interpolation step. In this paper, we introduce a
blind method capable of finding traces of resampling and
interpolation. Unfortunately, the proposed method, as well
as other existing interpolation/resampling detectors, is very
sensitive to noise. The noise degradation causes that de-
tectable periodic correlations brought into the signal by the
interpolation process become corrupted and difficult to de-
tect. Therefore, we also propose a novel method capable of
dividing an investigated image into various partitions with
homogenous noise levels. Adding locally random noise may
cause inconsistencies in the image’s noise. Hence, the de-
tection of various noise levels in an image may signify tam-
pering.

1 Introduction

Without a doubt, image authenticity is significant in
many social areas and plays a crucial role in people’s lives.
In this paper we focus on blind digital image authentication
[9, 10, 6, 16, 16, 8, 14, 5]. The blind approach is regarded as
the new direction and is a burgeoning research field. In con-
trast to active approaches, passive approaches do not need
any explicit prior information about the image. They work
in the absence of any digital watermark or signature and are
based on the image characteristic. The area of blind digital
image authentication is growing rapidly and the results ob-
tained in this dissertation, as well as results from other exist-
ing blind techniques, promise a significant improvement of
forgery detection in the never–ending game between image
forgery creators and image forgery detectors.

When two or more images are spliced together (for an
example see Figure 1), in order to create a consistent and
high quality tampering, geometric transformations such as
resizing, rotating or skewing are almost always needed.
These procedures are typically based on a resampling and
interpolation (nearest neighbor, linear, cubic, etc.) step. De-
spite the importance, massive usage1 and history2 of inter-
polation, to our knowledge, there exist only a few published
works concerned with the specific and detectable statisti-
cal changes brought into the signal by this process. There-
fore, in this paper we analytically show periodic properties
present in the covariance structure of interpolated signals
and their nth derivatives. Without the detailed knowledge
of how the statistics of the signal is changed by the interpo-
lation process, applications based on statistical approaches
working with resampled/interpolated signals or with their
derivatives can yield miscalculations and unexpected re-
sults. Furthermore, we briefly show a blind, efficient and
automatic method capable of detecting the traces of resam-
pling and interpolation. The method is based on a derivative
operator and radon transformation.

Probably the main weakness of the mentioned interpola-
tion/resampling detector is its high sensitivity to noise. The
noise degradation causes that detectable periodic correla-
tions brought into the signal by the interpolation process
become corrupted and difficult to detect. So, the mentioned
weakness is common for all existing resampling detectors.
Generally, additive noise is the main cause of failure of most
existing blind authentication methods. These methods are
able to work correctly only when the amount of present
noise degradation is small. Based on these facts, in this
paper we propose a novel method capable of dividing an in-

1For instance, almost every image resizing or rotation operation re-
quires an interpolation process.

2Interpolation has a long history and probably started being used as
early as 2000BC by ancient Babylonian mathematicians. For instance, it
had an important role in astronomy which in those days was all about time–
keeping and making predictions concerning astronomical events [11].



Figure 1. An example of a composited image. Shown are: source image (a), source image (b),
tampered image (c). In (d) the adjusted difference between image (a) and the tampered image (c) is
shown. The tampered image has been created by splicing source image (a) with a resized part of
source image (b). This part has been resized by scaling factor 1.30 using the bicubic interpolation.

vestigated image into various partitions with homogenous
noise levels. Adding locally random noise may cause in-
consistencies in the image’s noise. Therefore, the detection
of various noise levels in an image may signify tampering.
We assume local additive white Gaussian noise.

The rest of the paper is organized as follows. The next
section summarizes previous published papers concerned
with the detection of scaling and rotation. After this, some
basic notations and definitions are given to build up the nec-
essary mathematical background. Section 4 analyzes and
analytically shows hidden periodic properties present in in-
terpolated signals. Section 5 introduces a method capable
of detecting the traces of scaling and rotation. The follow-
ing section proposes a novel method capable of segmenting
an investigated image using the local noise level. Each step
of the method is discussed in detail. Section 7 contains ex-
periments to demonstrate the outcomes of the method. In
section 8 important properties of the method and obtained
results are discussed. The last section summarizes the work
that has been done in this paper.

2 Related Work

To our knowledge, there are only two published methods
capable of detecting the traces of both scaling and rotation
transformations and any arbitrary combination of them.

In [9], B. Mahdian and S. Saic have analyzed specific
periodic properties present in the covariance structure of in-
terpolated signals and their derivatives. Furthermore, an ap-
plication of Taylor series to the interpolated signals showing
hidden periodic patterns of interpolation is introduced. The
paper also proposes a method capable of easily detecting
traces of scaling, rotation, skewing transformations and any
of their arbitrary combinations. The method works locally
and is based on a derivative operator and radon transforma-
tion.

In [15], A. C. Popescu and H. Farid have analyzed the
imperceptible specific correlations brought into the resam-
pled signal by the interpolation step. Their method is based
on the fact that in a resampled signal it is possible to find a
set of periodic samples that are correlated in the same way
as their neighbors. The core of the method is an Expecta-
tion/Maximization (EM) algorithm. The main output of the
method is a probability map containing periodic patterns if
the investigated signal has been resampled.

3 Basic Notations and Preliminaries

Periodic properties of interpolation can be effectively
studied by using the following simple, linear and stochas-



tic model and assumptions:

f(x) = (u ∗ h)(x) + n(x) (1)

where f , u, h, ∗, and n are the measured image, origi-
nal image, system PSF, convolution operator, and random
variable representing the influence of noise sources statis-
tically independent from the signal part of the image. We
assume that E{n(x)} = 0. If we consider the first part of
(1) to be deterministic, the covariance of (1) can be shown
to be Rf (x1, x2) = Cov{f(x1), f(x2)} = E{(f(x1) −
f(x1))(f(x2) − f(x2))} = Cov{n(x1), n(x2)} =
Rn(x1, x2), whereRf is the covariance matrix of measured
image f(x), and Rn is the covariance of random process
n(x).

We will denote by fk a discrete signal representing the
samples of f(x) at the locations k∆x, fk = f(k∆x), where
∆x ∈ R+, is the sampling step and k ∈ N0.

For the sake of simplicity we introduce the opera-
tor Dn{•}, n ∈ N0, which is defined in the following
way: Dn{f}(x) = f(x) for n = 0 and Dn{f}(x) =
∂nf(x)

∂xn for n ∈ N . In other words, D0{f}(x) is identical
to f(x) and Dn{f}(x), where n > 0, is the nth derivative
of f(x). In discrete signals derivative is typically approxi-
mated by computing the finite difference between adjacent
samples.

4 Periodic Properties of Interpolation

There are two basic steps in geometric transformations.
In the first step a spatial transformation of the physical re-
arrangement of pixels in the image is done. Coordinate
transformation is described by a transformation function, T ,
which maps the coordinates of the input image pixel to the
point in the output image (or vice versa):

x
′
= Tx(x, y) y

′
= Ty(x, y)

The second step is called the interpolation step. Here
pixels intensity values of the transformed image are as-
signed using a constructed low–pass interpolation filter, w.
To compute signal values at arbitrary locations, as the word
interpolation signifies3 discrete samples of fk are multiplied
with the proper filter weights when convolving them withw.

The sinc function (optimal interpolator) is hard to imple-
ment in practice because of its infinite extent. Thus, many
different simpler interpolation kernels of bounded support
have been investigated and proposed so far [13, 7, 12]. We
will be concerned mainly with following low–order piece-
wise local polynomials: nearest–neighbor, linear, cubic and

3The word ”interpolation” originates from the Latin word ”inter”,
meaning ”between”, and verb ”polare”, meaning ”to polish” [11].

truncated sinc. These polynomials are used extensively be-
cause of their simplicity and implementation unassuming
properties.

Combining the derivative theorem with the convolution
theorem leads to the conclusion that by convolution of fk

with a derivative filter Dn{w}, we can reconstruct the nth
derivative of f(x). We denote the result of interpolation
operation by fw(x), respectively by D{fw}(x), where w
denotes the interpolation filter. Formally,

Dn{fw}(x) = Dn{
∞∑

k=−∞

fkw(
x

∆x
− k)}

=
∞∑

k=−∞

fkDn{w}( x
∆x

− k)

As pointed out in [17], it is easy to show that the covari-
ance function of an interpolated image or its derivative is
given by:

RDn{fw}(x, x+ ξ) =
∞∑

k1=−∞

∞∑
k2=−∞

Dn{w}( x
∆x

− k1)

·Dn{w}(x+ ξ

∆x
− k2)Rf (k1, k2)

If we assume constant variance random process, then the
variance of Dn{fw}, var{Dn{fw}(x)}, as a function of
the position x can be represented in the following way:

var{Dn{fw}(x)} =RDn{fw}(x, x)

=σ2
∞∑

k=−∞

Dn{w}( x
∆x

− k)2

where σ2 = Rn(k1, k2). This equation can be obtained if
Rf (k1, k2) has a short–range correlation [17]. Similarly,
the covariance can be represented like:

RDn{fw}(x, x+ ξ) = σ2
∞∑

k=−∞

Dn{w}( x
∆x

− k)

· Dn{w}(x+ ξ

∆x
− k)

Now, by assuming that ϑ ∈ Z , we can notice that:

var{Dn{fw}(x+ ϑ∆x)}

=σ2
∞∑

k=−∞

Dn{w}(x+ ϑ∆x

∆x
− k)2

=σ2
∞∑

k=−∞

Dn{w}( x
∆x

− (k − ϑ))2

=var{Dn{fw}(x)}



Thus, var{Dn{fw}(x)} is periodic over x with period ∆x

(as aforementioned, ∆x is the sampling step).
In other words we have shown that interpolation brings

into the signal and their derivatives a specific periodicity.
This periodicity is dependant on the interpolation kernel
used. The theory studied in this section can be analogously
extended for the multidimensional cases.

5 Detection of Interpolation

The interpolation detection method is based on a few
main steps: ROI selection, signal derivative computation,
radon transformation and search for periodicity step. Each
step is explained separately in the following sections.

5.1 Region of Interest Selection

In general, a typical image, f(x, y), consists of several
consistent regions. To investigate if any of these regions
have been resampled we select this region by a block of
R × R pixels (we denote this block by b(x, y)) and apply
the method to this image subset.

5.2 Signal Derivative Computation

To emphasize the periodic properties presence in an in-
terpolated image, the nth derivative of b(x, y),Dn{b(x, y)},
is computed. The derivative operator is applied to the rows
of b(x, y). In our experiments the derivative order, n, is set
to 2. The used derivative kernel is [1,−2, 1].

5.3 Radon Transformation

To be able to find traces of scaling and rotation, we
employ a radon transformation. The radon transformation
computes projections of magnitudes of Dn{b(x, y)} along
specified directions determined by angle θ. The projection
is a line integral in a certain direction. The line integral can
be expressed in the following way:

ρDn{b}(x, y) =
∫

L

|Dn{b(x, y)}|dl

By assuming that[
x′

y′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
it is possible to represent the radon transform the in follow-
ing way:

ρθ(x′) =

∞∫
−∞

|Dn{b(x, y)}|

· (x′ cos θ − y′ sin θ, x′ sin θ + y′ cos θ)dy′

The radon transformation is computed at angles θ from 0
to 179◦, in 1◦ increments. Hence, the output of this section
is 180 one–dimensional vectors, ρθ.

5.4 Search for Periodicity

The previous section results in 180 vectors ρθ. If the in-
vestigated region has been resampled, corresponding auto–
covariance sequences of ρθ contain a specific strong period-
icity. The autocovariance can be computed in this way:

Rρθ
(k) =

∑
i

(ρθ(i+ k)− ρθ)(ρθ(i)− ρθ)

Our goal is only to determine if the image being investi-
gated has undergone affine transformation. Hence, we focus
only on the strongest periodic patterns present in the auto-
covariance sections Rρθ

. The effect of this could be that
when the analyzed image has undergone several geometric
transformations, our method may not detect all particular
transformations present in this signal, but only those that
have the clearest and strongest periodic properties (for an
example, see Figure 7(c)).

To emphasize and easily detect the periodicity, a deriva-
tive filter of order one is applied to vectors ρθ. After this,
in order to easily exhibit strong peaks signifying interpola-
tion, the magnitudes of the Fast Fourier transformation of
obtained sequences Rρθ

are computed. To easily detect the
mentioned periodicity, the magnitudes of FFT, |FFT(Rρθ

)|,
are all combined and plotted together to create the main
output of the method (for example, see Figure 2). As it
will be apparent from the next section, if the analyzed re-
gion contains interpolation, peaks in the spectrum are very
clear and strong and cannot be missed. The spectrum of
such a signal has totally different properties of those of non–
interpolated signals (see Figures 2 and 4). To automatically
detect the interpolation peaks, we apply a simple and strict
threshold–based peak detector searching for the local max-
imum (peaks n times greater than a local average magni-
tude).

The method described in this section is always separately
applied also to the columns of b(x, y). This is because of the
fact that some transformations and images exhibit clearer
periodicity in this direction. For a more detailed description
of the method, we refer you to [9].



Figure 2. Shown from top to bottom are: the
investigated region (denoted by a black box,
128 × 128 pixels), the output of the proposed
method applied to the rows of this region.
Peaks are clear and signify interpolation. The
investigated image is shown in Figure 1.

Figure 3. Shown from top to bottom are: the
investigated region (denoted by a black box,
128 × 128 pixels), the output of the proposed
method applied to the rows of this region.
Here, the resampled region was corrupted
by Gaussian noise with standard deviation
σ = 10. Interpolation detection method failed.
The investigated image is shown in Figure 1.

Figure 4. Shown from top to bottom are: the
investigated region (denoted by a black box,
128 × 128 pixels), and the output of the pro-
posed method applied to the rows of this re-
gion. The investigated region has not under-
gone any geometric transformation. Hence,
there are no clear or strong peaks. The spec-
trum has totally different properties com-
pared to Figure 2. The investigated image is
shown in Figure 1.

6 Image Noise Inconsistencies Analysis

In this section we introduce a method capable of divid-
ing the investigated image into various homogenous seg-
ments according to the noise level. Our aim is to detect
regions with the locally added noise. We will assume white
Gaussian noise n(x, y) with variance σ2 which can spatially
vary. We assume that σ2 is a piece–wise constant function.

We will define the problem in the following way. Given
an image containing an arbitrary number of isolated regions
of unknown location and shape with different noise vari-
ances, our task is to determine the presence of such regions
and to localize them.

The proposed method is based on a few main steps (see
Figure 5):

• wavelet analysis,

• tiling sub–band HH1 with non-overlapping blocks,

• blocks noise variance estimation,

• blocks merging.

Each step is explained separately in the following sec-
tions.

6.1 Wavelet Transform

In recent years, wavelet analysis has been demonstrated
to be a powerful way for performing tasks concerned with
image noise [3, 4]. In the first step of the proposed method,
a one–level wavelet decomposition of the investigated im-
age is carried out. The analyzed image is split into four
sub–bands LL1, LH1, HL1 and HH1.

6.2 Non–overlapping Blocks

The HH1 sub–band gives the diagonal details of the im-
age the highest resolution. Our method begins with tiling
this sub–band by non-overlapping blocks Bi of R×R pix-
els. Blocks are assumed to be smaller than the size of the
additive noise corrupted regions, which have to be detected.
The total number of non–overlapping blocks for an image
of M ×N pixels is r = bM

R c × bN
R c.

Alternatively, an operator can manually divide the image
into different portions whose integrities are in question and
where we wish to strengthen our evidence.

6.3 Noise Level Estimation

In this section the noise level of each block created in the
previous step is estimated. Numerous methods have been
proposed so far to perform the noise level estimation in dig-
ital images. Generally, these methods can be divided into
following groups [19]:



Figure 5. The proposed method.

• block–based,

• smoothing–based,

• gradient–based.

In our method, the most widely used technique for esti-
mating the variance of the noise on a wavelet component is
employed. Wavelet–based noise estimation is a special case
of gradient–based methods, where the gradient amplitudes
are obtained from the wavelet decomposition.

If we assume the noise is Gaussian, the following robust
MAD–based estimator can be employed:

σ̂ =
MADHH1

0.6745

where σ̂ denotes the standard deviation of noise and
MADHH1 stands for median absolute deviation of the di-
agonal sub–band of the first decomposition level (HH1).

The median measurement is insensitive to isolated out-
liers of potentially high amplitudes.

6.4 Blocks Merging

Once the noise standard deviation of each block is es-
timated, σ̂i, i = 1 · · · r, we divide the noisy image, fn,
into several connected homogenous sub–regions R1 ∪R2 ∪
· · · ∪ Rn, see Figure 6. To achieve this, we group blocks
Bi, i = 1 · · · r, using a simple region merging technique
[2, 18, 1]. The homogeneity condition is the estimated noise
standard deviation.

Figure 6. Image partitioning.

The region merging algorithm expands the blocks into
neighboring blocks using σ̂i. It starts with individual blocks
and iteratively merges similar neighboring ones. The simi-
larity is based on a selected similarity threshold T . The core
of the merging method is the following:

• Give a unique label to each block.

• In a predefined order, examine the neighboring regions
and examine if the absolute value of difference of their
standard deviation of noise is smaller than the selected
threshold (|σ̂i− σ̂j | < T ). If so, then give these neigh-
bors a same label and estimate the new created region’s
σ̂i

• Continue until no more merging operations are possi-
ble.

The output of this step is a map showing partitions with
similar standard variance of noise.

7 Experimental Results

To show the effect of noise on the described resam-
pling detector, a quantitative measure of the efficiency of
the proposed method is carried out. The method has been
applied to 40 images undergone various transformations.
The size of test images was 512 × 512 pixels. The pre-
sented method has been applied to the whole image (in other



words, the size of investigated region was 512 × 512 pix-
els). In all cases the bicubic interpolation method was used.
The method was applied separately to rows and columns of
tested images. All experiments were carried out in Mat-
lab. Tables 1 and 2 show the detection accuracy of the
method applied to bicubic resized and rotated images for
noise–free and noise corrupted images. The detection accu-
racy expresses the success of the method in expressing the
interpolation by clear and easily detectable peaks, either in
row–based or column–based output (for example, see Fig-
ure 7).

Figure 3 shows an example, when the noise degrada-
tion causes the failure of the resampling detector. In this
example the interpolated image was corrupted by additive
Gaussian noise with standard deviation σ = 10. After-
wards, this image was used to create the final forged image
(Figure 1). Figures 9,10 and 11 show the output of the lo-
cal noise inconsistencies detection method applied to 3. As
apparent, the proposed method makes easily possible the
detection of traces of tampering.

To demonstrate more results of the proposed method, we
apply it to several examples (all experiments are carried out
in Matlab). Parameters of the method were set to M = 40,
N = 40 (blocks of size 40 × 40) and T = 1 (similarity
threshold). All experimental results were obtained using
the Daubechies wavelet db8, see Figure 8.

Shown in Figure 13 (a) is the first noise–free test image.
The resolution of this image is 1200 × 800. Figure 12 (a)
contains the second noise–free test image. Here, the reso-
lution of this image is 1200 × 860. Figures 13 (b) and 12
show the noisy regions. Outcomes of the method are shown
in Figures 13 (c–h) and 12 (c–h) for Gaussian noise with
standard deviations σ = 0, 3, 5, 7, 10 and 15. The largest
detected homogenous region is denoted by the black color.
Colors denoting other regions with the homogenous noise
standard deviation are assigned randomly.

Figure 8. Daubechies db8 wavelets ψ(x) and
scaling function ϕ(x).

Figure 9. Shown is the output of the auto-
matic version of the noise inconsistencies
analysis method applied to the image shown
in Figure 1. Parameters of the method were
set to M = 40, N = 40 and T = 1. The simi-
larity threshold selected here is more strict.
This was resulted in a falsely identified re-
gion.

Figure 10. Shown is the output of the auto-
matic version of the noise inconsistencies
analysis method applied to the image shown
in Figure 1. Parameters of the method were
set to M = 40, N = 40 and T = 2. This was
resulted in a falsely identified region.

Figure 11. Shown is the output of the auto-
matic version of the noise inconsistencies
analysis method applied to the image shown
in Figure 1. Parameters of the method were
set to M = 40, N = 40 and T = 1. The similar-
ity threshold selected here is more lax. This
was resulted in no identified regions.



Figure 7. Shown are several outputs of the presented method applied to different TIFF format images
that have undergone various transformations. The size of the investigated region in all cases is
128× 128 pixels (denoted by a black box). As it is apparent, peaks signifying interpolation are clearly
detectable. (a) Skewing factor=0.3 (bicubic); (b) scaling factor 1.3; rotation anlge=10◦ (bicubic); (c)
scaling factor 1.2; skewing factor in x–direction=0.2; skewing factor in y–direction=0.4 (bicubic).

Table 1. Detection accuracy [%] as a function of different scaling factors, TIFF, JPEG compression
qualities and signal–to–noise ratios. Each cell corresponds to the average detection accuracy from
40 images.

scaling factor 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.97 0.99
TIFF 67 82 92 95 97 100 100 100 100 90 35
SNR 40 dB 60 80 90 92 97 100 100 100 100 87 25
SNR 20 dB 5 5 7 10 10 10 12 12 5 5 0

scaling factor 1.01 1.03 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
TIFF 35 90 100 100 100 100 100 100 100 100 100
SNR 40 dB 25 87 100 100 100 100 100 100 100 100 100
SNR 20 dB 0 7 7 12 15 17 20 20 25 27 30

scaling factor 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.95 2.05 2.10
TIFF 100 100 100 100 100 100 100 100 100 100 100
SNR 40 dB 100 100 100 100 100 100 100 100 100 100 100
SNR 20 dB 30 30 30 30 30 30 30 30 30 30 30

Table 2. Detection accuracy [%] as a function of different rotation angles, TIFF, JPEG compression
qualities and signal–to–noise ratios. Each cell corresponds to the average detection accuracy from
40 images.

rotation angle 1◦ 3◦ 5◦ 10◦ 15◦ 20◦ 30◦ 40◦

TIFF 22 85 100 100 100 100 100 100
SNR 40 dB 17 80 100 100 100 100 100 100
SNR 20 dB 0 5 12 20 22 25 12 10

In this part, a quantitative measure of the efficiency of
the noise estimation part of the algorithm based on block
size and image formats is carried out. Experimental results
are obtained by applying the estimator to 20 test images
corrupted by additive Gaussian noise with various standard
deviations. The size of test images was 512 × 512 pixels.
These images were tiled by non–overlapping blocks of vari-
ous sizes. The method was applied to each block separately.
In other words, each analyzed noise standard deviation cor-
responds to 20×b 512

R c×b 512
R c estimations, where R is the

block’s size. For example, statistics for block size R = 32
are obtained from 5120 blocks.

Obtained results are shown in Table 3, Table 4 and Table
5 in terms of mean value of σ estimation (¯̂σ), average error
(Ē) and its standard deviation (σE), maximum and mini-
mum obtained absolute errors (maxEi

and minEi
). Statis-

tics were obtained as a function of different noise standard
deviations σ = 0 (noise–free image), 2, 3, 5, 7, 10, 15, 20
and 25. Furthermore, for different ROI sizes, TIFF format
and different JPEG compression qualities (100, 99, 97, 95,



Figure 12. Shown are the test image (a),
AWGN corrupted region (b) segmented im-
age for Gaussian noise with standard devia-
tion σ = 1 (c), σ = 3 (d), σ = 5 (e), σ = 7 (f),
σ = 10 (g) and σ = 15 (h).

Figure 13. Shown are the test image (a),
AWGN corrupted region (b) segmented im-
age for Gaussian noise with standard devia-
tion σ = 1 (c), σ = 3 (d), σ = 5 (e), σ = 7 (f),
σ = 10 (g) and σ = 15 (h).



90, 80 and 70). In cases of JPEG compression format, the
noise were added to the image before the JPEG compression
has been done. For the sake of completeness, we mention
how the average error Ē and its standard deviation σE are
obtained. The averaged error is obtained as

Ē =
1
N

N∑
i=1

Ei,

where N stands for the number of measurements (N =
20 × b 512

R c × b 512
R c) and Ei denotes the absolute differ-

ence obtained by Ei = |σi − σ̂i| where σi is the true noise
standard deviations and σ̂ is the estimated noise standard
deviation. The standard deviation σE is calculated in the
following way:

σE =

√√√√ 1
N

N∑
i=1

(Ei − Ē)2.

8 Discussion

The proposed interpolation detection method works well
for low order interpolation polynomials: nearest neighbor,
linear or cubic. These interpolators have a strong detectable
effect on the covariance structure of the signal. By applying
the method to images corrupted by noise, the detection per-
formance radically decreases. By adding noise to the sig-
nal the interpolation–based pixels correlation becomes cor-
rupted and difficult to detect. The problem is common for
all existing resampling detectors based on periodic patterns
of interpolation.

The main weakness of the noise inconsistencies detec-
tion method is that authentic images can also contain var-
ious isolated regions with totally different variances (non–
stationarity). The method can denote these regions as in-
consistent with the rest of the image. Therefore, a hu-
man interpretation of the output of the method is neces-
sary. Probably the best possible usefulness of the proposed
method is where an ROI selected by an operator or by other
forgery detection methods is under investigation and we
wish to strengthen our evidence. An interesting way how
to improve the method’s output can be by employing a pre-
processing step performing a segmentation of the analyzed
image to stationary regions. Then, for example, the method
can be applied to these segments separately.

Typically, the proposed method is not able to find the
corrupted regions, when the noise degradation is very small
(σ < 2). However, please note that this is not a signifi-
cant limitation. As mentioned, our purpose was to develop
a method capable of detecting forgeries where the random
noise is the main cause of failure of other authentication
methods. This occurs when the noise degradation is not
small.

The average run time of the implemented experimental
version with parameters M = 40, N = 40 (blocks of size
40×40) and T = 1 for 1200×800 grayscale images on a 2.1
GHz processor and 512 MB RAM is 25 seconds (the most
computational time belongs to the blocks merging step). It
is important to note that the implemented experimental ver-
sion was not optimized and it is possible to improve the
computational time.

The selected method’s parameters were determined ex-
perimentally to yield a good tradeoff between the size of
the detectable region and noise variance estimation ability.
But generally they can always be altered based on ROI size
and image’s properties by using the results shown in Table
3, Table 4 and Table 5.

9 Conclusion

The problem of noise degradation is common for all ex-
isting resampling detectors focused on periodic patterns of
interpolation. In this paper we tried to overcome this draw-
back by using an additional noise inconsistencies analysis
method. The method divides the investigated image into
various segments of different noise levels. The local noise
estimation is based on tiling the high pass diagonal wavelet
coefficients at the highest resolution with non–overlapping
blocks. The noise standard deviation of each block is es-
timated using the widely used MAD–based method. Once
the standard deviation of noise is estimated, it is used as the
homogeneity condition to segment the investigated image
into several homogenous regions. This is carried out using
a simple region merging algorithm.

The proposed method in combination with other blind
image authentication techniques can be a useful tool to de-
tect the traces of tampering where the local Gaussian noise
is used to conceal the traces of forgery or when the tamper-
ing is created by combination of several images with various
noise levels.
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