
Information Fusion xxx (2008) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier .com/ locate/ inf fus
Multifocus image fusion using the log-Gabor transform and a Multisize Windows
technique

R. Redondo a,*, F. Šroubek b, S. Fischer a, G. Cristóbal a

a Instituto de Óptica (CSIC), Serrano 121, 28006 Madrid, Spain
b Academy of Sciences, Pod vodárenskou věží 4 Prague, Czech Republic
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Today, multiresolution (MR) transforms are a widespread tool for image fusion. They decorrelate the
image into several scaled and oriented sub-bands, which are usually averaged over a certain neighbor-
hood (window) to obtain a measure of saliency. First, this paper aims to evaluate log-Gabor filters, which
have been successfully applied to other image processing tasks, as an appealing candidate for MR image
fusion as compared to other wavelet families. Consequently, this paper also sheds further light on appro-
priate values for MR settings such as the number of orientations, number of scales, overcompleteness and
noise robustness. Additionally, we revise the novel Multisize Windows (MW) technique as a general
approach for MR frameworks that exploits advantages of different window sizes. For all of these pur-
poses, the proposed techniques are firstly assessed on simulated noisy experiments of multifocus fusion
and then on a real microscopy scenario.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Three fusion levels of abstraction are usually identified. The
lowest possible abstraction level is the pixel-level, which makes
use of such physical parameters as the intensity value of the pixels.
One step further, feature-level fusion, operates on attributes such
as size, shape, edge, contrast or texture. Decision-level fusion is
the last level of abstraction and deals with symbolic representa-
tions. A wide variety of mathematic tools that perform image fu-
sion have been proposed in the literature [1]. This includes gray-
value variance, averaging-PCA, neural networks, Bayesian model-
ing, non-linear filtering, Markov modeling and last, but not least,
multiscale or multiresolution (MR) transforms.

Nowadays, MR transforms can be considered as the most popu-
lar tool for image fusion. MR-based image fusion lies between the
pixel and feature-level, whose coefficients, often regarded as sim-
ple features, are represented in a joint space–frequency domain.
Well known examples of MR transforms used in image fusion are
the Laplacian pyramid [2], contrast pyramid [3], gradient pyramid
[4], morphological pyramid [5], ratio-of-low-pass pyramid [6] and
wavelet decomposition [7,8]. The saliency measure, also referred to
as activity in the literature, constitutes a critical point in the whole
process. Different methods were suggested, but in most cases the
activity is proportional to the averaged energy of the frequency
ll rights reserved.
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coefficients, where salient features (features to preserve) have high
energy in high frequencies [9,10]. Thus, the high to mid-high fre-
quency terms contain important details for our visual perception
and understanding of the fused image. In multifocus fusion, for in-
stance, the out-of-focus regions obviously lack high-frequency fea-
tures. The norm of image gradient [4], norm of image Laplacian
[11], energy of the Fourier spectrum [12], image moments [13]
and energy of high-pass bands of wavelet transforms [8,14] are
among the most popular activity measures.

Subsequently, image fusion usually relies on partitioning of the
MR domain into subregions in which the saliency of features is
measured. Averaging square neighborhoods (windows) is the sim-
plest and the most common strategy for this. Then the activity of
the regions is compared among all channels, and MR coefficients
with the highest activity are preserved (maximum selection rule).
By this maximum selection criterion an index matrix called a deci-
sion map is built, which identifies which coefficient to keep at each
location. By tracking such indexes a single composite MR represen-
tation is built, whose inverse corresponds to the fused image. In-
stead of using maximum selection, more general approaches
match coefficients by means of a certain similarity measure. Piella
[15] offers an excellent overview of MR-based image fusion
techniques.

Although neither evidences of superiority among MR decompo-
sitions nor among MR settings have been found, the literature,
however, lacks an exhaustive comparison, mostly due to the fact
that fusion evaluation cannot be always expressed in terms of
usion using the log-Gabor transform and a Multisize Windows ...,
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objective criteria. Consequently, multiple perceptual and statistical
evaluation metrics have been suggested [16–18].

The novel log-Gabor implementation that we recently proposed
elsewhere [19] opens doors to those image processing applications
which require exact reconstruction. Hence, it has already shown
notable performance in image restoration and image compression
[20,21]. One objective of the current paper, therefore, involves
evaluating the log-Gabor wavelets as a novel MR transform for
the field of image fusion. In addition, it is a well known fact that
the appropriate averaging window size is unfortunately highly
dependent on the scale of objects and the noise present in the
source images. Whereas large windows improve robustness, small
ones perform accurate space localization. The Multisize Windows
(MW) technique that we sketched elsewhere [22] locally adapts
the size of the window according to the local features in the image,
exploiting advantages of manifold sizes. Although it was evaluated
under a wavelet framework as a first attempt, its formulation is va-
lid for any MR scheme.

In light of the background information mentioned above, we
established the following objectives for this work: (1) to carry
out a quantitative evaluation of the log-Gabor wavelets; (2) to con-
figure MR settings for successful image fusion; (3) to create a novel
MW technique with the log-Gabor decomposition; and (4) to com-
pare different wavelet-based fusions. To deal with these challeng-
ing goals, the course of the paper is as follows: MR-based settings
are described in Section 2, log-Gabor wavelets and some MR fea-
tures are discussed in Section 3, the MW technique is reviewed
in Section 4 and finally experiments for two multifocus scenarios
are presented in Section 5.

2. A MR-based fusion scheme

2.1. MR formulation

We follow in part the notation and terminology given in [15].
Let xS denote the Sth input channel and yS the MR transform of
xS, where the analysis operator W satisfies yS ¼ WðxSÞ and the syn-
thesis operator W�1 satisfies xS ¼ W�1ðySÞ, assuming exact recon-
struction. Let the index n ¼ ðn;mÞ address the MR coefficients in
a sub-band with a given orientation p ¼ f1; . . . ; Pg (vertical, hori-
zontal and several diagonal filtering directions) and scale k ¼
f1; . . . ;Kg. The highest scale (lowest resolution level) ySðn;1;KÞ is
Fig. 1. MR-based (multifocus) fusion scheme: input channels x1 and x2 are acquired wi
scales and P ¼ 3 orientations, and activity AN

1 and AN
2 are calculated by means of a given w

is obtained by using the maximum selection rule and the composite MR domain ŷ is me
fused image x̂.
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made of a unique band usually called the residual or approximation
and the remaining high-pass bands ySðn; p; kÞ are referred to as the
detail pyramid.

2.2. Activity measurement

MR coefficients reflect the energy of frequency terms in a given
local area. The activity is thus related to the absolute or squared va-
lue of the coefficients. Because sample-based operation is rather
vulnerable to the presence of noise in the channels, most ap-
proaches select a fixed window, performing an area-based opera-
tion, to average the activity as follows:

aN
S ðn; p; kÞ ¼ wNðnÞ � jySðn;p; kÞj; ð1Þ

where aN
S is the activity, wN is any type of normalized N � N-win-

dow and the operator * means the convolution operator. We assume
windows of Gaussian type with a standard deviation equal to the
window size, i.e. r2 ¼ N2.
2.3. Decision maps

The maximum selection rule, aN ¼maxS aN
S

� �
, selects only the

strongest MR coefficient among the channels at each location.
The maximum sounds adequate in multifocus fusion because we
assume that each pixel is acquired in-focus in at least one channel.
Weighting or thresholding MR coefficients appears, in principle,
more suitable for multisensor fusion. However, even then the max-
imum selection rule is often favored [8].

Despite the fact that space–frequency representations often
accomplish efficient image decorrelation, most MR coefficients
are highly correlated with other surrounding coefficients and with
equivalent coefficients in adjacent sub-bands (scale and orienta-
tion) [23,24]. In order to make decision maps consistent in differ-
ent bands as well, we extend the maximum selection rule across
orientations:

AN
S ðn; kÞ ¼max

p
aN

S ðn; p; kÞ
� �

: ð2Þ

This tactic could also improve noise robustness whether or not a
preferred oriented pattern occurs. Observe that it may also be sim-
ilarly extended across scales (not implemented here).
th different focus settings, MR decompositions y1 and y2 are performed with K ¼ 2
indow N and by taking the maximum activity among orientations. Decision map dN

rged from the decided MR coefficients. Finally, the inverse MR transform yields the
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The decision map d is finally built by taking the argument of the
maximum activity among channels:

dNðn; kÞ ¼ arg max
S

AN
S ðn; kÞ

h i
: ð3Þ

Concerning the approximation ySðn;1;KÞ, a typical procedure
involves weighted averaging the low-pass residue of all input
channels. That is specially important when images have been cap-
tured at different lighting conditions or with different sensors [15].
In multifocus fusion, however, all channels have a similar low-pass
response and therefore can be simply averaged.

2.4. Fused image

Finally, the composite MR decomposition denoted as ŷ is
merged point-by-point as follows:

ŷðn;p; kÞ ¼ ydNðn;kÞðn;p; kÞ; ð4Þ

where the fused image x̂ is obtained by the synthesis operator as
x̂ ¼ W�1ðŷÞ. The complete procedure is illustrated in Fig. 1.

3. The log-Gabor transform on image fusion

3.1. Log-Gabor formulation

Log-Gabor filters, illustrated in Fig. 2, consist of a complex-fil-
tering arrangement in p orientations and k scales, whose expres-
sion in the log-polar Fourier domain is as follows:

Gðq; h; p; kÞ ¼ exp �1
2

q� qk

rq

� �2
 !

exp �1
2

h� hk;p

rh

� �2
 !

ð5Þ

in which ðq; hÞ are the log-polar coordinates and ðrq;rhÞ are the
angular and radial bandwidths (common for all the filters). The pair
ðqk; hk;pÞ corresponds to the frequency center of the filters, where
the variables p and k represent the orientation and scale selection,
respectively. In addition, the scheme is completed by a Gaussian
low-pass filter Gðq; h;1;KÞ (approximation). In order to attain an ex-
act reconstruction, further filtering parameters were tuned by fol-
lowing the design constraints recommended in [19].

3.2. Overcompleteness, complex nature and other properties

Because of their Gaussian profile, Gabor functions provide an
optimum joint space–frequency localization whose shape is
smooth, symmetric, infinitely differentiable and monomodal, with-
out side lobes either in space or frequency domain [25]. Like most
wavelet decompositions, the log-Gabor transform is built up as a
dyadic structure in frequency octaves; moreover, it tolerates an
Fig. 2. Multiresolution log-Gabor arrangement with P ¼ 6 orientations and K ¼ 6 scales.
(c) Filters in the Fourier domain.
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arbitrary number of orientations (the second exponential term in
Eq. (5)). Furthermore, its complex nature has shown advantages
in image processing [26,27] since a coupled pair of filters with
opposite phases (real/imaginary) is able to respond simultaneously
to features of different phase, such as edges or ridges. Additionally,
recent articles have paid attention to the disadvantages of critical
wavelet sampling [10,15,28–30]. Although the typical dyadic filter
bank of wavelets cancels deep overlapping (aliasing) that exists be-
tween sub-bands, a slight manipulation of the coefficients (shift-
ing, rotation and scaling) can induce unpredictable artifacts. In
some applications this may not be relevant, but in image fusion
this is definitely undesirable as it may lead to misregistered
images. One must be aware that overcompleteness unfortunately
increases the dimensionality of the transform domain and there-
fore the computational cost and memory consumption.

4. The Multisize Windows technique

The MW technique was designed to mitigate the trade-off be-
tween robustness and localization. Large windows contribute to
a more robust activity calculation but may result in feature cancel-
lation or contrast loss, causing smoothness in the decision maps. In
contrast, small windows improve localization but gravely impair
the robustness. Previously introduced in [22], we contribute here
a refined version of the technique.

4.1. MW formulation

Given a certain set N of averaging window sizes, the idea is to
trust in the largest window wherever it does not impair localiza-
tion. To measure such a localization impairment, a window confi-
dence is defined proportionally to the highest number of
neighboring decisions dN that come from the same channel. We
formally define it as

CNðn; kÞ ¼ max
S

1
N2 fn

0 2 eN : dNðn0; kÞ ¼ Sg
��� ���� �

; ð6Þ

where the operator j � j means the cardinality of decisions indexing
the same Sth channel and eN means a neighborhood around n of size
N � N. Note that CN runs from 0 (uncertain) to 1 (certain) and that
this value can be also interpreted as the probability in a given
neighborhood of size N that the coefficients ŷðn; �; kÞ come from
the channel S. Also note that for convenience we match up this
neighborhood with the size N of the averaging window referred
to in Eq. (1). A large window is then applied with high confidence
in cases when most decisions (coefficients) point to (should be ta-
ken from) the same channel. On the other hand a smaller window
should be used when disparity in the decisions is manifested. The
entire procedure can be described as follows:
(a) Real part. The low-pass filter is drawn in the upper-left part. (b) Imaginary part.

usion using the log-Gabor transform and a Multisize Windows ...,



Fig. 3. Multisize windows scheme (one scale is shown): activity maps AN
1 and AN

2 are obtained by applying the set of windows N ¼ fN1;N2;N3g; three decision maps are
then released. The MW technique is hierarchically computed from the largest to the smallest window according to three given thresholds in T ¼ fT1; T2; T3g. The obtained
decision map dN merges, as usual, the composite MR domain. The same procedure would be similarly applied in subsequent scales. Note that the dashed square inside Fig. 1
corresponds to the dashed frame surrounding the current figure.
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(1) Let N ¼ ½N1;N2; . . . ;NM � be a set of windows sorted by
decreasing size, where i = 1, . . . ,M indexes the window sizes;

(2) Let T ¼ ½T1; T2; . . . ; TM� be a threshold set for each Ni 2N,
where Ti 2 ½0;1�;

(3) Initialize dNðn; kÞ ¼ 0 as the MW decision map;
(4) For i ¼ 1 to M
(5) For all dNðn; kÞ ¼ 0
(6) If CNi ðn; kÞP Ti then
(7) dNðn; kÞ ¼ arg½CNi ðn; kÞ�;
(8) end
4.2. Some MW insights

Note that the above steps have to run from the largest to the
smallest window. Note also that locations already assigned in
dNðn; kÞ at any previous step are not further computed. In the case
that two different decisions are equally frequent, one of them is
simply taken. This hierarchical combination, however, might be
unable to merge all of the coefficients, i.e. some coefficients might
be below Ti for any window Ni. In the previous proposal [22] a lin-
ear combination of activities derived from the whole windows set
was allocated to those ‘unmerged’ coefficients. Alternatively, we
include in N the smallest possible window NM ¼ 1 to satisfy the
condition in step (6) for any threshold. Finally, the block diagram
in Fig. 3 sketches the procedure and Fig. 4 presents a simple exam-
ple to gain insight into the MW technique.
Fig. 4. A graphical example showing the adaptation of the window size performed by t
different focus planes, the tower and the background are in focus, respectively. (c) Whi
darker the pixel, the smaller the window that was applied (five windows were chosen).
plane transition.
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5. Performance evaluation in multifocus frameworks

Multifocus frameworks, tackled particularly in this paper, con-
sist of a given stack of images capturing the same scene but with
different focus planes. Thus objects are focused differently in the
input images. The activity is often referred to as focus measure
and the decision maps identify regions in focus. The ideal multi-
focus fused image is at best focused everywhere.

Hereafter the number of levels will be K ¼ 4 (note that the
fourth level is the approximation pyramid) and the number of ori-
entations P will vary from 1 to 18 (from isotropic to highly aniso-
tropic). A broad window set will be chosen N ¼ ½19;15;11;
9;7;5;3;1� whose set of confidence thresholds will be T ¼
½0:8;0:8;0:8;0:7;0:7;0:6;0:6;0:6�. The thresholds of small windows
were relaxed heuristically because such small windows perform
last in the MW procedure and precisely in regions of transitions be-
tween objects located at different focus planes where these small
windows are the most reliable in size.
5.1. The laboratory scenario

The data set consists of two images acquired with a conven-
tional digital camera in a laboratory environment. Multiexposure
and misregistration are practically cancelled. Apart from the
blurred versions in Fig. 5a and b (tower and background in focus,
respectively), we constructed a very precise reference map by putt-
he Multisize Windows technique. (a, b) Two input images of the same scene with
te pixels indicate those locations where the largest window was applied. Then, the
Note that the importance of the windows (confidence) fluctuates close to the focus

usion using the log-Gabor transform and a Multisize Windows ...,



Fig. 5. Laboratory experiment. (a, b) A two-plane scenario made of two images of size 236� 236 with the tower and the background in focus, respectively. (c) Ideal decision
map constructed by occluding the background with a piece of black felt and subsequent gray-value thresholding.

Fig. 7. Percentage of errors (E) committed in decision maps by the log-Gabor
transform ðP ¼ 3Þ vs. window size (N) and for the Multisize Windows for the three
levels of decomposition ðk ¼ f1; . . . ;3gÞ.
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ing a piece of black felt between both focus planes and applying a
simple threshold algorithm, as shown in Fig. 5c. In order to evalu-
ate the quality of the decision maps, the percentage of errors (E) is
defined as follows:

E ¼ 100
ne

nt
; ð7Þ

where ne is the number of wrong decisions and nt is the total num-
ber of decisions, i.e. the size of the image.

The two focus planes in Fig. 5 are deliberately placed not too far
away from each other in order to impair focus estimation and
therefore to better discriminate among algorithms. We believe
the proposed scenario is complex enough, in the sense of object
shapes, textures and blurring, to elucidate several questions
regarding appropriate MR settings. Two focus planes facilitates
the exercise of constructing an ideal reference and therefore a
quantitative measure. Moreover, it permits straightforward control
of what is happening, whereas a large number of planes would
complicate the process.

5.1.1. Size of the window
The appropriate window size is conditioned by the size/shape of

the objects and the noise present in the channel. In Fig. 6, three
examples are shown as representative samples of the influence
of the window size in decision maps. Fig. 6a illustrates that small
windows are more exposed to noise and prone to errors in the fre-
quency analysis. Hereafter we will call them spurious errors. On the
other hand the accurate outline of the tower verifies the capability
of spatial localization. Conversely in Fig. 6b, a bigger window yields
robust analysis where most errors are committed close to focus
plane transitions. Hereafter we will call them localization errors.
The result obtained through the MW technique in Fig. 6c presents
a notable decrease in both types of errors. Large windows were ap-
Fig. 6. Decision maps obtained through log-Gabor (k ¼ 1 and P ¼ 3) with a window of
technique ðE ¼ 1:44%Þ.
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plied mostly on inner regions of the focus planes, removing spuri-
ous errors and smaller windows improved localization around
focus plane transition, such as the tower’s contour.

Several statements can be made from the graph in Fig. 7. Win-
dows of size N < 5 commit a large amount of spurious errors. For
N > 11 coefficients increase the amount of localization errors until
the errors are clearly significant/visible. Therefore, it seems that
the best window size ranges from N ¼ 5 to N ¼ 11. It can be said
that in this ‘optimum’ range the amount of spurious errors and
the amount of localization errors are well balanced. As the decom-
position level is higher, that behavior shifts to bigger window sizes,
size (a) 3� 3 ðE ¼ 7:29%Þ, (b) 15� 15 ðE ¼ 3:52%Þ, and (c) the Multisize Windows

usion using the log-Gabor transform and a Multisize Windows ...,



Fig. 8. Decision maps obtained through log-Gabor (P ¼ 3 and N ¼ 5) and level (a) k ¼ 1 ðE ¼ 3:8%Þ, (b) k ¼ 2 ðE ¼ 6:71%Þ and (c) k ¼ 3 ðE ¼ 18:17%Þ.

Fig. 9. Percentage of errors (E) committed in decision maps by the log-Gabor
transform ðk ¼ 1Þ vs. the number of orientations (P) for different window sizes (N)
and for the Multisize Windows technique.

Fig. 10. Percentage of errors (E) committed in decision maps by the log-Gabor
transform (k ¼ 1 and P ¼ 3) against increased variance of Gaussian noise for
different window sizes (N) and the Multisize Windows technique.
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i.e. higher decomposition levels require bigger window sizes. The
lowest E was delivered by the MW technique regardless of window
size, the decomposition level or number of orientations (not shown
here).

5.1.2. Number of decomposition levels
The degree of blurring present in the channels determines the

required number of decomposition levels. The maps in Fig. 8, to-
gether with the plot in Fig. 7, confirm that levels above k ¼ 3 are
unnecessary and even counter-productive due to the high presence
of spurious errors as well as poor localization. This is again con-
firmed across orientations and is independent of the window size.
For simplicity, we will consider hereafter only the first level of
decomposition, i.e. k ¼ 1.

5.1.3. Number of orientations
Again several conclusions can be stated from the plot in Fig. 9. If

the windows are small (i.e. N < 5), increasing the number of orien-
tations contributes to reducing spurious errors. Unfortunately,
from medium to big sized windows this action does not yield sig-
nificant improvements. Thus, this plot justifies the use of sizes
N P 5. Surprisingly, the no orientations condition ðP ¼ 1Þ delivers
notable performance for N > 3. The MW technique shows its
robustness across orientations. Note that, though the impairment
is high for the smallest windows, most decisions come from the
first stages in the MW procedure, that is, for the biggest windows,
and therefore decision maps are not largely affected.1

5.1.4. Noise robustness
The previous data set in Fig. 5 was artificially corrupted with

additive noise of Gaussian probability distribution [31] which
characterizes many natural phenomena. Noise energy is character-
ized by its variance, which ranges for this and subsequent studies
from imperceptible to very harsh noisy conditions (far from normal
working conditions). Each setting was averaged among 30 noise
instantiations and the variance encountered was so negligible as
to be discarded.

The performance against noise is plotted in Fig. 10, from which
several conclusions can be made. Medium window sizes perform
better for low noise (< 10�5 in this case), as in the absence of noise
in Fig. 7. Here, differences in E are minor but still visible, as in Fig. 6.
As the noise levels increase spurious errors diminish, up to a cer-
tain limit, according to the area of the window. The MW behaves
with an elevated resistance to noise since it delivered the lowest
E against the overall set of single-window approaches.

For medium and large windows ðN P 5Þ, no significant gain in
noise robustness was encountered from the use of a high number
of orientations (not shown). For small windows ðN < 5Þ the use
1 This observation was also corroborated for steerable filters.
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of more orientations makes E diminish only for low noise condi-
tions (< 10�5 in this case), however, decision maps are still largely
corrupted.2 These results agree with previous observations in the
absence of noise (Fig. 9).
2 This observation was also corroborated for steerable filters.

usion using the log-Gabor transform and a Multisize Windows ...,



Fig. 11. Decision maps (in absence of noise) obtained through (a) steerable ðE ¼ 4:93%Þ, (b) Daubechies (db4) ðE ¼ 3:94%Þ, (c) biorthogonal (bior4.4) ðE ¼ 3:26%Þ, (d)
decimated biorthogonal (bior4.4) ðE ¼ 5:11%Þ and (e) log-Gabor wavelets ðE ¼ 2:93%Þ. All wavelets were equally configured with k ¼ 1, P ¼ 3 and N ¼ 7, except for the
decimated biorthogonal filter ðN ¼ 3Þ.
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5.1.5. Type of wavelet
Among all wavelet families existent in the literature, the follow-

ing were selected as a representative sample according to their
nature: Daubechies’ filters (non-symmetric, orthogonal in principle
but undecimated), steerable filters (symmetric and non-orthogo-
nal), biorthogonal filters (symmetric and undecimated) and log-Ga-
bor (complex-valued, symmetric and non-orthogonal). A
decimated version of biorthogonal filters was also considered.3 In
order to avoid possible bias these filters were tuned to the same
best setting encountered in previous sections: k ¼ 1; P ¼ 3 and
N ¼ 7 (the decimated version used N ¼ 3).

From the five decision maps (in absence of noise) depicted in
Fig. 11 it can be said that the decimated biorthogonal filters com-
mitted a lot of spurious errors and localization errors (the tower
was poorly outlined); the steerable filters performed the worst
among the undecimated versions, closely followed by the Daube-
chies filters and finally by the undecimated biorthogonal version,
which yielded a similar quality that was a bit worse than the
log-Gabor. Note that these decision maps still maintain a high E
in comparison to the output of MW, which achieved, by far, the
best result in terms of E as well as visual quality (see Fig. 6c). Such
differences in performance were also observed for other window
sizes and decomposition levels (not included here).

The rates plotted in Fig. 12 were also replicated for speckle and
salt and pepper distributions [31] (not shown here). The results
were found to be very similar to the Gaussian case. The following
can thus be concluded: all wavelets seemed to be proportionally
affected by noise but they respond equally against high noise level;
decimation severely impairs robustness and the quality of the deci-
sion map; steerable filters committed about 2% more errors than
other wavelets4; biorthogonal and log-Gabor wavelets performed al-
most equally well and were the best in the absence of noise and in
3 A fair error calculation entails taking a half-size window and decimating the ideal
decision map in Fig. 5c.

4 Although the high-pass residue was firstly discarded, a new ‘steerable’ residue
proposed in [32] was also tested but did not deliver better results.
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low-noise conditions, the MW technique outperformed, by far, any
single-window approach (although it was only plotted in combina-
tion with log-Gabor as an example of one of the best rated). A similar
improvement degree was observed for all types of wavelets by using
the MW. Moreover, the MW technique improved noise robustness
above 5% at 10�4 and above 10% at 10�5, probably because of the
benefit of using large windows at the high noise level.

5.2. A microscopy scenario

Multifocus fusion is especially relevant in microscopy where
specimens can not be acquired completely in focus with a single
image due to the narrow depth-of-field. As with going beyond
physical limitations, extending the depth-of-field has been a chal-
lenging pursuit since the pioneering research on microscopy in the
early 1980s [27,33–36].

An applied fusion of images of a real sample of a fly taken from a
bright-field microscope is depicted in Fig. 13a–d. This sample con-
tains complicated structures as thin eyelashes which give rise to
abrupt focal plane transitions. Despite the fact that most high-fre-
quency details have been merged with K ¼ 3, an overall blurring is
visible in comparison to K ¼ 4 (see Fig. 13e and f). It can be also ob-
served in Fig. 13g–i that the number of orientations, in spite of not
having a special impact on decision maps, helps to preserve the
continuation of some oriented features such as the eyelashes.
The MW result in Fig. 13j also offers a slight improvement on the
oriented features. Furthermore, it was observed (not shown here)
that an elevated number of orientations ðP > 10Þ did not improve
the fused images at all but rather some blurring artifacts could ap-
pear. Whereas decimated wavelets introduce very strong ringing,
undecimated biorthogonal filters yielded one of the best visual
qualities (see Fig. 13k and l). Low-frequency artifacts, however, still
arose along the eyelashes, but they are attenuated by the log-Gabor
approach, albeit accompanied by some ringing in Fig. 13m. The
MW technique in Fig. 13n improves some detailed features but
the overall visual quality remains similar to the best single-win-
dow log-Gabor approach.
usion using the log-Gabor transform and a Multisize Windows ...,



Fig. 13. Images of a real sample of a fly head captured from a bright-field microscope co
image obtained through log-Gabor with decomposition levels K ¼ 3 and K ¼ 4, respectiv
images through log-Gabor with P ¼ 1; P ¼ 3; P ¼ 8 and the Multisize Windows ðP ¼ 3Þ, re
biorthogonal (bior4.4), biorthogonal (bior4.4), log-Gabor and log-Gabor + Multisize Wind
and N ¼ 7, except for the decimated biorthogonal case with N ¼ 3. The Multisize Windo

Fig. 12. Percentage of errors (E) committed in decision maps vs. Gaussian noise for
different types of pyramid decompositions. All wavelets were equally configured
with k ¼ 1; P ¼ 3 and N ¼ 7, except for the decimated biorthogonal filter ðN ¼ 3Þ.
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5.3. Complexity

It is well known that, taking n as the total number of pixels,
the complexity of the FFT used for computing log-Gabor filters
is Oðn log nÞ [19] and the memory slots required for the undeci-
mated domains are n� K � P, whereas the complexity of the
lifting schemes is OðnÞ [37] and the number of memory slots is
n. In addition, both the single-window and the MW approaches
require a fixed number of operations for each pixel; hence their
complexity is the same, i.e. OðnÞ. But the number of operations
also increases linearly with the window area N2 for the single-
window approach and with the sum of all windows areas
for the MW method. It is then advisable to limit the number
of large windows in the MW approach. Interestingly, MW
does not correspondingly increase its memory requirement since
the same memory allocation can be used in the hierarchical
computation.

6. Conclusions

We aimed to evaluate log-Gabor filters and a whole range of
parameters involved in image fusion not only by means of quanti-
mposed of 12 slices of size 236� 236. (a–d) Four representative slices. (e, f) Fused
ely, and the same number of orientations P ¼ 3. (g–j) Magnified details of the fused
spectively. (k–n) Magnified details of the fused images obtained through decimated
ows, respectively ðP ¼ 3Þ. All examples (g)–(n) were equally configured with K ¼ 4
ws used the window set and thresholds described in scenario 1.
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tative measures in simulated scenarios but also by visual inspec-
tion in a real microscopy experiment. It is obvious, however, that
other types of scenarios would also help further investigate aspects
of MR processes.

Frequency features placed at medium-frequency bands (the
second and third scales) are beneficial in terms of overall blur elim-
ination. This might be due to the fact that relevant/focused details
are mainly present in the first octave of the Fourier domain. How-
ever, more than two or three levels of decomposition caused
impairment of the decision maps. As the size of the window in-
creases, the number of orientations diminishes its influence on
decision maps. This could explain why the Laplacian pyramids
achieve such remarkable performance. Nevertheless, more than
three orientations improved delicate features in microscopy, but
an elevated number of them produced blurring.

Decimation should be definitely avoided since it induces poor
robustness and severe ringing artifacts. The visual quality supplied
by all undecimated wavelets was notable. Log-Gabor, together
with biorthogonal wavelets, yielded the least distorted decision
maps, but in the presence of noise none of the tested wavelets
was superior. In addition, the log-Gabor transform yielded fewer
low-frequency artifacts around demanding structures, which could
be ascribed to complex-valued coefficients. In future work, the im-
pact of misregistered images (shifted and rotated) on fusion
regarding shift-invariance properties of transforms could be
investigated.

The MW technique deserves special attention since it delivered
better decision maps than any of the other single-window ap-
proaches in the experiments, regardless of the decomposition level,
noise level or type of wavelet. The sizes and shapes of the objects,
the level of noise and the decomposition level condition the size of
the averaging window. In real applications it is difficult to estimate
the appropriate window size since there does not exist a ground
truth image for comparison. Hence, the MW technique avoids the
pre-fixation of the window size and estimation of the noise
strength. Although a set of sizes has to be previously defined, here
we simply covered a broad range of equidistant values, which can
be taken as a general rule. Likewise, the set of confidence thresh-
olds depends almost exclusively on the scale of the objects present
in the channels, which can be automated in a straightforward way.
Though the current MW setting performed quite stably, exhaustive
explorations on the influence of the window and threshold sets
may be of interest.

Lastly, the overall methodology was designed for multifocus
frameworks but could be easily applied to other image fusion prob-
lems, such as multimodal fusion. Special attention should be paid
to the combination of low-pass sub-bands. Use of match measures
instead of the maximum selection rule could offer significant mult-
isensor improvements but would put at risk compatibility with the
MW technique.
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