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Abstract

Pattern recognition of objects on affinely distorted
images based on moments is important task researched
for many years. Affine moment invariants are significant
tool for it. They can be generated by a few methods. Au-
tomated direct solution of the Cayley — Aronhold differ-
ential equation has not been referred yet. It makes pos-
sible to generate invariants with much higher weights
than other methods, but we must pay more attention to
the numerical stability of the computation. The method
is demonstrated on examples.

1. Introduction

Affine moment invariants are useful features for
recognition of objects on affinely distorted images.
They are studied for many years, but there are still prob-
lems with generation of the invariants of high weights.
They can be derived as a solution of corresponding
equations. A pioneer work on this field was done inde-
pendently by Reiss [3] and Flusser and Suk [1]. Man-
ual solving these equations is laborious, particularly for
higher orders, but it can be avoided, if we generate
the invariants automatically. The topic of this contri-
bution is automated direct solution of the equations by
the computer.

The competitive approach is tensor method [3] or
graph method [5]. They are easy for programming,
but their disadvantage is relative slowness. Another
approach, called normalized moments, transforms the
image into some standard position and moments are
computed in it (e.g. [4] or [6] among others). They
can relatively easily reach high orders, but if we write
complete formulas for them, they are quite complicated.
Their main disadvantage is less stability in recognition
of symmetric objects.
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2. Derivation of Affine Moment Invariants

The affine transform is a general linear transforma-
tion of spatial coordinates. It can be decomposed into
horizontal and vertical translations, scaling, stretching,
horizontal and vertical skews and mirror reflection. If
the Jacobian of the affine transform is positive, then the
mirror reflection is excluded from the decomposition. If
some function is invariant to all these seven transforms,
it is invariant to the affine transform, and vice versa.
Other decompositions are also possible; this one is ad-
vantageous for derivation of the direct equations.

The translation invariance is achieved by using cen-
tral moments instead of geometric moments, the scal-

ing invariance can be obtained by normalization v, =

Lipg/ e/ but an invariant is often written in

form of polynomial of p,,’s with scaling normalization
at the end. The product of moments, where the sum of
the first indices equals the sum of the second indices, is
invariant to the stretching

P = Hupqu , WhereZpk = qu =w. (1)
k=1 k=1 k=1

From the invariance to the horizontal skew, we can
derive (the derivative with respect to the parameter of
the skew must be zero [1]) the equation
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In the theory of algebraic invariants, this is called Cay-
ley — Aronhold differential equation. We can derive a
similar equation from the vertical skew. The condition
of symmetry can be derived from the mirror reflection,
it implies that terms with interchanged first and second
indices have identical (even w) or opposite (odd w) co-
efficients. Then we need not solve the equation from the



vertical skew separately and we can reduce the number
of unknowns.
The invariant has various attributes. It is

e weight w — the sum of the first indices of moments
in one term

e order s — the maximum moment order
e degree r — the number of moments in one term

o structure (ka, ks, ..., ks) — each term is the product
of ko moments of the 2nd order, k3 moments of the
3rd order, ..., ks moments of the s-th order

o the number of terms

— theoretical number of terms n; — the number
of the terms @ of the given structure

— actual number of terms n, — the number of
terms in the result with nonzero coefficients.

3. Automation of the Algorithm

The input parameter of the algorithm is the struc-
ture of the desired invariant. If the structure is
(ko,ks3,....ks), thenr = ko + ks + ... + ks and w =
(2ka + 3ks + ... + sks)/2. First, we need to generate
moment indices of all possible terms of the invariant; it
means to generate all possible partitions of the number
w to sums of ko integers from O to 2, k3 integers from 0
to 3 up to k, integers from O to s. It can be done in two
stages. The first stage defines distribution among orders
and the second one defines distributions inside the or-
ders. Now we use the members of the partitions as first
indices of the moments. The number of partitions is 7.

Then moments in a term and terms in an invariant
are sorted and symmetric terms are searched. The num-
ber of different coefficients after applying the condition
of symmetry is n;. Now the members of the Cayley —
Aronhold equation are computed. Let us label the num-
ber of derivatives s, and the number of occurrences of
Upq in j-th term n(p, ¢, 7). If the form of the invariant
is

1= (Z ¢ ijzyqu)/ﬂga_w ) 3)
j=1 ‘¢=1
then the Cayley — Aronhold equation has form
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Now we can construct the system of linear equations
for unknown coefficients. The Cayley — Aronhold equa-
tion must hold for all values of the moments, therefore

the sum of coefficients at identical terms of the deriva-
tives must equal zero. The dimension of the space of the
solutions equals the number of the invariants. The base
of the solution can be found by singular value decom-
position (SVD) of the matrix, the number of invariants
equals the number of zero singular values. Many coef-
ficients yielded by SVD are non-integers, but we know
from the theory they can be integers. Therefore it is suit-
able to use reduced row echelon form (RREF). If there
are still some non-integer coefficients, we look for their
maximum fractional part 0 < d < 0.5. If there are frac-
tional parts 0.5 < d < 1, we use 1 — d. Then we divide
all coefficients by this maximum, it is repeated until all
coefficients become integers.

4. Example with the Structure (2,0,2)

We need to generate all partitions of the number 6 to
a sum of 2 numbers from 0 to 2 and 2 numbers from O
to 4. They are in Tab. 1, n, = 14. The moments in the

Table 1. All possible terms of the invariant

1st stage | 2nd stage | coefficient term

6+0 4+2+0+0 c1 Mgg b0 422
3+3+0+0 c2 H2k31

5+1 4+1+1+40 c3 110240413
3+2+1+0 Cq 11 02431 22

4+2 4+0+2+0 Cs 1420 402 440 404
4+0+1+1 cs 1431 o foa
3+1+2+0 Cé 12002431 (413
3+1+1+1 C9 ;L%l,uglulg
2424240 cr 1420 1402 /432
24+2+1+1 c10 HR1H3s

343 3+0+2+1 c3 20411 431 o4
2+1+2+1 Cq H20411 422413

244 | 240+2+2 c1 1130422104
1+142+42 C2 [130/413

terms are then sorted (4th column), the terms are also
sorted and symmetric counterparts are searched. The
unknown coefficients in the 3rd column are numbered
according to it, ns = 10.

Now, we need to put together the Cayley — Aronhold
differential equation. The term with the derivative with
respect to moment (13 iS an example

D(p13) = 2copopa3pios + Caploopinn f2z fhoa+
Co 120 1402 /431 104 + C9H%1N31N04 + Cc3 411 o2 1440 04 -



The matrix derived from the equation

D(pa3) + D(p22) + D(ps1) + D(pao) + D(pa1)+
+D(p20) =0
(5)

is in Tab. 2. SVD yields 8 nonzero and 2 zero singular

Table 2. The matrix of the system of linear
equations for the coefficients. The solu-
tion is in the last two rows.

€] € €3 €4 C5 Cg Cr Cg C9g CiQ
2 2 0 O 0 o0 o0 o0 o 0
4 0 3 1 0O O O 0 O 0
o o 1 o 4 1 0 0 O 0
o o0 2 O 0 o0 o0 4 1 0
o o 1 o0 2 O 0 2 O 0
o 4 0 2 0 0 0 0 O 0
o o0 o 1 0 3 4 0 O 0
o o0 o 2 0O 0 0 0 3 4
o o 4 2 0 2 0 0 2 0
2 0 1 O o0 0o 0o o0 o 0
o o0 o 3 0 o0 2 0 O 2
4 6 0 1 0O O O 0 O 0
1 -1 2 2 0 2 2 1 0 -1
o o o o 1 -4 3 -1 4 3

values, the solution after RREF is in the last two rows
of Tab. 2, i.e. we have two solutions

Iy = (u3opaziion — [i5plys — 2H20 11 31 oat
2120411 22413 + 220 o2 431 13 — 2M2OMO2M%Q+
1131 paoftos — f31 139 — 241102 ba0k13+

2p111 frozf131 fi22 + U202z — Hoal31)/ 100,

Ir = (p2o o2 ba0 oa — 4ftoo o2 31 413+
32002143 — 131 ftaottos + Ap3 31 113
—3M%1N%2)/M(1)8-

If we are interested in the invariants with the struc-
ture (2,0,2) only, then these invariants are independent,
but if we have computed all simpler invariants, we can
find that I is product of two other invariants I, =
(H20p02 — p131)/ 150 and Top, = (praoptos — 4pizifrz +
3#%2)/ Mgo-

5. Additional Remarks

The computation over all possible structures can be
automated, too. The generation of invariants of all
structures of weight w and degree  means to compute
all partitions of the number 2w into r integers from 2 to

Figure 1. The five-rung wheel and the ho-
ley pentagon adjusted so their 2nd- and
4th-order moments are the same.

w. The algorithm is similar to that for generation of the
terms of one invariant in the second stage. The products
of other invariants (e.g. Io = I2,12p) and the linearly
dependent invariants should be eliminated.

An example of problems with non-integer coeffi-
cients is the structure (1,1,1,3). It gives w = 12, s = 5,
r = 6, n; = 330 and ny; = 165. SVD yields 156 non-
zero and 9 zero (under-threshold) singular values. After
RREF, 4 from 9 solutions include non-integers. E.g.
the third solution has n,, = 244. The biggest fractional
part of them is 0.3333 and when we divide them by it,
we can round them to integers. If the threshold for this
rounding is improper, it could cause errors.

We use magnitude normalization to the growing or-
der p + ¢ and to the growing degree r

Upg =t (m + 1) Upg f:sign(l)|l|% .

2
(6)
6. Numerical Experiment

The experiment should illustrate using invariants
with high weights. An important problem in pattern
recognition is recognition of symmetric objects. We
know from the theory [2] that if we have an object with
n-fold rotational symmetry, i.e. it repeats n-times it-
self during rotation by 360°, then there are some de-
pendencies among the moments. The higher n, the
more such dependencies. An example of two objects
(500 x 500 pixels) with 5-fold rotational symmetry ad-
justed so their 2nd- and 4th-order moments are identical
(3rd-order moments are zero) is on Fig. 1.

The complete and independent system of affine mo-
ment invariants up to the 4th order has 9 invariants with
structures (2), (0,4), (1,2), (3,2), (0,0,2), (0,0,3), (2,0,1),
(2,0,2) and (0,4,1). They were generated by the graph



method [5]. Their values in Tab. 3 are very similar; the
deviations are caused by sampling error.

Table 3. Values of the invariants up to the
fourth order.

e Iy Iy Iiq
wheel 0.5259 | -0.0000 | 0.0004 | -0.0103
pentagon | 0.5261 | 0.0003 | -0.0035 | -0.0301
Lye Ly Iig Ly, Ly
0.4797 | 0.2770 | 0.6742 | 0.5398 | 0.0001
0.4799 | 0.2771 | 0.6744 | 0.5399 | 0.0011

For recognition of such symbols, we need invariants
of at least 5th order. The complete and independent
set of homogeneous! invariants of the 5th order con-
tains 3 invariants with weights 10, 20 and 30; the lat-
ter two are extremely expensive when using the graph
method. Let us label them I5,, I5, and I5., their struc-
tures are (0,0,0,4), (0,0,0,8) and (0,0,0,12), n; = 12,73
and 252 and ns; = 9, 44 and 140, respectively. As a
by-product, we obtain dependent invariants 12, — 815y,
IsoIsp +17I5. and I3, — 1215, 15, — 156 I5.. The values
of the invariants are in Tab. 4.

Table 4. Values of the invariants of the fifth
order.

I5q Isp Isc
wheel | -0.0013 | 0.0004 | -0.0003
pentagon | -0.0628 | 0.0091 | -0.0048

We carried out an experiment with random affine
transforms. Both symbols were successively deformed
by 100 random affine transforms and normally dis-
tributed zero-mean random noise with gradually in-
creased standard deviation was added to the objects.
When we use I5,, I5, and I5. as features for recogni-
tion, the symbols were recognized correctly up to SNR
0.2 dB. The example of recognized symbols is on Fig. 2.
When we used I4q,...,14;, first errors appeared at SNR
30 dB.

For comparison, the normalized moments [6] of the

5th order with optimal threshold of non-zero moments
reached SNR 0.6 dB without an error.

"'Homogeneous invariants contain moments of one order only

Figure 2. The affinely distorted noisy ob-
jects.

7. Conclusion

There are a few methods of automatic generation of
affine moment invariants, automated direct solution of
Cayley — Aronhold differential equation is one of them.
Its main advantage is approximately polynomial com-
puting complexity, while that of the method of tensors
is exponential, therefore this method is suitable in case
of relatively high weights, but we must pay attention to
the correct processing of the non-integer coefficients.
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